基于FL-XGBoost 算法的砂泥岩识别方法——以胜利油田牛庄地区为例
作者:
作者单位:

作者简介:

彭英(1970—),男,河北迁安人,高级工程师,博士,从事油气勘探数据分析及勘探信息系统开发管理工作。E-mail:pengy.slyt@sinopec.com。

通讯作者:

基金项目:

国家自然科学基金项目“储层天然气水合物相变和渗流多场时空演化规律”(51991365),山东省自然科学基金项目“基于多源数据融合的浊积岩有效储层预测方法”(ZR2021MF082)。


FL-XGBoost algorithm-based method for identifying sandstone and mudstone:A case study of Niuzhuang area in Shengli Oilfield
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    砂泥岩识别任务通常基于测井曲线,依据经验公式、实地岩心取样、交会图和聚类分析等传统方法实现,但这些方法难以充分利用测井曲线所包含的砂泥岩特征,且精度低、效率低,人为影响因素大。为此,以测井和录井资料为基础,综合砂泥岩识别的关键技术难点,对测井参数进行敏感性分析,以选取适当的影响因素,通过多项预处理操作构建完整的训练数据集,并根据测井标签稀疏性的特点,引入Focal Loss函数,提出FL-XGBoost模型,进而开展胜利油田牛庄地区砂泥岩识别。研究结果表明,采用FL-XGBoost算法的砂泥岩识别模型对研究区砂泥岩识别的准确率达到了0.827。通过5种公开分类数据集设计对比实验,证明FL-XGBoost算法在识别分类领域上具有强泛化能力。

    Abstract:

    sandstone and mudstone identification tasks are usually based on logging curves and rely on traditional methods such as empirical formulas,field core sampling,cross plots,and cluster analysis,but these methods fail to make full use of the sandstone and mudstone features contained in the logging curves. At the same time,these traditional methods have low accuracy and slow efficiency and are greatly affected by human factors. To address the above problems,this paper uses logging data as the basis,combines the key technical difficulties of sandstone and mudstone identification, and conducts sensitivity analysis on logging parameters,so as to select appropriate influencing factors and construct a complete training data set through several pre-processing operations. In addition,the paper introduces the Focal Loss function and proposes the FL-XGBoost model according to the sparsity of logging labels and carries out sandstone and mudstone identification in Niuzhuang area of Shengli Oilfield. The experimental results show that the sandstone and mudstone identification model using the FL-XGBoost algorithm achieves an accuracy of 0.827 in identifying the sandstone and mudstone in the study area. Finally,the strong generalization ability of the FL-XGBoost algorithm in the identification classification field is verified through five publicly classified dataset design comparison experiments.

    参考文献
    相似文献
    引证文献
引用本文

彭英,李克文,朱应科,徐志峰,杨澎涛,孙秀玲.基于FL-XGBoost 算法的砂泥岩识别方法——以胜利油田牛庄地区为例[J].油气地质与采收率,2023,30(1):76~85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-13
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告