基于人工智能的测井地层划分方法研究现状与展望
作者:
作者单位:

作者简介:

孙龙祥(2000—),男,安徽亳州人,在读硕士研究生,从事人工智能与地学交叉学科研究。E-mail:wa21201015@stu.ahu.edu.cn。

通讯作者:

基金项目:

国家自然科学基金面上项目“地球物理测井资料智能处理与解释方法研究”(62273319),中国石化科技攻关项目“人工智能技术在井位部署中应用探索研究”(PE19008-8),胜利油田基础前瞻研究项目“面向‘十五五’胜利油田勘探开发技术发展方向及战略研究—地球物理专题”(YJQ2205),胜利油田重点科技项目“地震储层预测样本标注智能化方法研究及应用”(YKJ2201)。


Research status and outlook of logging stratigraphic division methods based on artificial intelligence
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于地球物理测井地层划分相关概念及分类,将测井曲线自动分层方法分为传统方法和人工智能方法,从有监督学习方法和无监督学习方法2 个方面分析人工智能方法的应用情况,并综合比较各类地层自动划分方法的优缺点。通过探索相关领域的发展情况,从不同角度思考测井地层划分方法进一步发展所存在的挑战及其解决方法。一是引入半监督学习方法,解决人工标签稀缺问题;二是从分割模型的角度,打破对测井数据的固有认识;三是采用测井曲线重构等方法,解决井段失真或缺失所导致的数据异构问题;四是通过样本加权,解决人工标签错误导致的数据偏差问题;五是采用迁移学习方法,解决不同地区数据分布差异问题。人工智能方法是解决地层划分、岩性识别、储层识别、生产运行中现有难题以及推进测井相关任务数字化转型的重要支撑。

    Abstract:

    Given the related concepts and classification of geophysical logging stratigraphic division,this paper divided automatic stratification methods of logging curves into traditional methods and artificial intelligence methods and analyzed the application of artificial intelligence technology in logging stratigraphic division from the aspects of supervised and unsupervised learning. Then,it comprehensively compared the advantages and disadvantages of various automatic stratigraphic division methods. Finally,by exploring the development of related fields,this study considered the challenges and solutions in the future development of logging stratigraphic division from different perspectives. The specific solutions are as follows:①Semi-supervised learning can be introduced to solve the problem of scarce manual labels. ②A new understanding of logging data can be obtained from the perspective of the segmentation model. ③Methods such as logging curve reconstruction can be employed to solve the problem of data heterogeneity caused by the distortion or missing of well sections. ④The problem of data deviation caused by manual label errors can be resolved through sample weighting. ⑤Transfer learning can be used to solve the problem of data distribution differences in different regions.Artificial intelligence technology can provide vital support for solving existing problems in stratigraphic division,lithology identification,reservoir identification,as well as operation and production,and promoting the digital transformation of tasks related with logging.

    参考文献
    相似文献
    引证文献
引用本文

孙龙祥,韩宏伟,冯德永,刘海宁,李泽瑞,康宇,吕文君.基于人工智能的测井地层划分方法研究现状与展望[J].油气地质与采收率,2023,30(3):49~58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-16
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告