基于深度学习的油井工况智能诊断技术研究及应用
作者:
作者单位:

作者简介:

王相(1989—),男,山东滕州人,讲师,博士,从事石油工程大数据与人工智能应用研究。E-mail:xiangwang@cczu.edu.cn。

通讯作者:

基金项目:

中国石化科技攻关项目“大数据技术在油田开发中的应用研究”(P20071)。


Research and application of intelligent diagnosis technology of oil well working conditions based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    及时准确地掌握油井的工况,对于油田安全高效生产和提高采收率具有重要意义。随着油田信息化建设的不断深入,示功图等油井生产动态监测数据实现了实时采集,并积累了海量数据,亟待进一步挖掘利用。基于“大 数据+深度学习”的新一代人工智能技术,有望突破现有技术的局限,引领油井工况诊断技术升级。为此,依托 4 000余万组涵盖不同油藏类型油井的历史动态监测数据,制备了涵盖5大类37种工况类型的油井工况诊断样本集,在此基础上,选择卷积神经网络算法,个性化设计了面向油井工况诊断问题的卷积神经网络(OWDNet),包含26层5 900余万个可学习参数。使用油井工况诊断样本集对OWDNet进行训练,10轮次后,训练准确率达99.7%,验证准确率达98.9%。利用开发的油井工况智能诊断系统,在现场完成500余万次工况诊断,准确率达90%,报警推送及时,借助该系统开展油井生产管控更加合理高效,油井工况持续改善,连续稳定生产井比例由68%上升到88%,为油田大数据的高价值应用提供了有益示范。

    Abstract:

    Timely and accurate monitoring of the working conditions of oil wells is of great significance to the safe and efficient production of oilfields and the enhanced oil recovery. With the continuous deepening of oilfield informatization construction,real-time collection of dynamic monitoring data regarding oil well production such as indicator diagrams has been realized,and massive amounts of data have been accumulated and urgently need to be further explored and utilized. A new generation of artificial intelligence technology based on“big data+deep learning”is expected to break through the limitations of existing technologies and lead the upgrade of working condition diagnosis technology for oil wells. To this end,first,relying on more than 40 million sets of historical dynamic monitoring data covering oil wells in the different reservoirs,we prepared a large-scale dataset for working condition diagnosis of oil wells,which covered 5 categories and 37 different types of working conditions. On this basis,we selected the convolutional neural network algorithm and designed a personalized convolutional neural network(OWDNet)for working condition diagnosis of oil wells which contained more than 59 million learnable parameters in 26 layers. The OWDNet was trained using the above-mentioned working condition diagnosis dataset. After 10 epochs,the training accuracy was up to 99.7%,and the verification accuracy reached 98.9%. Furthermore,an intelligent working condition diagnosis system for oil wells was developed,and more than 5 million working condition diagnoses have been completed on site.The application accuracy of working condition diagnosis is 90%,and timely alarms are achieved. With this system,oil well production management and control were more reasonable and efficient,and working conditions of oil wells continued to improve. The proportion of continuous and stable production wells increased from 68% to 88%. The research provided a useful demonstration for the high-value application of oilfield big data.

    参考文献
    相似文献
    引证文献
引用本文

王相,杨耀忠,何岩峰,王振,窦祥骥.基于深度学习的油井工况智能诊断技术研究及应用[J].油气地质与采收率,2022,29(1):181~189

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告