水溶性分散型降黏剂降黏及微观驱油机理
作者:
作者单位:

作者简介:

熊钰(1968—),男,四川营山人,教授,博导,从事油气开发工程技术研究与管理工作。E-mail:xiongyu-swpi@126.com。

通讯作者:

基金项目:

国家科技重大专项“海上稠油油田开发模式研究”(2016ZX05025-001-004)。


Study on the mechanisms of viscosity reduction and microscopic oil displacement of a water-soluble dispersed viscosity reducer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    稠油分散型降黏剂因其独特的功能和能够减少原油处理环节而备受重视,但是目前为止针对水溶性分散型降黏剂的研制和微观驱油机理研究较少。为此,在测试胜利乐安油田稠油结构的基础上,通过对加降黏剂前后稠油进行红外光谱分析、透射电镜和原子力显微镜扫描等实验,研究其降黏机理;利用高温高压条件下CT和微观刻蚀模型,研究水溶性分散型降黏剂在储层中的微观驱油机理。降黏机理主要为:分散型降黏剂与稠油分子结合后,渗透并扩散到稠油胶质和沥青质片状分子之间,降黏剂中的杂环原子与胶质相结合,减少了络合物在族分子间的生成,并且使聚集体产生分离,原来规则的聚集体转变成片状分子无规则分布,分子结构变得疏松,有序度降低,熵增大,既降低了稠油分子间的聚集,也降低了分子间作用力。其在高温高压储层中的微观驱油机理主要表现为:在较低驱替速度、较高浓度下,由于分散插层作用对吸附在岩石颗粒表面的稠油具有剥离作用,效率较高;在较高驱替速度、较低浓度下,剥离作用相对减弱,且存在较大量的包围式簇状剩余油。

    Abstract:

    The heavy oil dispersed viscosity reducer has attracted much attention due to its unique functions and ability to reduce the processing link of crude oil. However,so far,the development of water-soluble dispersed viscosity reducer and the research on microscopic oil displacement mechanisms have been rare. Therefore,on the basis of testing the structure of heavy oil from Shengli Le’an Oilfield,the viscosity reduction mechanisms were studied through infrared spectrum analysis,transmission electron microscopy(TEM)and atomic force microscope scanning(AFMS)experiments on the heavy oil before and after adding the viscosity reducer;Using the CT and micro-etching models under high temperature and high pressure conditions,the micro-displacement mechanism of water-soluble dispersed viscosity reducer in the reservoir was studied.The viscosity reduction mechanisms are mainly as follows:the dispersing viscosity reducer penetrates and diffuses between the colloidal and asphaltene sheet molecules after it is combined with the heavy oil molecules;the combination of heterocyclic atoms in the viscosity reducer and colloids reduces the formation of complexes between family molecules and separates the aggregates;the original regular aggregates are transformed into sheet-like molecules with irregular distribution;the molecular structure becomes loose,the degree of order is decreased,and the entropy is increased,which reduce both the aggregation of heavy oil molecules and the intermolecular forces. Its microscopic oil displacement mechanisms in high temperature and high pressure reservoirs are mainly manifested as that,the dispersive intercalation has a stripping effect on the heavy oil adsorbed on the surface of rock particles and the efficiency is high at the conditions of low displacement rate and high concentration;the stripping effect is relatively weakened and there is a large amount of surrounding cluster-like residual oil at the conditions of high rate and low concentration.

    参考文献
    相似文献
    引证文献
引用本文

熊钰,冷傲燃,孙业恒,闵令元,吴光焕.水溶性分散型降黏剂降黏及微观驱油机理[J].油气地质与采收率,2020,27(5):62~70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-11-25