For the fine identification of micro-structures of less than 10 m,conventional mapping and analysis methods are limited by the quality of seismic data and interpretation accuracy,and it is difficult to effectively highlight the details of micro-structures and improve the identification efficiency. This paper studies micro-structure in Block X of Ecuador,South America and explores the method of wavelet structure decomposition to achieve rapid and effective fine identification of micro-structure of about 3 m in the target layer. The target layer is affected by the weak compression of the Andean orogenic movement,and most of the micro-structures are less than 5 m. In this paper,the wavelet structure decomposition method is used to sample the depth or T0 structure data at equal intervals,and the scale-frequency wavelet function with scale changing with frequency is established,which is used to decompose the micro-structure fluctuation characteristics on multiple scales. The threshold function is used to control and optimize the signals of low-frequency,medium-frequency,and high-frequency structural fluctuations. According to the corresponding wavelet coefficients,the low-frequency,medium-frequency,and high-frequency components are reconstructed at multiple scales to improve the recognition weight of the corresponding high-frequency components to the micro-structure,thereby reducing the shielding effect of the low-frequency components on the micro-structure identification. The identification method of micro-structure based on wavelet transform can effectively identify the micro-structure of less than 3 m,which greatly improves the prediction accuracy and analysis efficiency of small-scale micro-structure reservoirs in the slope area. A series of evaluation wells have been successfully deployed and drilled,and good oil and gas shows have been achieved.