利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究
作者:
作者单位:

作者简介:

刘巍(1993—),男,湖南娄底人,在读博士研究生,从事大数据分析、机器学习等人工智能算法在油气田开发领域的应用研究。 E-mail:lwsg93@126.com。

通讯作者:

基金项目:

国家科技重大专项“致密油气藏多重嵌套介质多组分模型及生产优化研究”(2017ZX05009-005)和“特高含水后期整装油田延长经济寿命期开发技术”(2016ZX05011-001)。


Research on interwell connectivity of oil reservoirs based on Kalman filter and artificial neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    油藏连通性的认识对于制定合理的开发调整方案和提高水驱油藏采收率具有重要意义。基于注采井的生产动态数据,建立一种卡尔曼滤波和人工神经网络相结合的分析方法,对油藏井间动态连通性进行定量表征研究。考虑到注入数据的噪声污染和注入信号在地层传播过程中的时滞影响,分别利用卡尔曼滤波算法和非线性扩散滤波器对注采数据进行预处理,从而减少注采数据对机器学习模型的干扰,提高连通性分析的准确性。基于预处理后的历史注采数据,对以生产井产液量为响应,注水井的注水量为输入的人工神经网络进行训练和参数优化,模拟和挖掘注采系统中的井间连通关系。通过对训练好的模型进行参数敏感性分析,量化油藏井间连通程度。应用所建模型和方法分析了均质、各向异性、包含封闭断层、具有高渗透带的4种典型特征油藏和实际非均质油藏的井间连通性。计算结果与油藏地质特征高度吻合,验证了该方法的实用性,可作为量化注采系统连通状况的有效方法。

    Abstract:

    The understanding of interwell connectivity of oil reservoirs is of great significance for the formulation of reasonable development and adjustment plans and the improvement of water-driven reservoir recovery. Based on dynamic data of injection-production well,an analysis method combining Kalman filter and artificial neural network is established to quantitatively characterize the dynamic interwell connectivity in reservoir. Considering the noise pollution of the injection data and the time-lag effect of the injection signal in the formation propagation process,the Kalman filter algorithm and the nonlinear diffusion filter are used to pre-process the injection-production data,thereby reducing the effect of injection-production data on the machine learning model,and improving the accuracy of connectivity analysis. Based on the pre-processed historical injection and production data,the artificial neural network taking the oil production rates of producers as the response and the water injection rates of injectors as the input is trained and the parameters are optimized,and the interwell communication relationship in the injection and production system is simulated and excavated. Through the parameter sensitivity analysis of the trained model,the degree of interwell connectivity in reservoirs is quantified. The model is applied to analyze the interwell connectivity in four types of reservoirs with representative characteristics such as homogeneity,anisotropy,closed faults,high permeability zones and one real heterogeneous reservoir. The calculation results are highly consistent with the reservoir geological features,indicating that this method has good practicability and reliability. It can be applied to effectively quantify the connectivity of injection and production system.

    参考文献
    相似文献
    引证文献
引用本文

刘巍,刘威,谷建伟,姬长方,隋顾磊.利用卡尔曼滤波和人工神经网络相结合的油藏井间连通性研究[J].油气地质与采收率,2020,27(2):118~124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-25
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告