To establish different levels of reservoir architectures of the braided river sedimentary system for adjustment and remaining oil exploration,based on the hierarchical level system of fluvial facies,the architecture interfaces of braided river reservoir in Ying-13 fault block can be classified into six hierarchies,and the causes and distribution characteristics of 3-6 hierarchy architecture interfaces were determined. According to different levels of architecture interfaces,based on sequence stratigraphy,analysis of spatial stacking pattern of channel sand-body,classification of architectural element,internal anatomy of mid-channel bar,etc.,the architecture model of the braided river have been categorized into four different levels,from large to small in turn which are complex braided river sand-body,fluvial sand-body,internal sand-body and internal mid-beach bar. Four-different stages channel complex sand-bodies developed in Dong2 oil bed of Ying-13 fault block,which can be divided into five sand-body architecture models:deep cut and superimposition in a large area,shallow cut and superimposition in a small area,no cut and crossing superimposition,no cut and layering superimposition,and isolating sand-body architecture model. Five architectural elements for braided river reservoirs were identified,i.e. channel filling,downstream accretion,sandy bed form,sand sheet and overbank fines. Mid-channel bar,filled by downstream accretion sand,is the most important architectural element within sand-body,in which the architecture model shows downstream accretion characteristic.