基于PCA-CNN模型的页岩储层有机碳含量预测方法
作者:
作者单位:

作者简介:

管倩倩(1994—),女,江苏扬州人,工程师,硕士,从事测井数据处理与解释方面的研究工作。E-mail:1594759813@qq.com。

通讯作者:

基金项目:


Prediction method of total organic carbon in shale oil reservoir based on PCA-CNN model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    总有机碳含量(TOC)是评价烃源岩有机质丰度和生烃潜力的指标之一。以东营凹陷牛庄洼陷页岩油取心井为例,以实验分析岩心TOC 和测录井资料为基础,应用交会图获取TOC 相关敏感参数。通过采用常规陆相页岩储层TOC 计算模型即ΔlogR 法和多元回归分析法预测研究区湖相页岩储层TOC,相关性不高,效果不佳。因此提出选用机器学习模型即利用主成分分析(PCA)模型与改进的卷积神经(CNN)模型组合,形成PCA-CNN模型,通过PCA模型对数据降维,去除冗余信息和噪声信息,再利用CNN模型进行页岩储层TOC 预测,使样本数据质量和TOC 预测精度得以提高。将PCA-CNN模型应用到牛庄洼陷的6口页岩油取心井进行TOC 预测,结果表明,对于陆相页岩储层,PCA-CNN模型TOC 预测精度较高,符合率最高达96%。

    Abstract:

    Total organic carbon(TOC)is one of the indicators for evaluating the organic matter abundance and hydrocarbon generation potential of hydrocarbon source rock. In this paper,taking the cored well of shale oil reservoir in Niuzhuang Depression,Dongying Sag as an example,the TOC-related sensitive parameters were obtained through cross plots based on the experimental analysis of TOC from core and logging data. The conventional TOC calculation models for continental shale oil reservoir,namely the ΔlogR method and the multiple regression analysis method,were used to predict the TOC of well and lake facies shale oil reservoir in the study area,but the correlation and performance were not good. Therefore,this paper proposed combining machine learning models,i.e.,the principal component analysis(PCA)model and an improved convolutional neural network(CNN)model,to form the PCA-CNN model. In this model,the PCA model was employed to reduce the dimensions of data and remove redundant information and noise information,and then,the CNN model was used to predict the TOC of shale oil reservoir,which could improve sample data quality and prediction accuracy of TOC. The PCACNN model was applied to predict the TOC of six cored wells shale oil reservoir in Niuzhuang Depression,and the results reveal that for continental shale oil reservoir,the proposed model can accurately predict TOC,and the compliance rate is up to 96%.

    参考文献
    相似文献
    引证文献
引用本文

管倩倩.基于PCA-CNN模型的页岩储层有机碳含量预测方法[J].油气地质与采收率,2022,29(6):49~57

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-02
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告