-
1 地质学背景及问题的提出
-
东营凹陷作为渤海湾盆地断陷湖盆的典型,是胜利油田的重要工区。沙四段沉积中晚期—沙三段沉积早期是东营凹陷强烈断陷期[1-3],沙四段沉积中晚期,气候由沉积早期的干旱开始变湿润,降水量增加,盆地下沉,水域面积扩大,湖水盐度较高,属于常年闭流湖性质;沙三段沉积早期,气候湿润,湖盆范围增大,盆地断陷作用增强,可容空间较大[2-6]。广泛分布的深水-半深水环境为页岩等细粒物质的沉积提供了有利的条件与场所,因此,东营凹陷的页岩储层主要发育在沙四段上亚段及沙三段下亚段。伴随页岩油气勘探工作的开展,已在东营凹陷钻探3口页岩油专探井(LY1井、FY1井和NY1井),开展了系统取心和分析化验工作,并对老井进行了复查。随着细粒沉积学和非常规储层地质学理论研究的不断深入[7-11],东营凹陷页岩油的相关基础研究工作一直在持续推进[12-14]。
-
与中国页岩气勘探成果比较,近些年中国页岩油勘探形势严峻,有效储层的识别和有利层段的确定是制约页岩油勘探突破的重要地质因素,而仅识别表征储层孔隙和微裂缝并不能真正有效地指导页岩油勘探[15]。页岩与砂岩在孔隙骨架的稳定性、成岩矿物转化程度、成岩流体来源与数量等方面均有较大差异,页岩系统相对封闭,在地层温压条件下,细粒物质对成岩环境的响应更为直接快速,控制着储集空间及其组合类型的发育与演化,这也使得页岩的成岩事件及孔隙演化成为近几年油气地质研究的热点和难点[15-18]。回顾页岩成岩作用研究历程,1980年至1995年,关于页岩成岩的研究主要集中在自生黏土矿物沉淀及转化[19-20];2000年至2010年,伴随页岩气革命兴起,北美学者针对海相页岩成岩作用进行了研究,认为压实、胶结以及黏土、石英等富硅矿物集合体对孔隙类型及储层的品质有重要影响[21-25]。近几年,部分专家学者已经开始研究细粒沉积、成岩与页岩储层之间的关系[15-18]。为此,笔者以东营凹陷沙四段上亚段—沙三段下亚段页岩储层为研究对象,从储层基本特征入手,研究页岩关键成岩事件,剖析成岩事件对页岩储层尤其是对储集空间发育特征的影响,以期为页岩有利储集层段和有利勘探目标的选取提供依据。
-
2 页岩储层基本特征
-
2.1 架构矿物和岩石类型多样
-
东营凹陷古近系页岩以定向组构占绝对主导,碳酸盐矿物纹层与黏土矿物纹层在垂向上的叠置是最常见的纹层组合类型[26-27],具有很强的韵律性或旋回性(图1)。400个样品的X射线全岩矿物分析结果表明:东营凹陷页岩储层岩石矿物混杂(表1),石英平均含量为27%;黏土矿物平均含量为29%,主要为伊利石,其次为伊/蒙混层,少许高岭石和绿泥石;碳酸盐矿物平均含量为40%,主要包括 (铁)方解石和(铁)白云石及少量菱铁矿,前两者含量分别为6%~79%和3%~88%。此外还有少量黄铁矿(平均含量小于2%)和硬石膏(平均含量为2%~7%)。
-
图1 东营凹陷页岩纹层发育特征
-
Fig.1 Shale lamina development characteristics in Dongying Sag
-
参照姜在兴等的岩相划分方案[28],东营凹陷古近系页岩主要发育富有机质纹层状灰质泥岩、富有机质纹层状泥质灰岩、层状灰质泥岩、层状泥质灰岩、脉状亮晶灰岩(方解石含量大于60%)、纹层状泥质或灰质白云岩等岩相类型,此外还发育少量页状黏土岩(黏土矿物含量大于50%)、块状灰质泥岩和泥质粉砂岩等。
-
2.2 热演化成熟度中等
-
有机质含量普遍较高,总有机碳含量主要为2.27%~6.70%。干酪根显微组分主要为腐泥组和镜质组,镜质组反射率(R o)主要为0.51%~0.90%,沙三段下亚段镜质组反射率普遍小于沙四段上亚段。最高热解峰温(T max)主要为433~448℃,少量样品低于430℃。热解残留烃含量主要为3~5mg/g,部分热解烃含量普遍高于热解残留烃含量,生烃潜量主要为22~30mg/g,总体上,沙三段上亚段页岩生烃能力强[26-27]。不同类型岩相有机地化指标存在较大差异(表1)。
-
2.3 不同岩相的孔隙类型和物性特征差异大
-
架构矿物类型的复杂决定了孔隙类型的多样。粒间孔主要指石英等矿物颗粒之间的孔隙;伊利石化过程中产生的微孔隙,是黏土矿物晶间孔的重要组成部分,含烃黏土中有不同程度的扩径现象;与碳酸盐矿物成岩作用有关的孔隙包括重结晶晶间孔(缝)和(铁)白云石晶间孔,孔径从几百纳米到十几微米不等。有机质孔主要分布于干酪根边缘区域,呈串珠状(孔径多小于5.0 µm)、微裂缝状(开度为0.1~0.5 µm)。溶蚀孔在扫描电镜下极易辨认,多呈蜂窝状或串珠状分布于矿物表面和内部,孔径多为1.0~2.5 µm,最大可达5.0 µm[18]。部分孔隙与微裂缝难以区分,具有一体化的特征。游离相油主要分布在微孔隙与裂缝中,而吸附相态的油气聚集主要受控于页岩有机质及颗粒表面物质的吸附作用。
-
利用核磁共振 T2谱法以及氦气法等测定不同岩相的孔隙度,总体上纹层状岩相孔隙度较高,尤其是纹层状泥质灰岩相物性普遍较好,纹层特征不显著的岩相类型孔隙度偏低。不同层段及不同成岩环境的脉状亮晶灰岩样品孔隙度差异较大,如表1中FY1-7和FY1-10岩样。
-
3 主要成岩事件
-
成岩事件指成岩的过程、顺序和强度等,一般具有继承性和共存性,即同一岩石中可发生多个成岩事件,且不同成岩阶段可连续发生同一成岩事件[29]。综合宏观、微观测试手段(岩石薄片和样品扫描电镜观察及电子探针元素分析)和有机地化参数,发现东营凹陷古近系页岩经历了压实、黏土矿物脱水、胶结、重结晶、白云石化、溶蚀、有机质生烃等成岩事件[15,18],整体处于中成岩阶段,少数进入晚成岩阶段(图2)。页岩埋藏成岩过程中,黏土矿物类型转化、碳酸盐矿物重结晶以及有机质持续生烃、酸性溶蚀等是页岩成岩史中的关键成岩事件 (图3),具有跨成岩阶段、持续时间长等特征(图2),无机和有机成岩事件协同和匹配也是页岩成储的重要因素。限于篇幅,本文重点分析方解石等碳酸盐矿物重结晶、有机质生烃和酸性溶蚀等关键成岩事件。
-
图2 东营凹陷古近系页岩成岩演化特征(据文献[15]修改)
-
Fig.2 Characteristics of diagenetic evolution of Paleogene shale,Dongying Sag(modified according to reference[15])
-
图3 东营凹陷页岩储层中主要成岩事件及相关孔隙类型
-
Fig.3 Main diagenetic events and related pore types in shale reservoir,Dongying Sag
-
3.1 方解石等碳酸盐矿物重结晶
-
方解石的重结晶在泥晶灰岩中极为普遍。灰泥沉积物中的文石和高镁方解石经新生变形作用转变为低镁方解石,伴随页岩埋深增大和成岩流体性质改变,方解石呈现逐渐从泥、微晶状态到重结晶的变化特征(图1,图2)。在岩心尺度上,亮晶方解石矿物呈脉体[30]、透镜体状展布,单层多由若干个不连续的透镜体组成(图1c),脉体宽度为2~10mm。镜下观察亮晶方解石呈马牙状和板状等(图3b);阴极发光薄片照片清楚地显示方解石生长具有期次的特征(图3f),晶粒碳酸盐矿物结晶程度良好,晶粒粗大,干净明亮,与周围黏土质矿物界线清晰(图3d—3f)。
-
一般地,成岩作用越强,δ18O值越低,成岩温度越高[31-32],研究区4个亮晶方解石样品的 δ18O值分别为-12.52‰(VPDB),-11.82‰(VPDB),-12.13‰ (VPDB)和-11.64‰(VPDB),与埋深相近的泥晶灰岩样品-8.09‰(VPDB)相比,呈现高负值特征;而亮晶方解石样品的 δ13C值大于3.9‰(VPDB),普遍较高。因此,亮晶方解石是成岩后期的产物,且方解石的重结晶作用与高有机质含量(总有机碳含量大于2%)密切相关,从中成岩中期持续到晚成岩阶段。
-
3.2 有机质生烃和酸性溶蚀
-
有机质生烃演化作用是页岩储层与常规碎屑岩储层成岩作用最大的区别。前人研究结果表明,沙四段沉积晚期咸化环境发育的页岩中多数有机质为非共价键缔合结构,活化能低于淡水环境[2,26],因此,沙四段上亚段页岩生排烃早且生烃周期较长,在2 500m就进入排烃门限,而沙三段下亚段页岩在3 000m以深才开始排烃(图4)。镜质组反射率作为常用的演化程度标志,其对应的埋深、原油密度及黏度的指标意义更甚于其本身。当0.8%> R o>0.6%、埋深为3 000~3 500m时,页岩储层含油饱和度随成熟度和埋深增大迅速增高,原油总烃含量逐渐增高,非烃+沥青质含量降低,密度和黏度降低明显,页岩储层大规模排烃;当 R o>0.8%、埋深超过3 600m时,页岩储层含油饱和度随成熟度和埋深增大而逐渐下降,原油总烃含量大于非烃+沥青质含量,原油轻重比例迅速增加,黏度稳定至低值。
-
页岩排出含烃流体的同时也伴随着大量有机酸的排出,在产生有机质孔的同时,酸性溶蚀作用对易溶矿物的最终成岩面貌至关重要。由于源储一体的特点,邻近有机质部分的不稳定矿物的溶蚀现象较为普遍,且长石含量较低,因此东营凹陷页岩溶蚀现象更多见于方解石和白云石等碳酸盐矿物晶体边缘及内部,通常呈阶状、洞状、港湾状和缝状溶蚀(图3,图4)。溶蚀强度取决于有机质生烃排酸强度、碳酸盐矿物与有机质的赋存状态、流体环境的通畅程度等。
-
图4 东营凹陷FY1井出油井段(局部)岩心及微观孔(缝)特征
-
Fig.4 Core scanning and microscopic pores(fractures)of oil display interval(local)in Well FY1,Dongying Sag
-
4 成岩事件对储集空间发育特征的影响
-
页岩储层孔隙度及孔径主要受控于架构矿物和有机质的含量;孔隙度与长英质矿物(长石+石英)含量、有机质含量均呈线性正相关关系,大孔径 (超过30nm)的孔隙发育程度与碳酸盐矿物含量呈正相关关系[18]。因此,页岩中碳酸盐矿物的成岩事件及有机质生烃对页岩储层质量及孔隙发育演化有重要影响。本文重点讨论关键成岩事件及其匹配对页岩有效储集空间形成的影响。
-
4.1 方解石重结晶部分溶蚀形成有效的储集空间组合
-
勘探实践证实,东营凹陷FY1井3 075~3 296m测井解释为油层,试油数据显示3 197.0~3 213.5m为出油层段,该层段总有机碳含量较高,为3.5%~4.3%;有效孔隙度较高,为4.8%~5.0%;可动流体孔隙度为1.0%~1.3%。对该出油层段进行岩心扫描,主要岩相类型为富有机质纹层状灰质泥岩和富有机质脉状亮晶灰岩。其中由方解石重结晶作用形成的白色亮晶方解石脉十分发育,方解石重结晶部分与富有机质黏土层部分叠置形成层偶,累积厚度超过该井段厚度的50%(图4a)。
-
FY1井3 197.0~3 213.5m页岩储层的方解石重结晶部分主要具有以下特征:埋深普遍大于3 000m;与富有机质黏土伴生(图4a,4c);晶粒多呈垂直于纹层方向生长的晶柱状(图4d—4f);具有明显重结晶的性质;亮晶方解石间有机质富集;重结晶形成解理缝及晶间溶蚀孔(图4d)。碳酸盐晶粒形成的架构空间,以及伴随生排烃过程的溶蚀作用形成碳酸盐矿物内部溶蚀孔,均增加了储层孔隙度。相关研究已证实亮晶灰岩为东营凹陷页岩油优势有利岩相[5],主要储集空间类型为黏土矿物晶间缝、方解石重结晶晶间孔、方解石解理缝、溶蚀孔(图4c— 4h)和有机质孔。从储集有效性方面,溶蚀孔和黏土矿物晶间孔及有机质孔是有效的储集空间组合。但本次研究发现,不同层段的脉状亮晶灰岩样品孔隙度差异较大,碱性成岩流体环境的亮晶灰岩晶间孔和微裂缝发育欠佳。
-
3000~3 600m是东营凹陷页岩排酸的高峰深度区间,有机质持续生烃能力强,成岩流体环境偏酸性。当埋深超过3 600m时,有机质成熟度大于0.8%,页岩成岩演化进入中成岩阶段后期,当埋深大于4 200m时,进入热裂解生凝析气阶段。总体上,中成岩阶段后期,有机质生烃能力减弱,排酸量骤减,成岩流体环境由酸性变为(弱)碱性,储集空间类型减少,孔径和孔体积变小,并逐步进入稳定滞变阶段。由于碳酸盐重结晶不再接受酸性流体溶蚀,而石英等的碱性溶蚀又不足以弥补酸性溶蚀的衰减,此时,碱性成岩流体环境中的重结晶作用对孔隙的发育演变起到破坏作用。这也是表1中FY1-7与FY1-10为同类岩相,孔隙度却差别较大的主要原因。
-
4.2 成岩事件与层理缝的发育演化
-
纹层发育是陆相深水页岩的普遍特征,纹层层理间的裂缝,即层理缝(或层间缝、顺层缝),一直被视为重要的油气储集空间和渗流通道,对油气存储和运移具有重要意义。但关于这类储集空间,在定义和成因上存在分歧[33-34]。笔者对东营凹陷4个洼陷近300个普通岩石薄片及100个荧光薄片进行观察,重点对纹层发育、层理特征显著的样品进行分析测试。结果表明,微裂缝以水平超压水力裂缝为主,裂缝内充填沥青等;除了在亮晶方解石纹理间裂缝较发育外,诸多层理缝实为薄片制备过程导致的假缝,层理缝发育程度可能远低于传统认识。
-
一般地,在以拉张或走滑拉张为主要构造背景的盆地中,超压裂缝的开启需要克服上覆地层压力及岩石抗张强度。MAGARA认为流体压力大于静水压力的1.42倍时超压裂缝形成[35]。SHI等认为这个倍数要达到1.9 [36]。主流观点认为,超压盆地流体压力达到静岩压力的70%~90%,超压裂缝才能开启[37]。生烃、欠压实及黏土矿物转化使孔隙流体承担了原本岩石颗粒该承担的部分,造成超压,从而促使水平裂缝开启。对于埋深较小的沙一段泥岩,上覆岩层压力小,层理缝开启较为普遍。但当埋深较大时,提供超压的孔隙流体依存于骨架矿物颗粒的支撑作用。东营凹陷页岩层系埋深普遍大于3 000m,上覆岩层压力大。假设上覆岩层岩石密度为2.6kg/m3,埋深为3 000m,上覆岩层压力为78MPa,斯伦贝谢公司对NY1井该深度段实测岩层压力为75MPa,东营凹陷3 000m剩余地层压力最大约为32MPa[38-39],由此得到地层压力系数约为2.4,这明显与东营凹陷古近系实际地层压力分布特征不符[40-41]。因此,当埋深大于3 000m时,上覆岩层压力大,单纯靠流体超压无法克服上覆岩层压力将裂缝撑开。层理缝的本质应是近水平超压缝,裂缝的开启主要与超压及超压引起的渗流力有关。不可否认的是,特殊的层理构造提供了裂缝进一步延伸和开启的基础,但当埋深较大时,层理缝大量发育还需要其他重要条件。
-
对于重结晶形成的亮晶灰岩,层理缝往往是晶体未长满的部分,形成了相对通畅的流体环境,便于后期酸性流体对方解石重结晶部分的溶蚀改造,也可能是有机质纹层伴随生烃作用发生的体积亏空,造成有机质纹层不连续。除了方解石重结晶作用形成的灰岩外(图5a—5c),东营凹陷广泛发育的富有机质纹层状泥质微晶和泥晶灰岩中也普遍发育纹层的溶蚀现象(图5d,5g)。气候控制下沉积环境的周期性变化形成了硅质层与钙质层叠置,近水平层理裂缝较发育,背散射电子图像裂缝内显示C元素和Ca元素(图5e,5f),说明裂缝与有机质生烃密切相关,裂缝内方解石(图5g)有明显的溶蚀残余现象,溶蚀孔呈串珠状或短线状分布(图3d,图5i)。通过镜下观察及垂直于水平纹层部分元素扫描分析,可看到裂缝的开启部位并不都在纹层界面,而裂缝内烃类残余现象明显(图5e,5h),部分未完全溶蚀的碳酸盐矿物颗粒周围被烃类包裹(图5i),这说明层间的局部脱空现象并非样品制备过程导致,流体撑开裂缝离不开这些未被完全溶蚀的矿物颗粒的架构支撑作用。因此,层理缝内普遍可见溶蚀残余的方解石等碳酸盐矿物颗粒及未溶蚀的石英颗粒等(图3,图5),这些未溶蚀部分分担了部分上覆岩层压力,配合生烃增压,才使层理缝的开启成为可能,大大增强了页岩储集空间的有效性。
-
总体上,这些顺纹层方向、层理间或纹层内部的微裂缝延伸距离短、开度较小,一般由多孔隙沟通,且平行于纹层面发育。这进一步说明东营凹陷古近系沙四段上亚段—沙三段下亚段页岩储层中发育的层理缝并不是严格意义上的裂缝,从空间角度,这种“缝”有多种表现形式,多为碳酸盐纹层邻近层理界面部分晶间孔(缝)或解理缝与溶蚀孔的连通所形成,富有机质黏土层的脱水收缩、有机质生烃体积减小等使层理界面进一步表现出“缝”的特征。结合成岩演化特征,层理缝发育条件为:埋深大于3 000m,镜质组反射率大于0.6%,大规模排烃之前,方解石重结晶普遍发生,溶蚀作用增强期(对应埋深约为3 200~3 600m)。此外,一定的地层倾角也有利于层理缝的规模性开启。
-
图5 层理缝在纹层状页岩中的主要表现形式及特征
-
Fig.5 Main forms and characteristics of inter-laminar cracks in laminated shale
-
5 结论
-
东营凹陷古近系沙四段上亚段—沙三段下亚段是半深湖-深湖环境发育的一套富有机质中等成熟度页岩层系。页岩储层矿物岩石类型复杂,纹层特征显著,碳酸盐矿物含量普遍较高,储集空间类型多样。总体上,富有机质纹层状的页岩孔隙度最大,孔隙类型多样。
-
压实作用下黏土矿物脱水收缩与转化、方解石重结晶、方解石等碳酸盐矿物的溶蚀和有机质生烃是东营凹陷页岩最普遍的成岩事件,这些紧密关联的成岩事件对孔隙发育演化有重要控制作用,并形成储层的最终面貌。重结晶作用能否对增孔起积极作用还要看其所处的生烃演化阶段和成岩流体环境。溶蚀作用对于页岩储集空间形成和改造最大的贡献在于,酸性流体沿方解石重结晶晶间孔和微裂缝流动,或者与异常高压缝沟通,形成有效的储集空间网络系统。
-
东营凹陷沙四段上亚段—沙三段下亚段页岩的层理缝并不是严格意义上的裂缝,从孔隙成因及空间角度,这种“缝”在页岩中有多种表现形式,多为碳酸盐纹层内部尤其是邻近层理界面部分晶间孔(缝)与溶蚀孔的连通所形成的空间;超压可能会使页岩纹层层理出现层间的局部脱空现象,增强储集空间有效性,但不能脱离矿物颗粒架构支撑作用;层理缝的发育演化涵盖了页岩储层的多种关键成岩事件,发育条件为埋深大于3 000m,镜质组反射率大于0.6%,大规模排烃之前,方解石强重结晶作用开始,溶蚀作用增强期(对应埋深约为3 200~3 600m)。页岩层理缝作为一种重要的储集空间类型,探讨其成因和演化,对从“找纹层和层理缝”到 “找生烃超压区和碳酸盐岩溶蚀区”勘探方向的转变、优选真正有利的储集层段和有利目标区有重要的石油地质意义。
-
参考文献
-
[1] GUO X W,LIU K Y,HE S,et al.Petroleum generation and charge history of the northern Dongying Depression,Bohai Bay Basin,China:Insight from integrated fluid inclusion analysis and basin modelling[J].Marine & Petroleum Geology,2012,32(1):21-35.
-
[2] 宋国奇,王延章,石小虎,等.东营沙四段古盐度对碳酸盐岩沉积的控制作用[J].西南石油大学学报:自然科学版,2013,35(2):8-14.SONG Guoqi,WANG Yanzhang,SHI Xiaohu,et al.Palaeosalinity and its controlling on the development of beach and bar in lake fa⁃ cies[J].Journal of Southwest Petroleum University:Science & Technology Edition,2013,35(2):8-14.
-
[3] 刘庆.渤海湾盆地东营凹陷烃源岩碳氧同位素组成及地质意义[J].石油实验地质,2017,39(2):247-252.LIU Qing.Composition agennd geologic significance of carbon and oxygen isotopes in hydrocarbon source rocks,Dongying Sag,Bo⁃ hai Bay Basin[J].Petroleum Geology & Experiment,2017,39(2):247-252.
-
[4] 张善文,袁静,隋风贵,等.东营凹陷北部沙河街组四段深部储层多重成岩环境及演化模式[J].地质科学,2008,43(3):576-587,602.ZHANG Shanwen,YUAN Jing,SUI Fenggui,et al.Multiple diage⁃ netic environments and evolvement model in deep formation of the4th Member,Shahejie Formation in the northern Dongying Sag [J].Chinese Journal of Geology,2008,43(3):576-587,602.
-
[5] 陈世悦,张顺,王永诗,等.渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J].石油勘探与开发,2016,43(2):1-11.CHEN Shiyue,ZHANG Shun,WANG Yongshi,et al.Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(2):1-11.
-
[6] 隋风贵,刘庆,张林晔.济阳断陷盆地烃源岩成岩演化及其排烃意义[J].石油学报,2007,28(6):12-16.SUI Fenggui,LIU Qing,ZHANG Linye.Diagenetic evolution of source rocks and its significance to hydrocarbon expulsion in Sha⁃ hejie Formation of Jiyang Depression[J].Acta Petrolei Sinica,2007,28(6):12-16.
-
[7] 姜在兴,张文昭,梁超,等.页岩油储层基本特征及评价要素 [J].石油学报,2014,35(1):184-196.JIANG Zaixing,ZHANG Wenzhao,LIANG Chao,et al.Character⁃ istics and evaluation elements of shale oil reservoir[J].Acta Petro⁃ lei Sinica,2014,35(1):184-196.
-
[8] 孙龙德,方朝亮,李峰,等.油气勘探开发中的沉积学创新与挑战[J].石油勘探与开发,2015,42(2):129-136.SUN Longde,FANG Chaoliang,LI Feng,et al.Innovations and challenges of sedimentology in oil and gas exploration and devel⁃ opment[J].Petroleum Exploration and Development,2015,42(2):129-136.
-
[9] 柳波,吕延防,孟元林,等.湖相纹层状细粒岩特征、成因模式及其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J].石油勘探与开发,2015,42(5):598-607.LIU Bo,LÜ Yanfang,MENG Yuanlin,et al.Petrologic characteris⁃ tics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration:A case study of Permian Lucaogou Formation in Malang sag,Santanghu Basin,NW China[J].Petroleum Exploration and Development,2015,42(5):598-607.
-
[10] 邹才能,杨智,崔景伟,等.页岩油形成机制、地质特征及发展对策[J].石油勘探与开发,2013,40(1):14-26.ZOU Caineng,YANG Zhi,CUI Jingwei,et al.Formation mecha⁃ nism,geological characteristics and development strategy of non⁃ marine shale oil in China[J].Petroleum Exploration and Develop⁃ ment,2013,40(1):14-26.
-
[11] 张金川,林腊梅,李玉喜,等.页岩油分类与评价[J].地学前缘,2012,19(5):322-331.ZHANG Jinchuan,LIN Lamei,LI Yuxi,et al.Classification and evaluation of shale oil[J].Earth Science Frontiers,2012,19(5):322-331.
-
[12] 朱德燕,王学军,郝雪峰,等.东营凹陷泥页岩层序地层划分 [J].油气地质与采收率,2016,23(2):52-56.ZHU Deyan,WANG Xuejun,Hao Xuefeng,et al.Study on se⁃ quence stratigraphic division of oil shale in Dongying sag[J].Pe⁃ troleum Geology and Recovery Efficiency,2016,23(2):52-56.
-
[13] 王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.
-
[14] 杨万芹,王学军,蒋有录,等.湖泊古气候的量化恢复及其对细粒沉积的影响——以东营凹陷沙四段上亚段—沙三段下亚段为例[J].油气地质与采收率,2018,25(2):29-36.YANG Wanqin,WANG Xuejun,JIANG Youlu,et al.Quantitative reconstruction of paleoclimate and its effects on fine-grained la⁃ custrine sediments:A case study of the upper Es 4 and lower Es 3 in Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2018,25(2):29-36.
-
[15] 张顺.东营凹陷页岩储层成岩作用及增孔和减孔机制[J].中国矿业大学学报,2018,47(3):562-578.ZHANG Shun.Diagenesis and mechanism of shale reservoir pore incerase and reduction in Dongying sag[J].Journal of China Uni⁃ versity of Mining & Technology,2018,47(3):562-578.
-
[16] 董春梅,马存飞,栾国强,等.泥页岩热模拟实验及成岩演化模式[J].沉积学报,2015,33(5):1 053-1 061.DONG Chunmei,MA Cunfei,LUAN Guoqiang,et al.Pyrolysis simulation experiment and diagenesis evolution pattern of shale [J].Acta Sedimentologica Sinica,2015,33(5):1 053-1 061.
-
[17] 王秀平,牟传龙,王启宇,等.川南及邻区龙马溪组黑色岩系成岩作用[J].石油学报,2015,36(9):1 035-1 047.WANG Xiuping,MOU Chuanlong,WANG Qiyu,et al.Diagensis of black shale in Longmaxi Formation,southern Sichuan Basin and its periphery[J].Acta Petrolei Sinica,2015,36(9):1 035-1 047.
-
[18] 张顺,刘惠民,宋国奇,等.东营凹陷页岩油储集空间成因及控制因素[J].石油学报,2016,37(12):1 495-1 507,1 527.ZHANG Shun,LIU Huimin,SONG Guoqi,et al.Genesis and con⁃ trol factors of shale oil reserving space in Dongying sag[J].Acta Petrolei Sinica,2016,37(12):1 495-1 507,1 527.
-
[19] SUCHA V,KRAUS I,GERTHOFFEROVA H,et al.Smectite to il⁃ lite conversion in bentonites and shales of the east Slovak Basin [J].Clay Minerals,1993,28(2):243-253.
-
[20] KARL Ramseyer J R B.Mixed-layer illite/smectite minerals in Tertiary sandstones and shales,San Joaquin Basin,California[J].Clays & Clay Minerals,1986,34(2):115-124.
-
[21] APLIN A C,MATENAAR I F,MCCARTY D K,et al.Influence of mechanical compaction and clay mineral diagenesis on the micro⁃ fabric and pore-scale properties of deep-water Gulf of Mexico mudstones[J].Clays & Clay Minerals,2006,54(4):500-514.
-
[22] PIANE C D,ALMQVIST B S G,MACRAE C M,et al.Texture and diagenesis of Ordovician shale from the Canning Basin,Western Australia:Implications for elastic anisotropy and geomechanical properties[J].Marine & Petroleum Geology,2015,59:56-71.
-
[23] PELTONEN C,MARCUSSEN Øyvind,BJØRLYKKE K,et al.Clay mineral diagenesis and quartz cementation in mudstones:The effects of smectite to illite reaction on rock properties[J].Ma⁃ rine & Petroleum Geology,2009,(26):887-898.
-
[24] TAYLOR K G,MACQUAKER J H S.Diagenetic alterations in a silt-and clayrich mudstone succession:an example from the Up⁃ per Cretaceous Mancos Shale of Utah,USA[J].Clay Minerals,2014,49(2):213-227.
-
[25] MILLIKEN K L,ESCH W L,REED R M,et al.Grain assemblages and strong diagenetic overprinting in siliceous mudrocks,Barnett Shale(Mississippian),Fort Worth Basin,Texas[J].AAPG Bulle⁃ tin,2012,96(8):1 553-1 578.
-
[26] 刘庆,张林晔,沈忠民,等.东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移[J].地质论评,2004,50(6):593-597.LIU Qing,ZHANG Linye,SHEN Zhongmin,et al.Microfracture occurrence and its significance to the hydrocarbons expulsion in source rocks with high organic matter abundance,Dongying De⁃ pression[J].Geological Review,2004,50(6):593-597.
-
[27] 张顺,陈世悦,蒲秀刚,等.断陷湖盆细粒沉积岩岩相类型及储层特征——以东营凹陷沙河街组和沧东凹陷孔店组为例[J].中国矿业大学学报,2016,45(3):490-503.ZHANG Shun,CHEN Shiyue,PU Xiugang,et al.Lithofacies types and reservoir characteristics of fine-grained sedimentary rocks in Paleogene,southern Bohai fault-depressed lacustrine basin[J].Journal of China University of Mining & Technology,2016,45(3):490-503.
-
[28] 姜在兴,梁超,吴靖,等.含油气细粒沉积岩研究的几个问题 [J].石油学报,2014,34(6):1 031-1 039.JIANG Zaixing,LIANG Chao,WU Jing,et al.Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J].Acta Petrolei Sinica,2013,34(6):1 031-1 039.
-
[29] 邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发,2008,35(5):526-540.ZOU Caineng,TAO Shizhen,ZHOU Hui,et al.Genesis,classifica⁃ tion and evaluation method of diagenetic facies[J].Petroleum Ex⁃ ploration and Development,2008,35(5):526-540.
-
[30] 王冠民,任拥军,钟建华,等.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J].地质学报,2005,79(6):834-838.WANG Guanmin,REN Yongjun,ZHONG Jianhua,et al.Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J].Acta Geologica Sinica,2005,79(6):834-838.
-
[31] 毛玲玲,伊海生,季长军,等.柴达木盆地新生代湖相碳酸盐岩岩石学及碳氧同位素特征[J].地质科技情况,2014,33(1):41-48.MAO Lingling,YI Haisheng,JI Changjun,et al.Petrography and carbon-oxygen isotope characteristics of the Cenozoic lacustrine carbonate rocks in Qaidam Basin[J].Geological Science and Technology Information,2014,33(1):41-48.
-
[32] 袁剑英,黄成刚,曹正林,等.咸化湖盆白云岩碳氧同位素特征及古环境意义:以柴西地区始新统下干柴沟组为例[J].地球化学,2015,44(3):254-266.YUAN Jianying,HUANG Chenggang,CAO Zhenglin,et al.Car⁃ bon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance:A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin[J].Geo⁃ chimica,2015,44(3):254-266.
-
[33] 袁玉松,周雁,邱登峰,等.埋藏过程中泥页岩非构造裂缝的形成演化模式[J].石油与天然气地质,2015,36(5):822-827.YUAN Yusong,ZHOU Yan,QIU Dengfeng,et al.Evolutionary patterns of non-tectonic fractures in shale during burial[J].Oil & Gas Geology,2015,36(5):822-827.
-
[34] 郭旭升,胡东风,魏祥峰,等.四川盆地焦石坝地区页岩裂缝发育主控因素及其对产能的影响[J].石油与天然气地质,2016,37(6):799-808.GUO Xusheng,HU Dongfeng,WEI Xiangfeng,et al.Main control⁃ ling factors on shale fractures and their influences on production capacity in Jianshiba area,the Sichuan Basin[J].Oil & Gas Geol⁃ ogy,2016,37(6):799-808.
-
[35] MAGARA K.Compaction and fluid migration[M].Netherlands:Elsevier Scientific Publishing Company,1978:989-92.
-
[36] SHI Liang,JIN Zhenkui,YAN Wei,et al.Influences of overpres⁃ sure on reservoir compaction and cementation:A case from north⁃ western subsag,Bozhong sag,Bohai Bay Basin,East China[J].Pe⁃ troleum Exploration and Development,2015,42(3):339-347.
-
[37] 张学军,徐兴友,王永诗,等.烃源岩非均质性与异常高压形成机制[J].中国科学:地球科学,2014,44(3):439-444.ZHANG Xuejun,XU Xingyou,WANG Yongshi,et al.Relation⁃ ship between heterogeneity of source rocks and genetic mecha⁃ nism of abnormally high pressure[J].Science China:Earth Scienc⁃ es,2014,44(3):439-444.
-
[38] 何生,宋国奇,王永诗,等.东营凹陷现今大规模超压系统整体分布特征及主控因素[J].地球科学——中国地质大学学报,2012,37(5):1 029-1 042.HE Sheng,SONG Guoqi,WANG Yongshi,et al.Distribution and major control factors of the present-day large-scale overpres⁃ sured system in Dongying depression[J].Earth Science-Journal of China University of Geosciences,2012,37(5):1 029-1 042.
-
[39] 郭小文,何生,宋国奇,等.东营凹陷生油增压成因证据[J].地球科学——中国地质大学学报,2011,36(6):1 085-1 094.GUO Xiaowen,HE Sheng,SONG Guoqi,et al.Evidences of over⁃ pressure caused by oil generation in Dongying Depression[J].Earth Science-Journal of China University of Geosciences,2011,36(6):1 085-1 094.
-
[40] 王冰洁.东营凹陷超压特征及演化与油气驱动机制[D].武汉:中国地质大学(武汉),2012.WANG Bingjie.Overpressure distribution and evolution,dynami⁃ cal mechanism of oil and gas,Dongying Depression[D].Wuhan:China University of Geosciences(Wuhan),2012.
-
[41] 鲍晓欢,郝芳,方勇.东营凹陷牛庄洼陷地层压力演化及其成藏意义[J].地球科学——中国地质大学学报,2007,32(2):241-246.BAO Xiaohuan,HAO Fang,FANG Yong.Evolution of geopres⁃ sure field in Niuzhuang sag in Dongying depression and its effect on petroleum accumulation[J].Earth Science-Journal of China University of Geosciences,2007,32(2):241-246.
-
摘要
以东营凹陷古近系页岩为研究对象,通过岩心和岩石薄片观察、扫描电镜分析、电子探针分析及碳氧同位素测试等方法,研究页岩成岩事件及其对页岩储集空间发育特征的影响。结果表明:①东营凹陷页岩纹层特征显著, 矿物岩石类型复杂,碳酸盐矿物尤其是方解石含量普遍较高,有机质含量高,镜质组反射率中等;纹层状泥质灰岩孔隙度相对较高;游离相油主要分布在微孔隙与裂缝中。②页岩主体处于中成岩阶段,3000~3600 m是孔隙发育演化的关键深度区间,黏土矿物收缩转化、碳酸盐矿物重结晶以及有机质持续生烃、酸性溶蚀等是页岩成岩史中的关键成岩事件,也是页岩成储的重要因素。③重结晶可形成解理缝及晶间孔,伴随生排烃过程的溶蚀作用产生碳酸盐矿物内部溶蚀孔,形成有效的储集空间组合,从而增加了储层孔隙度。④层理缝并不是严格意义上的裂缝,其发育与超压及超压引起的渗流力有关,当埋深大于 3000 m 时,单纯靠流体超压无法克服上覆岩层压力将裂缝撑开,酸性溶蚀、有机质生烃超压及黏土矿物脱水收缩等成岩事件的继承与匹配,形成更易于流体流动的储集空间 (组合),从而成为有效的渗流通道和储油空间。
Abstract
The shale of Paleogene Shahejie Formation in Dongying Sag was studied,according to the data of core,thin sec- tion,scanning electron microscopy(SEM),electron probe micro element scanning and carbon-oxygen isopiestic,etc. The effect of diagenetic events on shale pore space was analyzed. The results show that:①The shale in Dongying Sag develops obvious laminated layers,and the mineral types in shale is complicated. The content of carbonate minerals,especially cal- cite,is generally high. Organic matter is abundant with medium vitrinite reflectance. The porosity of laminar argillaceous limestone is relatively high,and free oil mainly distributes in micro-pores and fractures. ②The major shale is at the middle stage of diagenesis,and 3000-3600 m is the key interval of pore development and evolution. The key diagenetic events during shale diagenesis include shrinkage and transformation of clay minerals,recrystallization of carbonate minerals,or- ganic matter persistent hydrocarbon generation and acid dissolution. ③Recrystallization could form cleavage slits and inter- crystalline pores,and the dissolution during the hydrocarbon generation and discharge process could generate internal dis- solution pores in carbonate minerals,these pores form the effective pore space combination and increase the reservoir poros- ity. ④The inter-laminar cracks are not rigorous fractures,which is related to the seepage force induced by overpressure and high overpressure. Below 3000 m,the fluid overpressure alone could not overcome the overburden pressure to open the crack. The inheritance and matching of diagenetic events such as acid dissolution,induced overpressure of hydrocarbon generation from organic matter and clay mineral syneresis,forming the pore spaces(combination)that is easier for fluid flow,thus becoming an effective seepage channel and oil pore space.
Keywords
shale oil ; pore ; diagenetic event ; inter-laminar crack ; Paleogene ; Dongying Sag