概率神经网络在盐水水淹层识别中的应用
作者:
作者单位:

作者简介:

李健(1972—),男,山东滨州人,高级工程师,硕士,从事石油、天然气开发地质等研究。E-mail:thslj@163.com。

通讯作者:

基金项目:

中国石化科技攻关项目“储层精细表征及多开发方式混合数值模拟技术”(P20044-1)


Application of probabilistic neural network in saline water flooded layer identification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    埕岛油田油层的水淹类型主要是盐水水淹,地层电阻率随水淹程度增强呈现单调递减的特征,但地层电阻率递减量与水淹程度关系极其复杂,至今还没有有效识别水淹层及其水淹程度的方法。为此,提出了基于概率神经网络的水淹层预测模型,首先结合埕岛油田实际测井和测试结论将水淹程度划分为未水淹、弱水淹、中水淹、强水淹和特强水淹5个水淹级别,并进行测井特征参数与水淹程度相关性分析,依此优选能更好反映水淹程度的测井特征参数;其次,利用提取的测井特征参数与测试结论建立靶区概率神经网络模型学习样本库;最后,利用概率神经网络对判识样本进行水淹层预测,并用当前深度学习分类效果较好的Adaboost算法作对比分析。结果显示:概率神经网络水淹层预测精度提升了10%,有效地提高了盐水水淹层的识别精度。

    Abstract:

    Most of the flooded layers in Chengdao oilfield are saline water flooded. Although the formation resistivity decreases monotonically with the increasing flooded degree,the relationship between the decline in formation resistivity and the flooding degree is extremely complex,and there is no effective method to identify the flooded layers and their flooding degree. Therefore,a prediction model of the flooded layer based on probabilistic neural network was proposed in this paper.Firstly,given the actual logging and test results of Chengdao Oilfield,the flooded degree was classified into five levels:unflooded,weak flooded,moderate flooded,strong flooded,and extra-strong flooded. The correlation analysis between logging characteristic parameters and flooding degree was carried out to select the characteristic parameters which could better reflect the flooding degree. Secondly,the extracted logging characteristic parameters and test results were employed to construct a learning sample library of the target probabilistic neural network model. Finally,the probabilistic neural network model was utilized to predict the flooded layers of the identified samples,and comparative analysis was conducted through the Adaboost algorithm that has good deep learning classification effects. The results show that the prediction accuracy of the water flooded layers is improved by10%,which improves the identification accuracy of the saline water flooded layers.

    参考文献
    相似文献
    引证文献
引用本文

李健,杨明任,杜玉山,申辉林,刘丽,孙启鹏.概率神经网络在盐水水淹层识别中的应用[J].油气地质与采收率,2022,29(6):121~129

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-02
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告