高含水老油田化学驱综合治理新方法及工程实践路径
作者:
作者单位:

作者简介:

杨勇(1982—),男,山东郓城人,正高级经济师,在读博士研究生,从事油田勘探开发方面的研究。E-mail:yangyong@sinopec.com。

通讯作者:

基金项目:

中国石化科技攻关项目“陆相老油田‘3+2’大幅度提高采收率技术”。


New comprehensive management method and engineering practice path for mature oilfields with high water cut
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对胜利高含水老油田化学驱在科学、技术、管理、工程四个角度面临的开发矛盾,以渤76 块为典型单元,在工程实践中进行具体对策分析,构建了“适、专、快、集”的老油田化学驱综合治理新方法。“适”指在老油田科学开发方式转化上,构建不同油藏类型老油田化学驱最佳介入时机模型,提出了在含水率相对较低的阶段,是适合化学驱的有利时机,高效开发方式需“适”介入。“专”指在老油田开发技术应用上,改变传统聚合物先溶解后注入的开发思路,研制可控相转化聚合物,使聚合物先注入后溶解,解决炮眼剪切降解的难题,提高油水流度控制能力,老油田开发矛盾需“专”治理。“快”指在老油田综合管理模式上,改变传统方式,即矿场提问题、研究院设计方案、化工厂生产驱油剂的“串联”管理模式,提出充分发挥矿场、研究院、生产厂三方优势的“并联”管理模式,形成针对单一油藏的产品工业化工艺包以及产业化落地方案,老油田开发技术实现“快”转化。“集”指在老油田工程应用实践上,打破老油田化学驱地面大规模建站的工程工艺模式,采用集约化撬装配注设备,实现老油田化学驱的集约快速配注,老油田工程工艺实现“集”应用。运用上述方法,在胜利油田渤76 块综合含水率上升初期,实施由水驱转为可控相转化聚合物驱,实施后一年即见到明显的降水增油效果,单井日产油水平增加8.6 t/d,综合含水率降低3.1%,验证了综合治理模式的可行性,为高含水老油田化学驱高效开发提供了有效路径。

    Abstract:

    In response to the development issues faced by chemical flooding in the mature Shengli Oilfield with high water cut in terms of science, technology, management, and engineering, Block Bohai 76 was taken as a typical unit, and the specific countermeasures were analyzed in engineering practice. A new comprehensive management method was constructed for chemical flooding in mature oilfields:“ Appropriate, Specialized, Fast, and Integrated.” Among them,“ Appropriate” refers to the construction of optimal changing timing models for chemical flooding in different oil reservoirs of mature oilfields during the transformation of scientific development methods for mature oilfields. It was proposed that the favorable changing timing for chemical flooding is at the relatively low water cut stage, and efficient development methods should be used in an appropriate manner.“ Specialized” refers to changing the traditional development approach of dissolving polymers before injection in the application of development technology for mature oilfields, developing controllable phase conversion polymers to enable polymer injection followed by dissolution, over‐coming the problem of borehole shear degradation, and improving the ability to control oil-water fluidity. The development issues in mature oilfields need to be specifically addressed.“ Fast” refers to the transformation in the traditional comprehensive management mode of mature oil fields, which involves a“ serial” management mode of problems proposed by fields, schemes designed by research institutes, and oil displacement agents produced by chemical plants. A“ parallel” management mode was proposed that fully leveraged the advantages of fields, research institutes, and production plants, and the industrial chemical technology packages and industrialization implementation plans were formed for a single oil reservoir. The development technology of mature oilfields can thus achieve fast transformation.“ Integrated” refers to breaking the engineering process model of large-scale construction of chemical flooding stations in mature oilfields during engineering application practice, adopting integrated assembly of injection equipment,achieving the rapid and integrated injection allocation of chemical flooding in mature oilfields, and thus ensuring “integrated” application of engineering processes in mature oilfields. A transition from water flooding to controllable phase conversion polymer flooding was implemented using the above method in Block Bohai 76 of Shengli Oilfield at the early stage of the comprehensive water cut increase. The significant water cut reduction and oil increase effects were observed after one year. The average oil production rate per well increased by 8.6 t/d, and the comprehensive water cut decreased by 3.1%. The feasibility of the comprehensive management model was verified, providing an effective path for the efficient development of chemical flooding in mature oilfields with high water cuts.

    参考文献
    相似文献
    引证文献
引用本文

杨勇,曹绪龙.高含水老油田化学驱综合治理新方法及工程实践路径[J].油气地质与采收率,2024,31(1):54~62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-05-16
  • 最后修改日期:2023-11-16
  • 录用日期:
  • 在线发布日期: 2024-02-01