基于机器学习算法的水驱储层相渗曲线仿真预测
作者:
作者单位:

作者简介:

李春雷(1973—),男,湖南醴陵人,高级工程师,从事信息化管理与应用。E-mail:lichunlei378.slyt@sinopec.com。

通讯作者:

基金项目:

中国石化科技攻关项目“老油田开发大数据应用系统集成与示范应用”(P20071-4)。


Simulation and prediction of water-flooding reservoir relative permeability curve based on machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    相渗曲线是油气田开发研究中的一项重要基础资料。采用常规室内实验法获得相渗曲线费用昂贵且耗时,测试样品少,难以代表整个油藏的特征;经验公式法估算获得的结果精度低且误差大。为了实时、准确获得水驱储层相渗曲线,采用机器学习算法进行仿真预测。通过测井参数敏感性分析,融合相渗曲线数据,构建水驱储层相渗曲线仿真样本集。在此基础上,优选机器学习算法进行地质因素约束优化以及曲线端点约束优化,实现相渗曲线智能可视化生成。研究结果表明:该方法能实现每口井每个层段的相渗曲线预测,预测精度大于90%,能准确反映油藏渗流特征和储层渗透率变化规律,具有较高的实际应用价值和良好的推广应用前景。

    Abstract:

    The relative permeability curve is an important basic datum in oil and gas field development research. The traditional experimental method is expensive and time-consuming,and the relative permeability curve obtained by a few test samples is difficult to represent the characteristics of the whole reservoir. The results from the empirical formula method have low precision and large error. To obtain the relative permeability curves of the water-flooding reservoir in real time and accurately,this paper utilizes machine learning algorithms for simulation and prediction. The simulation sample set of the water-flooding reservoir relative permeability curves is constructed by analyzing the sensitivity of logging parameters and integrating the data of the relative permeability curves. On this basis,the machine learning algorithm is selected to optimize the geological factor constraint and the curve endpoint constraint,and the intelligent visualization generation of the relative permeability curves is realized. The results show that this method can realize the prediction of the relative permeability curves for each well and each section,and the prediction accuracy is more than 90%. It can accurately reflect the flow characteristics of reservoir and the variation law of reservoir permeability,possessing high practical application value and a good prospect of popularization and application.

    参考文献
    相似文献
    引证文献
引用本文

李春雷,曹小朋,张林凤,姜兴兴,刘建涛,靳彩霞,王峰,杨河山.基于机器学习算法的水驱储层相渗曲线仿真预测[J].油气地质与采收率,2022,29(6):138~142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-02
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告