基于长短期记忆神经网络的油田新井产油量预测方法
作者:
作者单位:

作者简介:

侯春华(1971—),女,山东郓城人,高级工程师,博士,从事油气田开发战略及开发规划编制研究工作。联系电话:(0546)8716204,E-mail:houchh@163.com。

通讯作者:

基金项目:

国家科技重大专项“胜利油田特高含水期提高采收率技术”(2016ZX05011-001)。


New well oil production forecast method based on long-term and short-term memory neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对油田常用人工智能产油量预测方法无法考虑数据在时间上相关性的问题,提出了采用基于长短期记忆(简称LSTM)神经网络的油田新井产油量预测方法。在分别介绍反向传播(简称BP)神经网络、循环神经网络(简称RNN)、LSTM神经网络原理以及建模步骤的基础上,以某油田新井单井年产油量预测为例,对影响新井单井年产油量的开发指标进行了筛选,对相应LSTM神经网络进行了训练,并对新井单井年产油量进行了预测。将预测结果与支持向量回归模型和BP神经网络进行了对比,结果表明,该预测模型拟合效果更好,预测精度更高。基于LSTM神经网络的预测方法可以作为一种新的人工智能方法用于油田新井产油量的预测,为准确预测油田新井产量,指导油田开发决策提供了一种新的方法。

    Abstract:

    New well production forecast method based on long-term and short-term memory(LSTM)neural network was proposed to solve the problems that artificial intelligence production prediction method commonly used in oilfields cannot consider the temporal correlation of data with time. Based on the introduction of principle and modeling steps of back propagation(BP)neural network,recurrent neural network(RNN),and LSTM neural network,development indicators affecting yearly oil production of new single well were selected taking the yearly production forecast of new single well of an oilfield as an example,the corresponding LSTM neural network were trained,and the yearly oil production of new single well was forecasted. The forecasted results were compared to those of support vector regression model and BP neural network. The results show that the forecast model has good fitting result with higher forecast accuracy. The forecast method based on LSTM neural network can be used as a new artificial intelligence method for the oil production forecast of new well in oilfields. It is a new method to accurately forecast the oil production of new wells in oilfield and to guide oilfield development decision making.

    参考文献
    相似文献
    引证文献
引用本文

侯春华.基于长短期记忆神经网络的油田新井产油量预测方法[J].油气地质与采收率,2019,26(3):105~110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-07-23
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告