基于随机森林算法的泥页岩孔隙度预测
作者:
作者单位:

作者简介:

崔俊峰(1970—),男,陕西西安人,高级工程师,硕士,从事油气地质综合研究。E-mail:yjy_cjf@petrochina.com.cn。

通讯作者:

基金项目:

国家自然科学基金项目“非常规油气地质评价”(41922015)和“电磁波辐射页岩油原位转化中的非热效应机理及其意义”(42072147)。


Shale porosity prediction based on random forest algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    准确、快速地获取泥页岩孔隙度对页岩油空间分布及勘探目标预测具有重要意义。针对利用测井响应方程预测孔隙度精度较低的问题,建立一种基于随机森林算法的孔隙度预测模型,与BP 神经网络、支持向量机和XGBoost 算法进行预测精度对比,并利用SHAP 方法分析测井参数的重要性和影响范围。研究结果表明:随机森林算法可以很好地预测泥页岩孔隙度,且预测效果好于BP 神经网络、支持向量机和XGBoost 算法;基于随机森林算法的泥页岩孔隙度预测在渤海湾盆地某凹陷应用发现,对模型预测孔隙度最重要的前3 项测井参数为补偿中子、自然伽马和普通视电阻率;基于随机森林算法的泥页岩孔隙度预测模型可以快速识别单井孔隙度,不仅可以弥补因无法连续取心而难以获取完整孔隙度分布特征的问题,还能大幅提高孔隙度预测效率与精度。

    Abstract:

    Precise and fast acquisition of shale porosity is important for the prediction of the spatial distribution of shale oil and the exploration target. To address the problem of low accuracy of porosity prediction using logging response equation, a porosity prediction model based on random forest algorithm is established, and the prediction accuracy is compared with those of BP neural network,support vector machine, and XGBoost algorithm, and the importance and influence range of logging parameters are analyzed by SHAP method. The results show that the random forest algorithm can better predict shale porosity, and the prediction effect is better than BP neural network, support vector machine, and XGBoost algorithm; the application of shale porosity prediction based on random forest algorithm in a depression in Bohai Bay Basin finds that the top three most important logging parameters for model prediction of porosity are compensation neutron, natural gamma, and ordinary apparent resistivity; the shale porosity prediction model based on random forest algorithm can quickly identify the porosity of a single well, which can not only compensate for the difficulty of obtaining the complete porosity distribution characteristics due to the inability of continuous coring but also significantly improve the efficiency and accuracy of porosity prediction.

    参考文献
    相似文献
    引证文献
引用本文

崔俊峰,杨金路,王民,王鑫,吴艳,余昌琦.基于随机森林算法的泥页岩孔隙度预测[J].油气地质与采收率,2023,30(6):13~21

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2022-12-14
  • 最后修改日期:2023-09-20
  • 录用日期:
  • 在线发布日期: 2023-12-21
×
《油气地质与采收率》
《油气地质与采收率》启动新投稿网站的公告