Research on effect of CO2 microbubbles on oil film in pores
Author:
Affiliation:
Fund Project:
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
摘要:
水气分散体系驱油技术是针对低渗透油田采出程度低研发的新型提高采收率技术,目前已在长庆油田取得明显增油效果,但分散体系中微气泡与孔隙作用复杂,对其微观驱油机理的研究正逐步深入。根据低渗透、非均质岩心的特点,制作边长为1.5 cm的玻璃刻蚀模型,在油藏温压条件下,进行CO2-水分散体系渗流实验。通过观察微气泡与油、水、岩石相互作用过程,获取气泡吸附能力、推动油膜能力、气泡弹性能量等数据,进而定量表征分析驱油效果。实验结果表明:微气泡与油界面结合,具有特殊的吸附油膜现象,与水驱、气驱等作用机理显著不同。驱替过程相邻气泡间的合并也促进了油膜汇聚,同时微气泡的合并有助于气泡的流动,使吸附在气泡表面的油膜随气泡运移。微气泡运移时,气泡体积因压力降低而膨胀,所释放的弹性能量能够推动吸附在壁面的油膜运移。此外,采用Volume of Fluid 多相流模型,对水气分散体系中微气泡推动油膜的运移过程进行模拟及分析,得到驱替油膜的主要因素是微气泡形变产生的弹性能量和微气泡自身的能量。气泡的能量作用在气泡前缘,通过与油膜表面接触产生推动作用。
Abstract:
The oil displacement technology of the water and gas dispersion system is a new enhanced oil recovery technology developed for low-permeability oilfields with low recoveries, which has obviously increased oil production in Changqing Oilfield. However,the effects among microbubbles in the dispersion system and pores are complex, and the research on its microscopic oil displacement mechanism is gradually deepening. According to the characteristics of heterogeneous low permeability core,a glass etching model with a side length of 1.5 cm was made,and the flow experiment of the CO2-water dispersion system was carried out under the conditions of reservoir temperature and pressure. The data such as bubble adsorption capacity,oil film pushing capacity,and bubble elastic energy were obtained by observing the interaction processes among microbubbles and oil,water,and rocks,and then the oil displacement effects were quantitatively characterized and analyzed. The experimental results show that the microbubble combines with the oil interface,to form a special oil adsorption film,which is significantly different from the mechanisms of water flooding and gas flooding. The merging of adjacent bubbles in the displacement process also promotes the convergence of oil films,and the merging of microbubbles helps the flow of bubbles so that the oil film adsorbed on the surface of the bubbles moves with the bubbles. The bubble volume expands due to the decrease in pressure, and the elastic energy released can promote the migration of the oil film adsorbed on the wall when the microbubble is transported. In addition, the oil film migration process of the microbubbles in the water and gas dispersion system was simulated and analyzed with the Volume of Fluid multiphase flow model,and the main factors that displace the oil film were obtained, which are the elastic energy generated by the deformation of the microbubbles and the energy of the microbubbles themselves. The energy of the bubble acts on the leading edge of the bubble and the bubble is pushed by contact with the surface of the oil film.