基于深度学习的代理模型在实际气藏三维模拟中的应用
作者:
作者单位:

作者简介:

秦峰(1972—),女,山东滕州人,高级工程师,硕士,从事油气田开发工程工作。E-mail:QinFeng@cnooc.com.cn。

通讯作者:

基金项目:


Application of agent models based on deep learning in actual three-dimensional gas reservoir simulation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    应用基于深度学习的代理模型进行油气藏模拟是油气藏仿真研究的一个新方向。针对高精度全阶油气藏模拟速度慢的问题,采用一种基于深度学习的嵌入式控制框架(E2C,Embed to Control)模型,通过“编码器+线性转化模型+解码器”的架构构建深度学习网络,将原始时刻的压力场、饱和度场数据与井控约束条件相结合来演化出新时刻的场数据。以南海东部番禺35-1气田为例,测试E2C模型与传统数值模拟器模拟结果的差别。测试结果显示E2C模型误差较小,其中饱和度场的相对误差小于5%,压力场的平均相对误差为8%;在相同的CPU条件下,E2C模型运行100次算例时间为16 s,比传统数值模拟器(运行时间为6 000 s)快375倍。实际应用结果表明E2C模型在保证模拟精度的条件下可以大幅度提升模拟速度。

    Abstract:

    The application of agent models based on deep learning is a new direction of oil and gas reservoir simulation.Given the huge time cost of high-precision full-order oil and gas reservoir simulation,this paper adopts an Embed to Control(E2C)model to construct a deep learning network through the architecture of“encoder+linear converter+decoder”. Data of the pressure field and saturation field at the original moment are integrated with well control constraints to generate the field data at a new moment. The PY35-1 Gas Field in the east of the South China Sea is discussed as an example to test the differences between the simulation results of the E2C model and those of the traditional numerical simulator. The test results show that the E2C model has smaller errors,with a relative error in the saturation field of less than 5% and an average relative error in the pressure field of 8%. Under the same CPU,the E2C model takes 16 s to run 100 cases,which is 375 times faster than the traditional numerical simulator(the time cost is 6 000 s). In conclusion,the E2C model can greatly reduce the time cost under the condition of ensuring simulation precision.

    参考文献
    相似文献
    引证文献
引用本文

秦峰,闫正和,唐圣来,罗睿乔,龚斌.基于深度学习的代理模型在实际气藏三维模拟中的应用[J].油气地质与采收率,2022,29(1):152~159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告