基于深度前馈神经网络方法的横波速度预测
作者:
作者单位:

作者简介:

王树华(1973—),男,山东济宁人,高级工程师,博士,从事储层地球物理和大数据及人工智能技术研究。E-mail:wangshuhua061.slyt@sinopec.com。

通讯作者:

基金项目:

中国石化科技攻关项目“基于大数据技术的油藏精细表征方法研究”(P20071-1)。


S-wave velocity prediction based on deep feedforward neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对横波速度预测问题,在分析经验公式法和岩石物理建模法优缺点的基础上,结合横波速度预测原理,提出基于深度前馈神经网络方法(DFNN)进行横波速度的预测。研究从纵、横波速度关系入手,详细阐述了DFNN方法应用于横波速度预测的可行性,并介绍了该深度学习方法的基本原理;选择声波时差、密度、中子孔隙度、泥质含量、孔隙度5个储层参数与横波速度进行深度神经网络训练,建立可靠的横波速度预测模型。将该模型应用于不同研究区的横波速度预测,结果表明基于DFNN方法预测横波速度能够有效提高预测的精度和效率,适用范围广,可以为叠前AVO分析、叠前反演提供可靠的横波数据,具有较高的实际应用价值和推广意义。

    Abstract:

    Given the shear wave(S-wave)velocity prediction problem,the advantages and disadvantages of the empirical formula method and petrophysical modeling were analyzed,and the principle of s-wave velocity prediction was discussed.On this basis,this paper proposed a deep feedforward neural network(DFNN)for S-wave velocity prediction. Starting with the relationship between compressional wave(P-wave)and S-wave velocities,this study expounded the feasibility of applying the DFNN to S-wave velocity prediction and explained the principle of this deep learning method. Five reservoir parameters(acoustic time difference,density,neutron porosity,shale content,and porosity)were chosen for deep neural network training with S-wave velocity,and a reliable S-wave prediction model was thereby built. The model was applied to S-wave velocity prediction in different research areas,and the results show that DFNN-based S-wave velocity prediction achieves effectively improved prediction accuracy and efficiency and has a wide application range. It can provide reliable S-wave data for pre-stack amplitude-versus-offset(AVO)analysis and pre-stack inversion,so it is worth practical application and promotion.

    参考文献
    相似文献
    引证文献
引用本文

王树华,杨国杰,穆星.基于深度前馈神经网络方法的横波速度预测[J].油气地质与采收率,2022,29(1):80~89

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告