en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

龙玉梅(1968—),女,四川广安人,高级工程师,硕士,从事油气储层研究。联系电话:13872954218,E-mail:longym.jhyt@sino-pec.com。

中图分类号:TE122.2+3

文献标识码:A

文章编号:1009-9603(2019)01-0059-06

DOI:10.13673/j.cnki.cn37-1359/te.2019.01.006

参考文献 1
邹才能,朱如凯,白斌,等.致密油与页岩油内涵、特征、潜力及挑战[J].矿物岩石地球化学通报,2015,34(1):3-17.ZOU Caineng,ZHU Rukai,BAI Bin,et al.Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil[J].Bulletin of Mineralogy,Petrology and Geo⁃ chemistry,2015,34(1):3-17.
参考文献 2
邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26. ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.
参考文献 3
SONNENBERG S A,PRAMUDITO A.Petroleum geology of the gi⁃ ant Elm Coulee field,Williston Basin[J].AAPG Bulletin,2009,93(9):1 127-1 153.
参考文献 4
GIBSON R I.Basement tectonics and hydrocarbon production in the Williston Basin:An interpretive overview[R].Tulsa:7th Inter⁃ national Williston Basin Symposium,1995:3-11.
参考文献 5
LA F R,HOLCOMB W D,ARAGON J.Impact of completion sys⁃ tem,staging,and hydraulic fracturing tends in the Bakken Forma⁃ tion of the eastern Williston Basin[R].SPE 152530,2012.
参考文献 6
RASDI F,CHU L F.Diagnosing fracture network pattern and flow regimes aids production performance analysis in unconventional oil reservoirs[R].SPE 151623,2012.
参考文献 7
CENTURION S,CADE R,LUO X L.Eagle Ford shale:Hydraulic fracturing,completion,and production trends:Part II[R].SPE 158501,2012.
参考文献 8
ORANGI A,NAGARAJAN N,HONARPOUR M,et al.Unconven⁃ tional shale oil and gas-condensate reservoir production,impact of rock,fluid,and hydraulic fractures[R].SPE 140536,2011.
参考文献 9
孙焕泉.济阳坳陷页岩油勘探实践与认识[J].中国石油勘探,2017,22(4):1-14.SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J].China Petroleum Exploration,2017,22(4):1-14.
参考文献 10
王芙蓉,何生,郑有恒,等.江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究[J].石油实验地质,2016,38(2):211-218.WANG Furong,HE Sheng,ZHENG Youheng,et al.Mineral com⁃ position and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation,Qianjiang Sag[J].Petro⁃ leum Geology & Experiment,2016,38(2):211-218.
参考文献 11
张顺,陈世悦,鄢继华,等.东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J].天然气地球科学,2015,26(2):320-332.ZHANG Shun,CHEN Shiyue,YAN Jihua,et al.Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie Formation,the west of Dongying sag[J].Natural Gas Geoscience,2015,26(2):320-332.
参考文献 12
王勇,王学军,宋国奇,等.渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J].石油勘探与开发,2016,43(5):696-704.WANG Yong,WANG Xuejun,SONG Guoqi,et al.Genetic con⁃ nection between mud shale lithofacies and shale oil enrichment in Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(5):696-704.
参考文献 13
朱德燕,王勇,银燕,等.断陷湖盆咸化环境沉积与页岩油气关系——以东营凹陷、渤南地区为例[J].油气地质与采收率,2015,22(6):7-13.ZHU Deyan,WANG Yong,YIN Yan,et al.Study on the relation⁃ ship between saline environmental deposition and shale oil-gas in faulted basin:A case study of areas of Dongying sag and Bonan subsag[J].Petroleum Geology and Recovery Efficiency,2015,22(6):7-13.
参考文献 14
王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.
参考文献 15
刘旭锋,张交东,周新桂,等.汶东凹陷页岩油发育特征及富集控制因素分析[J].油气地质与采收率,2016,23(6):41-46.LIU Xufeng,ZHANG Jiaodong,ZHOU Xingui,et al.Discussion of development features of shale oil in Wendong sag and its enrich⁃ ment controlling factors[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(6):41-46.
参考文献 16
高凤琳,宋岩,姜振学,等.黏土矿物对页岩储集空间及吸附能力的影响[J].特种油气藏,2017,24(3):1-8.GAO Fenglin,SONG Yan,JIANG Zhenxue,et al.Influence of clay minerals on shale storage space and adsorptive capacity[J].Spe⁃ cial Oil & Gas Reserviors,2017,24(3):1-8.
目录contents

    摘要

    以江汉盆地潜江凹陷潜江组潜 34 油组盐间页岩油储层为研究对象,通过岩心观察、岩石薄片鉴定、氩离子抛光-扫描电镜、低温氮气吸附及高压压汞等技术手段对泥页岩的岩相特征、储集空间类型、储层物性特征及影响因素进行研究。结果表明:潜江组潜34 油组盐间页岩油储层矿物组成复杂,主要发育层状云(泥)质钙芒硝岩相、纹层状泥质云岩相、纹层状云质泥岩相、纹层状泥质灰岩相、纹层状灰质泥岩相和块状云岩相等6种岩相类型;储集空间包括层间缝、晶间孔、晶间溶孔及黏土矿物晶间孔;储层孔隙度平均为 11.4%~18.9%,渗透率平均为 2.635~4.827 mD,属于中孔、特低渗透储层;纹层状泥质云岩相和块状云岩相的物性和含油性好,为最有利的岩相;压实作用及后期硫酸盐矿物的充填作用是造成储层物性变差的主要原因。

    Abstract

    The samples of shale oil reservoirs from the Qian34 formation of Qianjiang Sag in Jianghan Basin were collected for a series of experimental studies including core description,thin section analysis,Argon Ionization-Field Emission Scan- ning Electron Microscopy(AIP-FESEM)analysis,low-temperature nitrogen adsorption,high-pressure mercury injection, etc. to analyze the characteristics of lithologic facies,reservoir storage space types,reservoir physical properties and their influencing factors. The results indicate that the inter-salt shale oil reservoirs in Qian34 are characterized by complex min- eral composition. There are six types of lithofacies in the study area,which includes layered dolomite(argillaceous)calcium mangerite lithofacies,laminated argillaceous dolomite lithofacies,laminated dolomite mudstone lithofacies,laminated argil- laceous limestone lithofacies,laminated lime mudstone lithofacies and massive dolomite lithofacies. The main reservoir stor- age space of inter-salt shale oil are interlayer fractures,intercrystalline pores,intercrystalline dissolved pores and clay in- tracrystalline pores. The average porosity is 11.4%-18.9% and the average permeability is 2.635-4.827 mD. The formation belongs to mid-porosity and extra-low permeable formation. Laminated argillaceous dolomite lithofacies and massive dolo- mite lithofacies are the most favorable facies types with good physical properties and high oil-bearing characteristics. Com- paction and authigenic sulfate minerals filling are the main reasons for the poor physical properties of the reservoir.

  • 页岩油是指成熟或低成熟烃源岩已生成并滞留在页岩地层中的石油聚集,页岩既是生油岩,又是储集岩,属原地滞留油气资源,是未来非常规石油勘探的潜在领域[1-2]。北美页岩油的成功开发和规模上产已对石油能源产生了划时代影响[3-8],2016年美国页岩油年产量已达到2.12×108 t,占原油总产量的52.6%,显示页岩油具有巨大的勘探开发前景[9]。中国中、新生代沉积盆地富有机质泥页岩分布广泛,不仅形成了丰富的常规油气资源,而且在烃源岩层系中蕴藏着巨大的页岩油气资源。江汉盆地潜江凹陷潜江组盐间泥页岩油气显示丰富,平面上“满凹皆油浸显示”,常规油气勘探过程中共有128口井见油气显示,其中自喷井32口,井涌、井溢井19口,槽面见油花气泡井60口,井口出沥青井11口,有3口井发生强烈井喷,日喷油量达千吨。深入分析潜江凹陷潜江组潜34 油组(E2q34)盐间页岩油储层岩相特征、物性特征及微观孔隙结构对实现有效开发具有重要作用。为此,笔者对该套页岩油储层进行岩心观察及岩石薄片鉴定,结合氩离子抛光-扫描电镜、高压压汞和低温氮气吸附等技术对泥页岩储层的岩石学特征、储集空间类型及物性特征进行分析,以期为推进江汉盆地及中国页岩油气勘探与开发提供理论依据。

  • 1 地质概况

  • 潜江凹陷位于江汉盆地中部,是在中、古生界基底上发育的新生代内陆断陷湖盆,面积为2 500km2,北部以潜北断裂为界,分别与荆门凹陷、乐乡关隆起、汉水凹陷、永隆河隆起相接;东南部以通海口断层与通海口凸起分界;东北和西南部分别与岳口低凸起和丫角新沟低凸起呈斜坡过渡(图1)。

  • 潜江组沉积时期为盆地的沉降中心、汇水中心、浓缩中心,发育一套厚达5 000m的盐系地层,纵向上发育193套盐岩层。盐间页岩油储层是指夹持在2套盐岩层间的泥质云岩、云(灰)质泥页岩储层,它具有良好的烃源条件和储集条件,且由于上下盐岩分隔、纵向运移条件差,形成了独特的盐间页岩油系统。盐间地层是水体相对淡化期的沉积产物,其沉积的富有机质泥页岩大面积分布,总有机碳含量为0.89%~2.96%,主要为1.5%~2.5%;有机质显微组分以腐泥质为主,所占比例一般大于70%,其次为镜质组;干酪根类型主要为Ⅱ1型,其次为Ⅰ型,镜质组反射率为0.5%~0.88%;整体为优质烃源岩层,为形成丰富的非常规油气资源奠定了基础[10]

  • 图1 潜江凹陷区域构造位置

  • Fig.1 Tectonic locations of Qianjiang Sag

  • 2 矿物成分特征

  • X衍射全岩分析及岩石薄片鉴定结果(表1)表明,研究区E2q34 油组盐间页岩油储层的主要矿物成分既有机械沉积的陆源碎屑石英、长石及黏土矿物,又有化学沉积的白云石、方解石、钙芒硝和硬石膏等。平面上钙芒硝含量变化较大,其中位于蚌湖斜坡的B2井、王场背斜的W99井钙芒硝含量高,分别为20.9%和19.5%;岩心观察发现这2口井除韵律层顶部、底部发育成层分布的钙芒硝外,韵律层中部还大量发育水平、垂直及斜交裂缝,且裂缝内均被钙芒硝充填(图2)。

  • 表1 潜江凹陷E2q34 油组盐间泥页岩矿物成分分析

  • Table1 Mineral contents of the inter-salt shales from E2q34 oil formation,Qianjiang Sag

  • 镜下观察发现石英、长石主要为细粉砂级,粒径小于30 μm,呈纹层状顺层分布或分散状分布;白云石、方解石为泥晶结构,粒径为1~5 μm;黏土矿物以伊利石为主,其次为伊/蒙混层矿物,少量绿泥石。炭质呈线纹状连续或断续分布。黄铁矿呈粉末状、草莓状集合体、立方体分散分布或呈放射状集合体分布于钙芒硝晶体边缘。

  • 图2 潜江凹陷E2q34 油组盐间泥页岩岩心照片

  • Fig.2 Pictures of the inter-salt shales from E2q34 oil formation,Qianjiang Sag

  • 3 岩相类型及特征

  • 岩相是由一定岩石特征(颜色、矿物成分、结构、构造、成层性等)所组成的岩石单位[11]。岩心观察发现潜江凹陷E2q34 油组盐间页岩油储层构造类型以纹层状(纹层厚度<1mm)、层状(纹层厚度≥1mm)构造为主,少量块状(纹层不发育)构造[12]。古盐度的变化控制了岩性的演化[13],根据钻井岩心观察、岩心样品分析,盐间地层经历了咸化—淡化— 咸化的过程,自下而上依次形成盐岩、钙芒硝岩、白云岩(灰岩)、泥岩、白云岩(灰岩)、钙芒硝岩、盐岩的岩性序列。综合考虑岩石类型、矿物成分、沉积构造特征,将研究区页岩油储层划分出层状云(泥) 质钙芒硝岩相、纹层状泥质云岩相、纹层状云质泥岩相、纹层状泥质灰岩相、纹层状灰质泥岩相和块状云岩相等6个岩相(图3)。

  • 层状云(泥)质钙芒硝岩相  岩石为浅灰色,主要分布于韵律层顶、底部。钙芒硝呈层状分布,晶粒细小,粒径为0.02~0.20mm,主要为0.02~0.05mm,且彼此紧密接触。少量泥晶白云石分布于钙芒硝晶间孔中,泥质或云质纹层厚度为1~5mm,该岩相含油性差。

  • 纹层状泥质云岩相和纹层状云质泥岩相  岩石为灰褐色、黄褐色,为研究区E2q34 油组盐间页岩油主要储集岩相。深灰色富泥炭质纹层与黄褐色富含油云质纹层间互成层,厚度为0.01~0.12mm,云质纹层晶间孔发育,其内部充填黄褐色油质,粉砂呈星散状分布或富集呈纹层状。岩石层间缝发育,其内部多被油质充填,部分层间缝被钙芒硝全充填。有的岩心见构造缝呈网脉状发育,宽窄不一,被钙芒硝及硬石膏全充填。

  • 纹层状泥质灰岩相和纹层状灰质泥岩相  岩石呈灰褐色,镜下观察见富泥炭质暗色纹层与富灰质亮色纹层间互成层,偶尔夹有粉砂细纹层。部分方解石发生重结晶,见少量生物碎片。黄铁矿呈粉末状分散分布,泥质纹层中片状伊利石呈定向排列。

  • 图3 潜江凹陷E2q34 油组盐间泥页岩岩相类型及特征

  • Fig.3 Lithofacies types and characteristics of inter-salt shale from E2q34 oil formation,Qianjiang Sag

  • 块状云岩相  岩石为黄褐色,含油性好,泥晶结构,泥质含量少,扫描电镜下白云石多为半自形自形晶,晶间孔、晶间溶孔发育,多被油质充填。部分岩石具内碎屑结构,内碎屑直径为0.06~0.35mm,呈圆形-椭圆形,多数富含炭质,色暗。

  • 不同类型岩相的含油性存在明显差异。块状云岩相和纹层状泥质云岩相为最有利岩相,其 S 1分别为22.41和18.47mg/g(图4)。

  • 图4 不同岩相游离烃含量分布

  • Fig.4 Free hydrocarbon content distribution of different lithofacies

  • 4 储集特征

  • 4.1 储集空间类型

  • 常规储层采用铸体薄片、扫描电镜对储集空间类型进行观察。针对盐间页岩油储层,在原有分析测试技术上,利用氩离子抛光技术对样品进行制备,在高分辨率场发射扫描电镜下进行观察,发现研究区E2q34 油组盐间页岩油储层发育裂缝和孔隙2种体系。裂缝主要发育成岩缝和构造缝,孔隙主要为晶间孔、晶间溶孔及黏土矿物晶间孔(图5),未见大量发育的有机孔,这可能与研究区成岩演化程度较低有关。

  • 成岩缝  主要为层间缝,发育于纹层状泥页岩中。由于在富云质纹层、富粉砂纹层或富黏土纹层接触处的结合力较弱,易形成细小的平行层理裂缝,其内部多充填油质,荧光下发黄绿色光,是油气的主要储集和运移通道[14-15],也有些层间缝被后期的钙芒硝、硬石膏充填。块状云岩的层间缝不发育。

  • 构造缝  主要为盐岩塑变和构造运动形成的不规则网状裂缝。该类裂缝在纹层状泥岩、块状云岩中均有发育,多数被钙芒硝、硬石膏或者碳酸盐全充填。

  • 图5 潜江凹陷E2q34 油组盐间泥页岩显微照片

  • Fig.5 Microscopic pictures of the inter-salt shales from E2q34 oil formation,Qianjiang Sag

  • 晶间孔  以白云石晶间孔为主,主要发育于块状云岩、纹层状泥质云岩和云质泥岩中,孔径为0.2~1 μm,孔隙呈三角形、不规则多边形,为主要的储集空间类型。

  • 晶间溶孔  主要发育于块状云岩、纹层状泥质云岩和纹层状云质泥岩中,孔径为0.5~3 μm,白云石晶体边缘有溶蚀痕迹,孔隙呈不规则状,为主要的储集空间类型。

  • 黏土矿物晶间孔  主要发育于纹层状云(灰) 质泥岩和泥质云(灰)岩中,为片状伊利石晶间孔,孔径为10~100nm,孔隙呈片状、三角形和不规则状,为次要的储集空间类型。

  • 4.2 物性特征

  • 研究区E2q34 油组盐间页岩油储层孔隙度为5.2%~23.8%,水平渗透率为0.137~8.652mD。不同岩相的物性存在差异,其中纹层状泥质云岩相和块状云岩相的孔隙度最大,平均为14.4%和18.9%,渗透率平均为2.871和2.635mD,纹层状云质泥岩相和纹层状灰质泥岩相的孔隙度平均为11.4%和11.8%,渗透率平均为4.827和4.632mD(表2)。纹层状云(灰)质泥岩相渗透率较其他类型岩相高,其原因为该岩相片状伊利石含量较高,在岩性的结合面极易形成层间微裂缝,导致渗透率增加。

  • 表2 潜江凹陷E2q34油组盐间泥页岩储层物性参数

  • Table2 Reservoir physical properties of the inter-salt shales from E2q34 oil formation,Qianjiang Sag

  • 4.3 微观孔隙结构特征

  • 不同类型岩相储层的微观孔隙结构存在差异。高压压汞实验结果(图6)表明,块状云岩相进汞曲线平台低而缓,说明孔喉半径较大,分选性较好,孔喉半径分布频率图中未见尾部,裂缝不发育,孔喉半径主要为25~160nm;纹层状泥质云岩相孔喉半径分选性差,孔喉半径为6~100nm;纹层状云/灰质泥岩相孔喉半径为4~15nm,裂缝发育,压汞曲线表明裂缝对渗透率的贡献较大。液氮吸附实验结果(图7)表明,黏土矿物含量越高,泥页岩比表面积越大,微孔孔容越大,微孔所占比例越高[16]

  • 图6 不同类型岩相孔喉半径分布特征

  • Fig.6 Pore throat radius distribution of different lithofacies

  • 图7 泥页岩黏土矿物含量与比表面积、微孔孔容关系

  • Fig.7 Relationship between clay mineral content and specific surface area& micropore volume of the shales

  • 5 储层发育影响因素

  • 5.1 岩相(沉积微相)

  • 内陆盐湖化学沉积环境决定了研究区泥页岩在纵向上的分布变化频繁。随着古气候和外来水的变化,泥晶云岩或泥质岩呈纹层状频繁交替出现,形成水平纹层构造,而研究区泥页岩在平面上的分布则较稳定。沉积微相对潜江凹陷E2q34 油组盐间页岩油储层微观结构的控制作用主要表现在对矿物组成和组构的控制。相对淡化期的深湖相发育黏土矿物,微孔发育,较高的伊利石及伊/蒙混层矿物易形成层间缝,使渗透率增大。相对咸化期白云岩发育,原生白云石晶间孔发育,孔隙度增大。

  • 5.2 成岩作用

  • 压实作用  随着埋深的增加,压实作用变强,白云石晶粒间呈线接触,储层物性变差(图8)。针对研究区E2q34 油组盐间页岩油储层在背斜高部位、斜坡区、洼陷区分别钻探了W99,B2和B1井,测井解释孔隙度分别为17.92%,13.3%和9.5%。当埋深大于3 000m时,孔隙度明显变小,小于10%。

  • 图8 潜江凹陷E2q34 油组盐间泥页岩孔隙度随埋深变化

  • Fig.8 Porosity variation of the inter-salt shales from E2q34 oil formation with burial depth,Qianjiang Sag

  • 硫酸盐矿物充填作用  显微镜下观察发现研究区页岩油储层中发育呈斑块状分布或呈裂缝充填式产出的硫酸盐矿物钙芒硝、硬石膏(图9),随着钙芒硝和硬石膏含量的增加,储层物性明显变差。统计表明当泥页岩中钙芒硝和硬石膏含量高于10%时,泥页岩孔隙度多小于15%;当泥页岩中钙芒硝和硬石膏含量高于20%时,泥页岩孔隙度多小于10%。

  • 图9 潜江凹陷E2q34 油组泥页岩场发射扫描电镜图像

  • Fig.9 AIP-FESEM image of the shale from E2q34 oil formation,Qianjiang Sag

  • 6 结论

  • 潜江凹陷潜江组盐间页岩油储层矿物组成复杂,既有机械沉积的陆源碎屑石英、长石及黏土矿物,又有化学沉积的白云石、方解石及钙芒硝、硬石膏。主要发育6种岩相,不同岩相发育的储集空间类型、孔喉大小、含油性、物性均有差异。其中块状云岩相和纹层状泥质云岩相含油性好,储层物性好,其次为纹层状灰/云质泥岩相。块状云岩相孔喉分选性好,孔喉半径较大,主要为25~160nm,储集空间以白云石晶间孔和晶间溶孔为主;纹层状泥质云岩相孔喉分选性差,孔喉半径为6~100nm,储集空间以白云石晶间孔、晶间溶孔、黏土矿物晶间孔和层间缝为主;纹层状灰/云质泥岩相微孔比例较高,孔喉半径为4~15nm,储集空间以黏土矿物晶间孔、白云石晶间孔、晶间溶孔和层间缝为主。潜江凹陷E2q34 油组盐间页岩油储层矿物组成、微观孔隙结构受控于沉积微相,后期的压实作用及硫酸盐矿物的充填作用是造成研究区页岩油储层物性变差的主要原因。

  • 参考文献

    • [1] 邹才能,朱如凯,白斌,等.致密油与页岩油内涵、特征、潜力及挑战[J].矿物岩石地球化学通报,2015,34(1):3-17.ZOU Caineng,ZHU Rukai,BAI Bin,et al.Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil[J].Bulletin of Mineralogy,Petrology and Geo⁃ chemistry,2015,34(1):3-17.

    • [2] 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26. ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.

    • [3] SONNENBERG S A,PRAMUDITO A.Petroleum geology of the gi⁃ ant Elm Coulee field,Williston Basin[J].AAPG Bulletin,2009,93(9):1 127-1 153.

    • [4] GIBSON R I.Basement tectonics and hydrocarbon production in the Williston Basin:An interpretive overview[R].Tulsa:7th Inter⁃ national Williston Basin Symposium,1995:3-11.

    • [5] LA F R,HOLCOMB W D,ARAGON J.Impact of completion sys⁃ tem,staging,and hydraulic fracturing tends in the Bakken Forma⁃ tion of the eastern Williston Basin[R].SPE 152530,2012.

    • [6] RASDI F,CHU L F.Diagnosing fracture network pattern and flow regimes aids production performance analysis in unconventional oil reservoirs[R].SPE 151623,2012.

    • [7] CENTURION S,CADE R,LUO X L.Eagle Ford shale:Hydraulic fracturing,completion,and production trends:Part II[R].SPE 158501,2012.

    • [8] ORANGI A,NAGARAJAN N,HONARPOUR M,et al.Unconven⁃ tional shale oil and gas-condensate reservoir production,impact of rock,fluid,and hydraulic fractures[R].SPE 140536,2011.

    • [9] 孙焕泉.济阳坳陷页岩油勘探实践与认识[J].中国石油勘探,2017,22(4):1-14.SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J].China Petroleum Exploration,2017,22(4):1-14.

    • [10] 王芙蓉,何生,郑有恒,等.江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究[J].石油实验地质,2016,38(2):211-218.WANG Furong,HE Sheng,ZHENG Youheng,et al.Mineral com⁃ position and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation,Qianjiang Sag[J].Petro⁃ leum Geology & Experiment,2016,38(2):211-218.

    • [11] 张顺,陈世悦,鄢继华,等.东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J].天然气地球科学,2015,26(2):320-332.ZHANG Shun,CHEN Shiyue,YAN Jihua,et al.Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie Formation,the west of Dongying sag[J].Natural Gas Geoscience,2015,26(2):320-332.

    • [12] 王勇,王学军,宋国奇,等.渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J].石油勘探与开发,2016,43(5):696-704.WANG Yong,WANG Xuejun,SONG Guoqi,et al.Genetic con⁃ nection between mud shale lithofacies and shale oil enrichment in Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(5):696-704.

    • [13] 朱德燕,王勇,银燕,等.断陷湖盆咸化环境沉积与页岩油气关系——以东营凹陷、渤南地区为例[J].油气地质与采收率,2015,22(6):7-13.ZHU Deyan,WANG Yong,YIN Yan,et al.Study on the relation⁃ ship between saline environmental deposition and shale oil-gas in faulted basin:A case study of areas of Dongying sag and Bonan subsag[J].Petroleum Geology and Recovery Efficiency,2015,22(6):7-13.

    • [14] 王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.

    • [15] 刘旭锋,张交东,周新桂,等.汶东凹陷页岩油发育特征及富集控制因素分析[J].油气地质与采收率,2016,23(6):41-46.LIU Xufeng,ZHANG Jiaodong,ZHOU Xingui,et al.Discussion of development features of shale oil in Wendong sag and its enrich⁃ ment controlling factors[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(6):41-46.

    • [16] 高凤琳,宋岩,姜振学,等.黏土矿物对页岩储集空间及吸附能力的影响[J].特种油气藏,2017,24(3):1-8.GAO Fenglin,SONG Yan,JIANG Zhenxue,et al.Influence of clay minerals on shale storage space and adsorptive capacity[J].Spe⁃ cial Oil & Gas Reserviors,2017,24(3):1-8.

  • 参考文献

    • [1] 邹才能,朱如凯,白斌,等.致密油与页岩油内涵、特征、潜力及挑战[J].矿物岩石地球化学通报,2015,34(1):3-17.ZOU Caineng,ZHU Rukai,BAI Bin,et al.Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil[J].Bulletin of Mineralogy,Petrology and Geo⁃ chemistry,2015,34(1):3-17.

    • [2] 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26. ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.

    • [3] SONNENBERG S A,PRAMUDITO A.Petroleum geology of the gi⁃ ant Elm Coulee field,Williston Basin[J].AAPG Bulletin,2009,93(9):1 127-1 153.

    • [4] GIBSON R I.Basement tectonics and hydrocarbon production in the Williston Basin:An interpretive overview[R].Tulsa:7th Inter⁃ national Williston Basin Symposium,1995:3-11.

    • [5] LA F R,HOLCOMB W D,ARAGON J.Impact of completion sys⁃ tem,staging,and hydraulic fracturing tends in the Bakken Forma⁃ tion of the eastern Williston Basin[R].SPE 152530,2012.

    • [6] RASDI F,CHU L F.Diagnosing fracture network pattern and flow regimes aids production performance analysis in unconventional oil reservoirs[R].SPE 151623,2012.

    • [7] CENTURION S,CADE R,LUO X L.Eagle Ford shale:Hydraulic fracturing,completion,and production trends:Part II[R].SPE 158501,2012.

    • [8] ORANGI A,NAGARAJAN N,HONARPOUR M,et al.Unconven⁃ tional shale oil and gas-condensate reservoir production,impact of rock,fluid,and hydraulic fractures[R].SPE 140536,2011.

    • [9] 孙焕泉.济阳坳陷页岩油勘探实践与认识[J].中国石油勘探,2017,22(4):1-14.SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J].China Petroleum Exploration,2017,22(4):1-14.

    • [10] 王芙蓉,何生,郑有恒,等.江汉盆地潜江凹陷潜江组盐间页岩油储层矿物组成与脆性特征研究[J].石油实验地质,2016,38(2):211-218.WANG Furong,HE Sheng,ZHENG Youheng,et al.Mineral com⁃ position and brittleness characteristics of the inter-salt shale oil reservoirs in the Qianjiang Formation,Qianjiang Sag[J].Petro⁃ leum Geology & Experiment,2016,38(2):211-218.

    • [11] 张顺,陈世悦,鄢继华,等.东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J].天然气地球科学,2015,26(2):320-332.ZHANG Shun,CHEN Shiyue,YAN Jihua,et al.Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie Formation,the west of Dongying sag[J].Natural Gas Geoscience,2015,26(2):320-332.

    • [12] 王勇,王学军,宋国奇,等.渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系[J].石油勘探与开发,2016,43(5):696-704.WANG Yong,WANG Xuejun,SONG Guoqi,et al.Genetic con⁃ nection between mud shale lithofacies and shale oil enrichment in Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(5):696-704.

    • [13] 朱德燕,王勇,银燕,等.断陷湖盆咸化环境沉积与页岩油气关系——以东营凹陷、渤南地区为例[J].油气地质与采收率,2015,22(6):7-13.ZHU Deyan,WANG Yong,YIN Yan,et al.Study on the relation⁃ ship between saline environmental deposition and shale oil-gas in faulted basin:A case study of areas of Dongying sag and Bonan subsag[J].Petroleum Geology and Recovery Efficiency,2015,22(6):7-13.

    • [14] 王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.

    • [15] 刘旭锋,张交东,周新桂,等.汶东凹陷页岩油发育特征及富集控制因素分析[J].油气地质与采收率,2016,23(6):41-46.LIU Xufeng,ZHANG Jiaodong,ZHOU Xingui,et al.Discussion of development features of shale oil in Wendong sag and its enrich⁃ ment controlling factors[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(6):41-46.

    • [16] 高凤琳,宋岩,姜振学,等.黏土矿物对页岩储集空间及吸附能力的影响[J].特种油气藏,2017,24(3):1-8.GAO Fenglin,SONG Yan,JIANG Zhenxue,et al.Influence of clay minerals on shale storage space and adsorptive capacity[J].Spe⁃ cial Oil & Gas Reserviors,2017,24(3):1-8.