基于核主成分分析-半监督极限学习机的钻井溢流诊断方法
作者:
作者单位:

作者简介:

李仙琳(1994—),女,安徽池州人,在读硕士研究生,从事钻井事故实时诊断研究。E-mail:lixl0324@163.com。

通讯作者:

基金项目:

中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“物探、测井、钻完井人工智能理论与应用场景关键技术研究”(ZLZX2020-03),国家重点研发计划资助项目“水下生产系统智能控制关键技术研究”(2016YFC0303703)。


Intelligent diagnosis method for kick based on KPCA-SSELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    溢流是钻井作业中最常见的事故之一,如果对溢流监测与诊断不及时,可能导致严重的井控风险,甚至井喷。 钻井现场监测数据较多,直接采用这些数据作为溢流诊断模型的输入会增加模型的复杂度,影响模型的准确率,并且在诊断模型建立过程中存在溢流样本数据标记代价较高的问题。为此建立了基于核主成分分析-半监督极限学习机(KPCA-SSELM)的钻井溢流诊断方法。首先利用核主成分分析(KPCA)算法对钻井各参数进行信息整合,提取其主成分以反映原数据的核心信息,然后选用半监督极限学习机(SSELM)算法进行模型训练,最后利用现场钻井数据与SSELM和KPCA-ELM等模型进行对比实验,验证模型的有效性。结果表明,基于KPCA-SSELM的模型较其他模型具有较高的溢流诊断率及模型泛化能力,采用半监督极限学习机算法能够在钻井数据标记样本比较少的情况下充分挖掘无标签样本所包含的信息训练网络,进一步提高模型的性能,具有很好的应用前景。

    Abstract:

    Kick is one of the most common accidents in drilling operations. If the kick monitoring and diagnosis are not timely,serious well control risks such as blowouts can be caused. Due to the massive monitoring data in drilling fields,directly using these data as the input of a kick diagnosis model will increase the complexity of the model and thus affect the accuracy of the model. Moreover,the labeling cost of kick samples is high in the process of constructing the diagnosis model. To solve these problems,this paper develops an intelligent diagnosis method for kick diagnosis,which is based on the kernel principal component analysis-semi-supervised extreme learning machine(KPCA-SSELM). Firstly,KPCA is adopted to integrate the drilling parameters,and the principal components are extracted to reflect the core information of the original data. Then,the SSELM algorithm is employed for model training. Finally,the field drilling data is compared with the results of SSELM,KPCA-ELM,and other models to verify the effectiveness of the model. The results show that the proposed model based on KPCA-SSELM has a higher kick diagnosis rate and model generalization ability than other models. The semi-supervised learning method can make full use of the information contained in the unlabeled data to train the network when the number of labeled samples is relatively small,which can further improve the model performance and has a good application prospect.

    参考文献
    相似文献
    引证文献
引用本文

李仙琳,左信,高小永,岳元龙.基于核主成分分析-半监督极限学习机的钻井溢流诊断方法[J].油气地质与采收率,2022,29(1):190~196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告