胜利油田勘探开发大数据及人工智能技术应用进展
作者:
作者单位:

作者简介:

杨勇(1971—),男,河南遂平人,正高级工程师,博士,从事油气田开发研究及管理工作。E-mail:yangyong.slyt@sinopec.com。

通讯作者:

基金项目:

中国石化科技前瞻项目“基于大数据的油藏流场调控优化研究”(P19001),中国石化科技攻关项目“基于数据驱动的开发指标预测与调控方法研究”(P20071-2)。


Application progress of big data & AI technologies in exploration and development of Shengli Oilfield
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对勘探开发业务流程及热点问题,阐述了大数据及人工智能技术的研究及应用进展。经过持续攻关研究,在胜利油田油气勘探方面形成了断层检测、层位提取、岩性识别、测井解释等多个应用场景的智能化技术,断层解释效率提升10倍以上,测井砂泥岩岩性识别准确率超过90%;在油气开发方面,探索实现了注采响应识别、开发指标预测、方案智能优化等场景的智能化应用方法,方案优化效率提高5倍以上。研究表明,大数据及人工智能技术具有多维度、多尺度数据高效分析能力,不仅可大幅度提升工作效率,而且有助于提升地质建模和油藏工程预测精度。同时,针对现有技术应用问题,未来将重点聚焦核心算法攻关、样本数据标准制定及样本库扩充、智能应用平台建设等工作方向,逐步实现勘探开发全方位、全流程的智能化应用落地,推动油气勘探开发领域智能技术发展,助力油气行业提质增效。

    Abstract:

    Given the operation flow and hot issues about the exploration and development of Shengli Oilfield,this paper detailed the research and application progress in big data and artificial intelligence(AI)technologies. Through continuous conquest of technical challenges,intelligent technologies were developed for multiple application scenarios such as the fault detection,horizon extraction,lithology identification,and logging interpretation. The efficiency of fault interpretation was increased by more than 10 times,and the lithology identification accuracy of logging sand-shale could be more than 90%. In terms of oil and gas development,intelligent application methods for injection-production response identification,development index prediction,and intelligent scheme optimization were explored and implemented. The efficiency of scheme optimization was enhanced by more than 5 times. The results show that the big data and AI technologies,able to provide efficient multi-dimensional and multi-scale data analysis,can not only greatly improve work efficiency but also promote the accuracy of geological modeling and engineering prediction of reservoirs. Considering the current problems in field application,we will focus on conquering core algorithms,formulating sample data standards,expanding the sample library,and constructing intelligent application platforms in the next step. In this way,we intend to gradually implement the all-around and full-process intelligent application of exploration and development,promote the development of intelligent technologies for oil and gas exploration and development,and assist the oil and gas industry in improving quality and efficiency.

    参考文献
    相似文献
    引证文献
引用本文

杨勇.胜利油田勘探开发大数据及人工智能技术应用进展[J].油气地质与采收率,2022,29(1):1~10

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告