-
1981年,被誉为“页岩气之父”的乔治·米歇尔对巴耐特页岩C.W.Slay 1号井实施大规模压裂并获成功[1],在北美掀起了“页岩气革命”。据EIA(美国能源信息署)统计[2],目前美国页岩气产量已经从2000年天然气总产量的2%增长到2017年的50.8%,同期美国天然气总产量增长了37.2%。2015年底,EIA统计表明美国已发现的页岩气探明储量为8.7×1012 m3。
-
受“页岩气革命”以及短期油价上涨的影响, 2008年始页岩油逐渐成为主要勘探开发对象。据EIA 2015年统计[3],俄罗斯页岩油技术可采资源量为119.3×108 m3,美国为76.3×108 m3,中国(除鄂尔多斯盆地)为50.9×108 m3。美国油气勘探开发理论和工程技术方面都相对成熟,在页岩层系“甜点区”筛选和压裂工程技术方面具有优势。目前美国页岩油勘探主要聚焦在巴肯(Bakken)、沃夫坎(Wolf⁃ camp)、斯普拉贝里(Spraberry)、鹰潭(Eagle Ford)、奈厄布拉勒(Niobrara)和犹他(Utica)页岩区块[4-5]。
-
笔者选取最早开发页岩气的俄亥俄(Ohio)页岩、最早规模运用压裂改造的巴耐特(Barnett)页岩、产能及储量最大的马塞勒斯(Marcellus)页岩、最新发现的储量巨大的沃夫坎组(Wolfcamp)页岩以及四川盆地龙马溪组页岩、渤海湾盆地东南部济阳坳陷沙河街组页岩进行对比分析,明确中美典型含油气页岩地质条件、生烃模式以及开发工艺上的差异与共同点。
-
1 地质特征
-
1.1 构造背景
-
美国页岩油气盆地主要沿阿巴拉契亚、马拉松-沃希托和科迪勒拉逆冲推覆带分布(图1)[6]。阿巴拉契亚(Appalachia)盆地是一个经历过Tacon⁃ ic,Acadian和Alleghanian造山运动的大型非对称前陆盆地,最早开发俄亥俄页岩,目前主要产油气页岩为马塞勒斯页岩。沃斯堡(Fort Worth)盆地是晚古生代沃希托造山运动形成的不对称的楔形前陆盆地,位于美国德克萨斯州中北部,主要产油气页岩为巴耐特页岩。二叠(Permian)盆地位于北美地台南缘,属稳定沉降的晚古生代克拉通盆地,位于德克萨斯州西部及新墨西哥州东南部,目前主要产油气页岩为沃夫坎组页岩[7]。
-
图1 美国主要页岩油气盆地及区块分布(英文为区块名,据聂海宽等[6]修改)
-
Fig.1 Distributions of main shale oil and gas basins and plays in the United States (block name in English,modified by NIE Haikuan et al[6])
-
中国四川盆地属于沉积型叠合盆地,自震旦纪开始经历了多期构造运动,其中下志留统龙马溪组页岩为主要产油气页岩[7]。济阳坳陷属于中—新生代断陷-拗陷复合盆地,主要页岩产层为沙河街组[8-9]。美国页岩油气盆地与中国相比所经历的构造活动频次较少、规模较小,而这种构造活动的相对稳定使得美国含油气页岩能够更加连续、稳定的沉积埋藏并且降低开发难度。
-
1.2 沉积特征
-
俄亥俄、马塞勒斯、巴耐特、沃夫坎组以及龙马溪组页岩多属于深水陆棚相。俄亥俄页岩沉积于邻近造山带的前陆盆地,其保存条件受盆地边界控制。马塞勒斯页岩的沉积环境存在一些争议,多数学者认为其沉积于深且分层的盆地,盆地最深处的缺氧、弱水循环条件使页岩保存了较高的总有机碳含量(TOC)[10-12];而部分学者认为其沉积在水流活动性强、非永久性缺氧的类大陆架环境中[13-15]。巴耐特页岩沉积于深水前陆盆地,属于静水斜坡-盆地相。沃夫坎组页岩沉积于稳定沉降的克拉通盆地,其中暗灰色、黑色泥页岩在深水环境下沉积。龙马溪组页岩发育于半闭塞滞留海盆,川中古隆起遭受剥蚀,发育川北、川东-鄂西和川南3个深水沉积区。龙马溪组页岩可以分为浅水和深水陆棚相[16],埋藏过程中由于志留纪中晚期上扬子地区大部分上升成陆,所以普遍缺失中、晚志留世的沉积[17]。济阳坳陷在始新世早期进入断陷鼎盛期,稳定发育咸水-半咸水湖相沉积的沙四段上亚段、沙一段以及淡水-微咸水湖相的沙三段下亚段与中亚段页岩[18]。
-
综上可知,目前开发较好的含油气页岩多属于海相并且主要沉积于缺氧、弱水循环条件的深水环境,因为这种环境的有机质保存条件较好。类大陆架环境由于水流活动性强且氧气充分,因此保存有机质的能力较差。湖相页岩的沉积环境随着季节以及水的补给量的变化而变化,不利于有机质的积累与保存。
-
1.3 岩相类型
-
美国4个海相页岩区块及中国四川盆地均以硅质页岩和钙质页岩为主,湖相的沙河街组页岩灰质含量较多。CORTEZ根据岩心描述结果确定沃夫坎组页岩具有4种不同类型的岩相,即硅质泥岩、钙质泥岩、泥质碳酸盐岩-砾岩和颗粒灰岩[19]。巴耐特页岩可以细分为硅质泥岩、钙质硅质混合泥岩、磷质沉积物、白云质泥岩、富方解石层状沉积物(底流沉积物)、再沉积针状泥岩6种岩相[20-22]。DANIEL等对西弗吉尼亚州、马里兰州及宾夕法尼亚州的马塞勒斯页岩露头进行分析,提出马塞勒斯页岩主要包括钙质粗泥岩、钙质碳质泥岩、硅质碳质泥岩、黏土质粗泥岩、骨架粒泥灰岩-泥粒灰岩5种岩相[23]。
-
四川盆地龙马溪组主要发育硅质页岩、钙质硅质混合页岩[17],其中下部可细分为深灰色-黑色硅质页岩、碳质页岩、钙质页岩、笔石页岩夹生物碎屑灰岩,上部为灰绿、黄绿色页岩、砂质页岩夹粉砂岩及泥灰岩[24]。济阳坳陷沙三段下亚段可分为深灰色灰质泥岩、深灰色灰质油泥岩、灰色泥灰岩、深灰色泥页岩和灰色泥质白云岩[18]。
-
开发效果较好的中美含油气页岩的钙质或硅质含量较高,这主要是因为目前的页岩油气开发与渗透率这一参数息息相关,而当前技术手段下页岩储层渗透率的提升主要依靠射孔压裂技术产生的裂缝。在射孔压裂过程中脆性相对较高的钙质或硅质页岩比其他页岩容易成缝,并且裂缝形成后在支撑剂的帮助下更容易保持裂缝张开。
-
2 有机地球化学特征
-
2.1 总有机碳含量
-
就TOC来看,4个美国页岩层系具有一定差异,其中以巴耐特页岩最高(表1)。俄亥俄页岩TOC值为0~4.7%,区块自东向西黑色页岩所占比例、TOC 值以及气井产量均增加。马塞勒斯页岩 TOC 值一般为1%~10%,在中部地区最高(达9%),由纽约州向东减少到1%~2%,向西减少到2%~3%[25],并且从北向南减小,纽约州为4.3%,宾夕法尼亚州为6.1%,西弗吉尼亚州小于2%[26]。巴耐特页岩在沉积初期 TOC 值可能高达20%,目前实测 TOC 值为3%~13%[21],页岩沉积时水体越深对应的沉积初期 TOC 值越高,古今较大的TOC差值表明在中低成熟度时该页岩层具有很好的生烃潜力。沃夫坎组页岩的 TOC值为1%~7%,高值区集中在中段和下段。四川盆地龙马溪组页岩呈NE向展布,其TOC值为1.5%~6.0%,平均为3.8%[16],万县到城口县一带 TOC 值可达5.0%[27-30]。沙河街组页岩为陆相沉积,TOC值一般为0.41%~9.32%[18],由深至浅 TOC 值逐渐增高[24]。
-
TOC 值与有机质生烃量联系紧密,但现在所测量的 TOC 值均属于页岩在经历有机质演化阶段之后残余的TOC值,而能更加准确指示有机质生烃能力的则是沉积埋藏过程中原始 TOC 值与现今测量残余 TOC 值的差值,且差值越大,表明在地质历史时期生烃量越多。
-
2.2 干酪根类型及热成熟度
-
海相页岩以Ⅱ型干酪根为主(表1),差别在于马塞勒斯区块东部马塞勒斯页岩混有一定量的Ⅲ 型干酪根,而沃夫坎组、俄亥俄以及龙马溪组页岩包含一定量的Ⅰ型干酪根[31-34]。俄亥俄区块俄亥俄页岩的 R o值为0.4%~1.3%,自西北往东南方向干酪根成熟度逐渐上升,而这也是泥盆系页岩层埋深增大的方向。马塞勒斯页岩的 R o值为0.5%~3.5%,从俄亥俄州东部的0.5%~1%向宾夕法尼亚州东部逐渐增加到3.0%~3.5%。GTI(天然气技术研究所)公布巴耐特页岩气藏的R o值为1.0%~1.3%,实际上R o值在产气区的西部为1.3%,东部为2.1%,平均为1.7%。SPEE(石油评价师协会)在2015年报告中表明沃夫坎组页岩 R o值为0.6%~1.3%,特拉华(Dela⁃ ware)次盆地沃夫坎组页岩的有机质成熟度高于米德兰(Midland)次盆地。龙马溪组页岩干酪根的 R o值为2.0%~4.5%,一般大于2.5%[34],由四川盆地西北部向东南部逐渐增高[14]。
-
沙河街组页岩以Ⅰ型干酪根为主,有机质成熟度较低,R o值一般为0.45%~0.94%,绝大部分页岩的 R o值大于0.76%[18]。其中沙三段下亚段含有部分Ⅱ1 型干酪根,R o值为0.70%~0.93%[24]。
-
干酪根的类型与成熟度关系到其在演化过程中生成烃的类型,而这两者的配伍关系也进一步影响有机质的生烃量。若干酪根类型为Ⅲ型,并且有机质演化正好处于生气窗阶段,那么该页岩的生气量就十分可观并可能成为优质的天然气藏,反之亦然。
-
3 页岩储层特征
-
3.1 储层埋深及厚度
-
马塞勒斯页岩埋深大部分都超过1 600m,自东向西埋深逐渐变浅,在宾夕法尼亚州西南部达到2 740m,沿纽约州南部埋深为914~1 523m[33]。马塞勒斯页岩总厚度为15~201m,主要集中在15~79m,纯页岩厚度为15~61m[12]。与马塞勒斯页岩相比俄亥俄页岩总厚度更大,为90~300m,但纯页岩厚度为9~30m,俄亥俄页岩埋深为600~1 500m,整体位于马塞勒斯页岩之上。沃夫坎组页岩埋深为2 250~3 300m,在米德兰次盆地厚度为300~600m,在韦瓦德(Val Verde)次盆地和特拉华次盆地南部厚度最大可达2 800m(表1)。巴耐特页岩埋深为1 908~2 590m,厚度集中在30~180m,其中在东南部最厚为200~300m,西南部最薄约为9m。
-
四川盆地龙马溪组页岩埋深为2 000~4 000m,平均厚度为300m,主要分布在川东及川南等地区,其中在川东厚度达500~1 250m,是川东石炭系天然气的主要来源。济阳坳陷沙四段上亚段、沙三段下亚段以及沙一段的累积厚度可达1 000m[35],沙河街组纯页岩厚度为14~90m,主力页岩埋深为2 800~5 100m[18]。沙四段上亚段厚度为100~400m,由各洼陷中心向边缘逐渐减薄,沙三段下亚段分布广泛,从罗家地区的100~300m向西部和北部厚度增大,最大可达800m[20]。
-
总体上看,除俄亥俄页岩外其他页岩埋藏均较深,其中沙河街组页岩最深、最厚,其次是龙马溪组与沃夫坎组页岩,这与其丰富的物源有关(表1)。相较于储层厚度,油气藏开发的难度与页岩埋深的关系更加密切,过深的油气储层会使得钻井、完井和后期的储层改造等工程变得复杂并增加开发的成本,而这也是当前美国二叠盆地中的页岩油开发主要集中在主力页岩层埋深较浅、页岩厚度较薄的米德兰次盆地而不是埋深更深、页岩厚度较厚的特拉华次盆地的原因。
-
3.2 物性特征
-
沃夫坎组页岩孔隙度一般为4%~10%,平均为7%[36],孔隙类型主要为有机质孔与粒间孔,渗透率平均为0.04mD。巴耐特页岩孔隙度为5%~6%,渗透率低于0.1mD,喉道半径平均小于0.005 μm,页岩中天然裂缝发育。马塞勒斯页岩平均孔隙度为6%~10%[25,37],渗透率为0.004~0.770mD,平均为0.36mD[25,37-38],因为有机物的韧性挤压作用,部分区域出现极低的渗透率。俄亥俄页岩孔隙度为0.4%~11%[25,37],平均为4.3%,渗透率为0.025~0.760mD。龙马溪组页岩的孔隙度集中在1.5%~8.2%,渝东南地区龙马溪组页岩渗透率介于0.001~0.326mD[39],绝大多数样品渗透率小于0.02mD[40]。沙河街组页岩孔隙度主要为2%~7%,渗透率一般小于10mD[41]。
-
从数据上来看,沙河街组页岩渗透率最高但孔隙度稍低,马塞勒斯以及俄亥俄页岩孔渗性较好,沃夫坎组、巴耐特以及龙马溪组页岩孔渗性略差 (表1)。通常认为优秀的页岩需要同时具备较高的孔隙度和渗透率,根据美国沃夫坎组页岩开发经验来说,钙质或硅质这种脆性页岩的较低原始渗透率可通过后期压裂来进行改造,并获得较好的效果。
-
3.3 地层压力
-
美国常使用压力梯度来表征页岩储层压力状态,而中国通常采用压力系数来表征。沃夫坎组页岩的地层压力梯度为0.55~0.70psi/ft,属于超压储层,而沃夫坎组页岩在特拉华次盆地中的压力梯度比米德兰次盆地更高,巴耐特页岩地层压力梯度平均为0.52psi/ft,俄亥俄页岩地层压力梯度为0.15~0.40psi/ft。马塞勒斯页岩的核心区地层压力梯度为0.46~0.51psi/ft[37,42-43],超压区位于宾夕法尼亚州东北部和西南部以及西弗吉尼亚州东北部,西弗吉尼亚州西南部欠压。龙马溪组页岩地层压力系数为1.55[44],沙河街组页岩地层压力系数为1.21~1.82[18]。
-
地层压力梯度大于0.43psi/ft或压力系数大于1的属于超压储层。中美主力含油气页岩都属于超压状态,通常来讲超压储层有利于页岩油气的开采 (表1),这也使得储层压力不高的俄亥俄、巴耐特页岩逐渐失去油气开发商的重视(图2),而超压的沃夫坎组页岩则获得更多的投入(图3)。
-
3.4 页岩矿物组成
-
俄亥俄页岩的黏土矿物含量为30%~60%,石英含量为15%~25%[7],西弗吉尼亚地区的俄亥俄页岩石英含量和黏土矿物含量比肯塔基地区高[45]。马塞勒斯页岩易碎裂,颜色从灰色、棕黑色到黑色,属于含碳质含碳酸盐结核的高放射性页岩,其石英含量为27%~31%,伊利石含量为9%~34%,方解石含量为3%~48%,绿泥石含量为0~4%,钠长石含量为0~4%,黄铁矿含量为5%~13%,混层黏土矿物含量为1%~7%,白云石含量为10%~30%,石膏含量为0~6%,基底附近黄铁矿非常丰富,灰岩中可见化石存在。巴耐特页岩碳酸盐含量低于25%,石英、长石和黄铁矿含量为20%~80%,黏土矿物含量为20%~80%,其中硅质页岩黏土矿物含量通常小于50%,石英等含量超过40%。沃夫坎组页岩主要为黑灰到黑色均质的硅质泥页岩,“甜点”段石英含量平均为37.7%,方解石含量平均为21.6%,黏土矿物含量平均为22.8%,95%~99%为伊利石和伊利石/蒙脱石的混合物及痕量的绿泥石和高岭石所组成的残余黏土碎屑[46]。
-
图2 2007—2018年美国各主要盆地油气产量变化趋势(据EIA,2018)
-
Fig.2 Oil and gas production trends in major basins of the United States from 2007to 2018(EIA,2018)
-
图3 2007—2018年美国各盆地水平井钻井设备所占比例(据先锋自然资源公司,2018)
-
Fig.3 Percentage of horizontal well drilling equipment in various basins of the United States from 2007to 2018 (according to Pioneer Natural Resources,2018)
-
龙马溪组页岩脆性矿物含量为30%~85%,平均为56.3%;黏土矿物含量为25.6%~51.5%,平均为42.1%,此外还含有少量黄铁矿[14,38]。陈美玲等通过XRD分析得出沙河街组页岩主要矿物的平均质量分数:石英为18.17%,长石为1.40%,方解石为51.92%,白云石为6.17%,黄铁矿为3.81%,另有少量的菱铁矿,黏土矿物为18.89%,以伊/蒙混层和伊利石为主[18]。
-
整体上来看,俄亥俄、巴耐特以及龙马溪组页岩黏土矿物含量较高,而马塞勒斯、沃夫坎组以及沙河街组页岩的脆性矿物含量较高,而较高的脆性矿物含量有利于压裂裂缝的扩展,保证储层改造顺利进行。
-
4 开发动态及借鉴意义
-
4.1 页岩油气资源开发动态
-
美国的页岩气开发最早在俄亥俄页岩中的Big sandy油田中进行,随后页岩气革命在1998年米切尔公司改良水力压裂技术成功开发巴耐特页岩后正式掀起,马塞勒斯页岩作为页岩气开发的后起之秀靠着自身的大储量以及良好的储层条件在美国页岩气总产量中占据极高的比例。美国能源企业在2008年的低气价环境下将开发重心转向了页岩油。USGS调查了二叠盆地中的米德兰次盆地后发现其页岩油储量远超美国其他区块,同时由于开发成本较低,使其在美国页岩油生产中逐渐占据主导地位。
-
美国的“页岩气革命”以及正在进行的“页岩油革命”有以下的趋势:水平井的数量、水平段长度显著地增长,其中沃夫坎区块的水平井最长已达到3 962m,而且区块内3 017口水平井的平均长度超过了2 166m;压裂设计向大液量、大砂量以及更小的压裂簇间距和阶段间距方向发展,其中先锋自然资源公司现在使用的压裂设计为:支撑剂为1 700lb/ft,压裂液为50bbl/ft,压裂簇间距为15ft,阶段间距为100ft;钻井地面设施采用了更方便的井工厂模式,并且在其上进行“拉链式”压裂,降低了整体的工程时间(图4);在油田的生产资料数据库中运用数据挖掘的手段分析不同生产参数对于产量的影响权重,从而更好地配置生产参数,RF法和GBM法目前被认为是预测结果最准确的方法[47]。
-
图4 沃夫坎页岩区块多产层“井工厂”开发
-
Fig.4 Multi-well pad development of multiple pay zones in the Wolfcamp Play,Permian basin
-
中国页岩气开发目前处于快速增长阶段,龙马溪组页岩的主力区块是重庆的涪陵页岩气田以及四川的长宁-威远页岩气田,短短几年的攻关使中国的页岩气产量跃居世界第三,虽然与美国在页岩气领域还有很大差距,但是正在逐渐形成适合中国的一套页岩气富集成藏模式,并基本实现了勘探开发技术和装备国产化。美国页岩油主要生产自海相页岩,但中国的海相页岩成熟度一般都处在生气窗阶段,所以转而将页岩油开发的目标放在成熟度相对较低的陆相页岩上,但相关的勘探与开发理论都处于摸索阶段。最早在2007年胜利油田开始关注中国页岩油并在两年后正式进行立项研究,研究内容最初是济阳坳陷的东营凹陷,随后扩大到整个济阳坳陷,并在2010年初步建立了陆相盆地页岩油评价方法体系,随后尝试将这一评价体系运用到济阳坳陷的各个凹陷。除此之外中国石化还在潜江凹陷、泌阳凹陷、东濮凹陷以及苏北盆地等进行页岩油的勘探以及试采,初步预计这些区块的资源量可达108.28×108 t [48]。
-
4.2 借鉴意义
-
美国含油气页岩展布面积大,厚度变化缓,沉积时经历构造变动少,多发育深水陆棚相,岩石类型以钙质、硅质泥页岩为主,脆性矿物含量高,TOC 值较高,以Ⅱ型干酪根为主,热演化程度适中,地层压力状态多为超压,孔隙度均较高,而渗透率则有一定区别,部分页岩(如马塞勒斯页岩)天然裂隙非常发育,渗透率高,部分(如沃夫坎组页岩)渗透率不高但可改造性较好。中国龙马溪组页岩储层条件与美国主力页岩类似,但页岩面积相对较小,且厚度变化大,沙河街组页岩纹层发育,而这也限制了该区块页岩油产量的增长,并使增产措施效果不理想。基于这种现状,一方面需要加大页岩油气勘探力度,优选有利目标区;另一方面需要针对不同的资源条件和开发地质条件,优化设计压裂方案、开发井型和井网部署。
-
除了地质条件上的优势外,美国还具备地理条件上的优势。美国页岩油气区块地表条件多为平原或丘陵,水资源丰富而且油气管网发达,并且输送管网公用,除了部分生产区遭受飓风以及其他自然灾害影响,整体生产环境较好。而龙马溪组页岩开发的热点区块例如涪陵、长宁、威远的地表条件较为复杂,多为高山和丘陵,整体上油气管网的铺设不如美国发达,而且中国石油、中国石化和中国海油等大型油企独立建设各自管网,使得管网出现重复铺设、利用效率低等问题,所以要想降低中国油气成本,必须从国企中剥离管网业务并将其合并。
-
与中国不同,美国的油气开发主体是中小油企,大型油企只在资本数量上拥有优势,但在关键技术、区块数量以及油气产量方面反而不如中小油企,比如美国最早利用水力压裂技术开采页岩气的是一家小型油企——米歇尔能源开发公司,沃夫坎组页岩开发商中产量最大的是一家刚成为中型油企的先锋自然资源公司,这主要是因为这些中小型油企拥有极强的创新积极性并且拥有很好的创新环境。而中国的开发主体则为国有大型油企,矿权、技术、资金都高度集中,企业整体对于创新的积极性没有美国企业那么强烈,同时由于石油装备的发展时间较短、制造水平存在先天劣势、民间资本难以进入等原因,导致中国页岩油气开发存在后劲不足的问题,而解决这些问题需要大力的科研成果奖励政策,并逐步向中小型企业开放投资通道。
-
5 结论
-
北美含油气页岩盆地经历的构造活动不如中国的强烈,这导致北美页岩发育的连续性更好。中美页岩气区块沉积模式主要为深水陆棚相,且硅质含量都很高。含页岩油的济阳坳陷陆相沙河街组页岩相对北美的海相沃夫坎组页岩受构造运动的影响更大。受物源的影响,沃夫坎组页岩的硅质含量比沙河街组页岩的高。巴耐特及马塞勒斯页岩的总有机碳含量最高,其次是沙河街组页岩,再次是沃夫坎组与龙马溪组页岩,俄亥俄页岩的最低。中美海相页岩干酪根类型都以Ⅱ型为主,而湖相的沙河街组页岩则主要是Ⅰ型干酪根。美国海相页岩的热成熟度除马塞勒斯页岩的核心区外都相对较低,而以龙马溪组为代表的中国南方海相页岩的热成熟度一般较高,所以中国的页岩油只能转向成熟度相对低的陆相页岩中寻求突破。
-
美国含油气页岩的埋深整体较中国浅,厚度差距不大,但美国海相含油气页岩的变化幅度相对较缓。由于成熟度过高,龙马溪组页岩相对其他海相页岩的孔隙度要低,而沙河街组页岩则由于成熟度较低导致渗透率较高。此外,现今进行开发的含油气页岩主要属于超压储层,地层压力较低的俄亥俄页岩则逐渐从行业中淡出。除了俄亥俄页岩外其他页岩脆性矿物含量都较高,利于压裂成缝。
-
中国可以从美国页岩油气资源的开发中学到以下经验:将大小油企的管网合并进行管理,增加油气运输效率;逐步放开油气开发领域,引入民间资本分担风险;加大对研发方面的投入以及对于创新成果方面的奖励,激发创新积极性。
-
参考文献
-
[1] 邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.ZOU Caineng,DONG Dazhong,WANG Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
-
[2] EIA.Natural gas gross withdrawals and production[EB/OL].https://www.eia.gov/dnav/ng/NG_PROD_SUM_A_EPG0_FPD_M MCF_M.html,2018-8-31/2018-9-10.
-
[3] EIA.World shale resource assessments[EB/OL].https://www.eia.gov/analysis/studies/worldshalegas,2015-9-4/2018-9-5.
-
[4] 崔景伟,朱如凯,杨智,等.国外页岩层系石油勘探开发进展及启示[J].非常规油气,2015,2(4):68-82.CUI Jingwei,ZHU Rukai,YANG Zhi,et al.Progresses and en⁃ lightenment of overseas shale oil exploration and development[J].Unconventional Oil & Gas,2015,2(4):68-82.
-
[5] MIALL A D.Chapter8 The Southern Midcontinent,Permian Basin,and Ouachitas[J].Sedimentary Basins of the World,2008,5(8):297-327.
-
[6] 聂海宽,张金川.页岩气藏分布地质规律与特征[J].中南大学学报:自然科学版,2010,41(2):700-708.NIE Haikuan,ZHANG Jinchuan.Shale gas reservoir distribution geological law,characteristics and suggestions[J].Journal of Cen⁃ tral South University:Science and Technology,2010,41(2):700-708.
-
[7] 翟光明,宋建国,靳久强,等.板块构造演化与含油气盆地形成和评价[M].北京:石油工业出版社,2002:123.ZHAI Guangming,SONG Jianguo,JIN Jiuqiang,et al.Plate tecton⁃ ic evaluation and evolution and formation on petroliferous basins [M].Beijing:Petroleum Industry Press,2002:123.
-
[8] 王永诗,巩建强,房建军,等.渤南洼陷页岩油气富集高产条件及勘探方向[J].油气地质与采收率,2012,19(6):6-10.WANG Yongshi,GONG Jianqiang,FANG Jianjun,et al.Enrich⁃ ment condition analysis and exploration direction of shale oil-gas in Bonan subsag[J].Petroleum Geology and Recovery Efficiency,2012,19(6):6-10.
-
[9] 滕建彬.东营凹陷利页1井泥页岩中白云石成因及层序界面意义[J].油气地质与采收率,2018,25(2):1-7,36.TENG Jianbin.Genesis of dolomite in shale drilled by Well Liye1 in Dongying Sag and its significance on sequence boundary indi⁃ cation[J].Petroleum Geology and Recovery Efficiency,2018,25(2):1-7,36.
-
[10] JOHNSON L J,CHU C H,HUSSEY G A,et al.Quantitative clay mineral analysis using simultaneous linear equations[J].Clays and Clay Minerals,1985,33(2):107-117.
-
[11] PASHIN J C,ETTENSOHN F R.Palaeoecology and sedimentology of the dysaerobic Bedford fauna(late Devonian),Ohio and Ken⁃ tucky(USA)[J].Palaeogeography,Palaeoclimatology,Palaeoecol⁃ ogy,1992,91(1/2):21-34.
-
[12] LASH G G,ENGELDER T.Thickness trends and sequence stratig⁃ raphy of the Middle Devonian Marcellus Formation,Appalachian basin:implications for Acadian foreland basin evolution[J].AAPG Bulletin,2011,95(1):61-103.
-
[13] EMMANUEL O O,SONNENBERG S A.Geologic characterization and the depositional environment of the Middle Devonian Marcel⁃ lus Shale,Appalachian Basin,NE USA[C].Denver:Unconven⁃ tional Resources Technology Conference,2013:654-663.
-
[14] SMITH L B,LEONE J.Integrated characterization of Utica and Marcellus black shale gas plays,New York State[C].New Or⁃ leans:AAPG Annual Convention and Exhibition,USA,2010.
-
[15] APLIN A C,MACQUAKER J H.Mudstone diversity:Origin and implications for source,seal,and reservoir properties in petroleum systems[J].AAPG Bulletin,2011,95(12):2 031-2 059.
-
[16] 邹才能.非常规油气地质学[M].北京:地质出版社,2014.ZOU Caineng.Unconventional petroleum and natural gas geology [M].Beijing:Geological Publishing House,2014.
-
[17] 王淑芳,董大忠,王玉满,等.中美海相页岩气地质特征对比研究[J].天然气地球科学,2015,26(9):1 666-1 678.WANG Shufang,DONG Dazhong,WANG Yuman,et al.A compar⁃ ative study of the geological feature of marine shale gas between China and the United States[J].Natural Gas Geoscience,2015,26(9):1 666-1 678.
-
[18] 陈美玲,潘仁芳,张超谟,等.济阳拗陷沙河街组页岩与美国Bakken组页岩储层“甜点”特征对比[J].成都理工大学学报:自科版,2016,43(4):438-446.CHEN Meiling,PAN Renfang,ZHANG Chaomo,et al.Compari⁃ son of“sweet spots”characteristics of shale oil reservoir rocks be⁃ tween Shahejie Formation in China and Bakken Formation in North America[J].Journal of Chengdu University of Technology:Science & Technology Edition,2016,43(4):438-446.
-
[19] CORTEZ M.Chemostratigraphy,paleoceanography,and sequence stratigraphy of the Pennsylvanian-Permian Section in the Midland Basin of West Texas With Focus On The Wolfcamp Formation [D].Arlington:The University of Texas,2012.
-
[20] BUNTING P J,BREYER J A.Lithology of the Barnett Shale(Mis⁃ sissippian),southern Fort Worth Basin,Texas[M]//BREYER J A.Shale reservoirs-giant resources for the 21st century:AAPG Mem⁃ oir97.Tulsa:American Association of Petroleum Geologists,2012.
-
[21] ABOUELRESH M O,SLATT R M.Shale depositional processes:Example from the Paleozoic Barnett Shale,Fort Worth Basin,Tex⁃ as,USA[J].Central European Journal of Geosciences,2011,3(4):398-409.
-
[22] ABOUELRESH M O,SLATT R M.Lithofacies and sequence stra⁃ tigraphy of the Barnett Shale in east-central Fort Worth Basin,Texas[J].AAPG Bulletin,2012,96(1):34-43.
-
[23] DANIEL M J,RONALD J H,TIM E R.A comparative study of the Mississippian Barnett Shale,Fort Worth Basin,and Devonian Mar⁃ cellus Shale,Appalachian Basin[J].AAPG Bulletin,2011,91(4):475-499.
-
[24] 傅成玉.非常规油气资源勘探开发[M].北京:中国石化出版社,2015.FU Chengyu.Exploration and development of unconventional oil and gas resources[M].Beijing:China Petrochemical Press,2015.
-
[25] ZIELINSKI R E,MOTEFF J D.Physical and chemical character⁃ ization of Devonian gas shale[R].Quarterly Status Report,1977.
-
[26] MILICI R C,ROEN J B,WALKER B J.Stratigraphic history of the Appalachian Basin[R].Morgantown,WV:West Virginia Universi⁃ ty,1996.
-
[27] 刘成林,李景明,蒋裕强,等.川东小河坝砂岩天然气成藏地球化学研究[J].西南石油学院学报,2002,24(1):46-49.LIU Chenglin,LI Jingming,JIANG Yuqiang,et al.Geochemistry research on natural gas reservoir formation of Xiaoheba FM of low⁃ er Silurian in the eastern Sichuan Basin[J].Journal of Southwest Petroleum Institute,2002,24(1):46-49.
-
[28] 朱光有,赵文智,梁英波,等.中国海相沉积盆地富气机理与天然气的成因探讨[J].科学通报,2007,52(增刊1):46-57.ZHU Guangyou,ZHAO Wenzhi,LIANG Yingbo,et al.The mecha⁃ nism of gas enrichment and the genesis of natural gas in Chinese marine sedimentary basins[J].Chinese Science Bulletin,2007,52(Supplement1):46-57.
-
[29] 王清晨,严德天,李双建.中国南方志留系底部优质烃源岩发育的构造—环境模式[J].地质学报,2008,82(3):289-297.WANG Qingchen,YAN Detian,LI Shuangjian.Tectonic-environ⁃ mental model of the Lower Silurian high-quality hydrocarbon source rocks from South China[J].Acta Geologica Sinica,2008,82(3):289-297.
-
[30] 王兰生,邹春艳,郑平,等.四川盆地下古生界存在页岩气的地球化学依据[J].天然气工业,2009,29(5):59-62.WANG Lansheng,ZOU Chunyan,ZHENG Ping,et al.Geochemi⁃ cal evidence of shale gas existed in the Lower Paleozoic Sichuan basin[J].Natural Gas Industry,2009,29(5):59-62.
-
[31] 刘树根,曾祥亮,黄文明,等.四川盆地页岩气藏和连续型—非连续型气藏基本特征[J].成都理工大学学报:自然科学版,2009,36(6):578-592.LIU Shugen,ZENG Xiangliang,HUANG Wenming,et al.Basic characteristics of shale and continuous-discontinuous transition gas reservoirs in Sichuan Basin,China[J].Journal of Chengdu University of Technology:Science & Technology Edition,2009,36(6):578-592.
-
[32] 黄籍中.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气藏,2009,21(2):116-120.HUANG Jizhong.Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J].Lithologic Reservoirs,2009,21(2):116-120.
-
[33] MILICI R C,SWEZEY C S.Assessment of Appalachian Basin oil and gas resources:Devonian Shale-Middle and Upper Paleozoic Total Petroleum System[R].U.S.Geological Survey Open-File Re⁃ port2006-1237,2006:1-70.
-
[34] 尹亚辉,蒋有录,LEONARD J E.川东地区五百梯构造天然气运聚成藏史模拟研究[J].石油大学学报:自然科学版,2000,24(4):119-122.YIN Yahui,JIANG Youlu,LEONARD J E.Modeling of migration and accumulation of gas in Wubaiti Structure in the east of Sich⁃ uan Province[J].Journal of the University of Petroleum,China:Edition of Natural Science,2000,24(4):119-122.
-
[35] 宁方兴.济阳坳陷页岩油富集主控因素[J].石油学报,2015,36(8):905-914.NING Fangxing.The main control factors of shale oil enrichment in Jiyang depression[J].Acta Petrolei Sinica,2015,36(8):905-914.
-
[36] BAUMGARDNER Jr R W,ROWE H D.PS using hierarchical cluster analysis to improve facies definitions in Permian Mudrocks(Wolfcamp and Lower Leonard),Midland Basin,Texas[J].Geo⁃ chemistry,2016,23:2 198-2 213.
-
[37] HILL D G,LOMBARDI T E,MARTIN J P.Fractured shale gas po⁃ tential in New York[J].Northeastern Geology and Environmental Sciences,2004,26(1/2):57-78.
-
[38] ENGELDER T.Marcellus2008:Report card on the breakout year for gas production in the Appalachian Basin[J].Fort Worth Basin Oil and Gas Magazine,2009,20:18-22.
-
[39] 赵瞻,李嵘,冯伟明,等.滇黔北地区五峰组—龙马溪组页岩气富集条件及有利区预测[J].天然气工业,2017,37(12):26-34.ZHAO Zhan,LI Rong,FENG Weiming,et al.Enrichment condi⁃ tions and favorable zone prediction of Wufeng-Longmaxi shale gas reservoirs in the northern Yunnan-Guizhou provinces,China [J].Natural Gas Industry,2017,37(12):26-34.
-
[40] 郭岭,姜在兴,郭峰.渝东南龙马溪组黑色页岩矿物组成及其页岩气意义[J].中南大学学报:自然科学版,2015,46(11):4 146-4 154.GUO Ling,JIANG Zaixing,GUO Feng.Mineral components of shales from Longmaxi Formation in southeastern Chongqing and their implications for shale gas[J].Journal of Central South Uni⁃ versity:Science & Technology,2015,46(11):4 146-4 154.
-
[41] 张善文,张林晔,李政,等.济阳坳陷古近系页岩油气形成条件 [J].油气地质与采收率,2012,19(6):1-5.ZHANG Shanwen,ZHANG Linye,LI Zheng,et al.Formation con⁃ ditions of Paleogene shale oil and gas in Jiyang depression[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(6):1-5.
-
[42] LYLE D.Marcellus draws a crowd[M].Marcellus playbook:Hous⁃ ton,Texas,Hart Energy Publishing,2009:22-25.
-
[43] WRIGHTSTONE G.Marcellus Shale-Geologic Controls on Pro⁃ duction[C].Denver:AAPG Annual Convention,2009.
-
[44] 杨锐,何生,胡东风,等.焦石坝地区五峰组—龙马溪组页岩孔隙结构特征及其主控因素[J].地质科技情报,2015,34(5):105-113.YANG Rui,HE Sheng,HU Dongfeng,et al.Characteristics and the main controlling factors of micro-pore structure of the shale in Wufeng Formation-Longmaxi Formation in Jiaoshiba Area[J].Geological Science & Technology Information,2015,34(5):105-113.
-
[45] 徐向华,王健,李茗,等.Appalachian盆地页岩油气勘探开发潜力评价[J].资源与产业,2014,16(6):62-70.XU Xianghua,WANG Jian,LI Ming,et al.Shale-gas exploration and development potential in Appalachian Basin[J].Resources & Industries,2014,16(6):62-70.
-
[46] HAMLIN H S,BAUMGARDNER R W.PS Wolfberry Play,Mid⁃ land Basin,West Texas[R].Ft.Worth:AAPG 2012 Southwest Sec⁃ tion Meeting,Texas,2012.
-
[47] WILSON A.Do data-mining methods matter?A Wolfcamp Shale case study[J].Journal of Petroleum Technology,2015,67(10):87-89.
-
[48] 国家能源局油气司.中国页岩油中长期发展规划研究[R].北京:国家能源局油气司,2012.Oil and Gas Division,National Energy Administration.Research on medium and long term development plan of China’s shale oil [R].Beijing:Oil and Gas Division,National Energy Administra⁃ tion,2012.
-
摘要
为进一步了解页岩油气资源,洞悉国外成功开发经验,通过对比北美地区俄亥俄(Ohio)、马塞勒斯(Marcel- lus)、巴耐特(Barnett)、沃夫坎组(Wolfcamp)页岩与中国龙马溪组、沙河街组页岩的地质背景,明确了中外典型含油气页岩有机地球化学和储层发育特征的异同以及中美页岩油气资源开发动态,并给出了借鉴意义。结果表明:北美开发效果好的含油气页岩大多具有构造简单、厚层页岩发育、厚度变化小、总有机碳含量及有机质成熟度适中、 多为Ⅱ型干酪根、脆性矿物含量高、储层压力高等特点。北美页岩油气开发商采用大液量、大砂量、小压裂簇间距和阶段间距来改进压裂工艺,采用井工厂模式来降低土地占用面积,并且在其上进行“拉链式”压裂缩短整体的工程时间,在油田的生产资料数据库中运用大数据分析不同生产参数对产量的影响权重,从而更好地配置生产参数、 提高产量。美国页岩油气开发为中国提供的可借鉴的开发经验包括合并油气输送管网、引入民间资本和加大创新奖励。
Abstract
In order to gain a further understanding of shale gas/oil resource,and to learn from successful overseas develop- ment experience,the geological characteristics of shale in Ohio,Marcellus,Barnett,Wolfcamp in North America and the shale in Longmaxi and Shahejie in China were compared in detail. The similarities and differences of typical shales in or- ganic geochemistry and reservoir characteristics in both China and America were deeply clarified,at the same time,the de- velopment trends of oil and gas resources in China and the United States were also presented,and the referential values were given. The results show that the oil/gas-bearing shales developed successfully are characterized by simple structure, thick layer,small thickness change,moderate TOC content and organic maturity,rich typeⅡkerogen,rich brittle mineral content and overpressure. North American shale oil developers use large amount of fracturing fluid,large amount of sand, short fracture cluster distance and stage distance to improve the fracturing technique,and use multi-well pad mode to re- duce the land occupancy area,and apply the “chain” fracturing to reduce the overall engineering time. By using the big da- ta to analyses the influence weight of different production parameters on oil or gas output,the production increases with the well configured parameters. The development experiences of shale oil or gas that China can learn from U.S. include combin- ing transport pipelines,introducing private capital,and rewarding innovation.