基于深度学习的地震断层检测与断面组合
作者:
作者单位:

作者简介:

王子健(1998—),男,吉林松原人,在读硕士研究生,从事地球物理技术方面的研究。E-mail:wzj0913@mail.ustc.edu.cn。

通讯作者:

基金项目:


Deep learning-based seismic fault detection and surface combination
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    断层解释是油气勘探和开发中的关键步骤,由于采集的三维地震数据体数量增多,人工以及传统方法很难精细化解释数据体中的断层。为了更好地满足目前油气勘探开发对高效、高精度、高分辨率断层解释的迫切需求,研究基于深度学习算法实现地震数据的自动化和智能化断层检测。通过正演模拟的方法生成大量的、多样化的、符合实际情况的训练数据,同时结合已解释的断层结果构建完备的训练样本库。在此基础上设计优化的、简单的三维卷积神经网络模型高效处理大的三维地震数据体并获得精确的断层检测结果,对断层检测结果做进一步的匹配滤波扫描处理来获得增强的断层概率体、断层倾向和走向估计。最后根据这3个断层属性体,采用区域生长算法来全自动构建出数据体中所有的断层面。通过与传统的常规方法进行对比,该方法在抗噪性、精度和效率等方面均具备明显的优势。

    Abstract:

    The fault interpretation is a crucial step in oil and gas exploration and development. Due to the increase in the number of collected 3D seismic data volumes,the manual and traditional methods can hardly interpret faults in data volumes in detail. To better meet the urgent needs for high-efficiency,high-precision,and high-resolution fault interpretation in oil and gas exploration and development,we propose a deep learning-based algorithm to realize the automatic and intelligent fault detection with seismic data. The forward modeling method is used to generate a large number of diversified training data in line with the actual situation,and at the same time,a complete training sample volume is constructed in combination with the existing fault interpretation results. On this basis,an optimized and simple three-dimensional(3D)convolutional neural network(CNN)model is designed to efficiently process large 3D seismic data volumes and obtain accurate fault detection results. We further apply scan processing of matched filtering to the fault detection results to enhance the fault probability volumes and at the same time,obtain an estimation of fault strikes and dips. Given the three fault attribute volumes,we finally utilize a region-growing algorithm to automatically construct all the fault surfaces in the data volumes.Compared with the conventional methods commonly used in the industry,our method is significantly superior to the conventional methods in robustness to noise,accuracy,and efficiency.

    参考文献
    相似文献
    引证文献
引用本文

王子健,伍新明,杜玉山,张强,于会臻.基于深度学习的地震断层检测与断面组合[J].油气地质与采收率,2022,29(1):69~79

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告