精细油藏描述中的大数据技术及其应用
作者:
作者单位:

作者简介:

陈欢庆(1979—),男,陕西咸阳人,高级工程师,博士,从事精细油藏描述研究工作。E-mail:hqchen2009@163.com。

通讯作者:

基金项目:

国家科技重大专项“CO2驱油与埋存关键技术”(2011ZX05016-006)。


Big data technology and its application in fine reservoir description
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    精细油藏描述研究内容特别丰富,积累了海量数据资料,为大数据技术应用提供了坚实的基础。同时,精细 油藏描述由数字化向智能化转型和快速发展进步,需要大数据技术提供支撑。从基础统计数据和综合研究成果数据2方面,阐述了精细油藏描述中大数据的特点。除了这2类数据表资源,精细油藏描述中大数据还包括测井解释图版、地震解释数据体、地质模型等各类数据体以及各种成果图件。结合科研实践,从地层自动精细划分与对比、储层沉积微相(或储层构型)自动批量判别分类、测井精细批量二次解释、聚类分析储层综合定量评价和多点地质统计学三维地质建模等5方面介绍大数据技术在精细油藏描述中的应用。精细油藏描述中大数据技术应用存在的问题包括大数据技术数据库的建设、大数据技术信息挖掘、大数据的代表性问题、大数据多种类型数据之间的融合、大数据应用的安全性问题、大数据应用领域拓展等;未来发展方向主要包括大数据应用平台建设、大数据技术信息挖掘方法优化、大数据质量控制、大数据中的可视化技术创新、海量油田开发大数据的标准化管理、大数据技术在非常规油气精细油藏描述中的应用探索等。

    Abstract:

    Fine reservoir description,with rich content and massive accumulated data,provides a solid foundation for the application of big data technology. Meanwhile,the transformation and rapid development of fine reservoir description from digital to intelligent need support from big data technology. The characteristics of big data in fine reservoir description are expounded from aspects of basic statistical data and comprehensive data on research results. In addition to the above data tables,the big data in fine reservoir description also includes logging interpretation charts,seismic interpretation data volumes,geological models,and other data volumes,as well as various result maps. In light of scientific research practices,the application of big data technology in fine reservoir description is discussed from the perspectives of automatic fine stratigraphic division and correlation,automatic bulk discriminant classification of reservoir sedimentary microfacies(or reservoir architecture),bulk fine logging reinterpretation,comprehensive quantitative reservoir evaluation by cluster analysis,and multipoint geostatistical 3D geological modeling. The problems with the application of the big data technology in fine reservoir description include the database construction for big data technology,information mining for the big data technology,representativeness of big data,fusion of various types of big data,security of big data application,and expansion of big data application fields. Future development mainly involves the construction of the big data application platforms,optimization of information mining methods oriented towards big data technology,quality control of big data,innovation of visualization technology in the big data,standardized management of massive big data on oilfield development,and exploratory application of the big data technology in fine reservoir description of the unconventional oil and gas.

    参考文献
    相似文献
    引证文献
引用本文

陈欢庆,唐海洋,吴桐,刘天宇,杜宜静.精细油藏描述中的大数据技术及其应用[J].油气地质与采收率,2022,29(1):11~20

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告