-
页岩油是一种典型的非常规油气资源,随着勘探技术及开发能力的提高,页岩油被认为是最有可能成为替代石油天然气的能源,页岩油的勘探开发引起了中外石油地质工作者广泛关注[1-7]。东营凹陷是中国东部陆相盆地的富油凹陷之一[8],在沙四段上亚段和沙三段下亚段泥页岩中发现了多口工业油气流井[9-12]。前人对东营凹陷页岩油的储层矿物组成与储集空间特征[13-18]、可动性及可动率[11-12,19]、赋存特征与富集规律[20-22]、利用地化参数预测资源有利区[23-24] 等方面进行了深入研究,但对可溶有机质的特征及可溶有机质与页岩油“甜点” 间的关系等方面研究较少。可溶有机质作为页岩油的重要载体,其丰富程度及可动性对页岩油“甜点”预测具有重要意义。泥页岩中可溶有机质采用有机溶剂抽提获得,主要以游离态或较弱的物理吸附态赋存于泥页岩孔隙中[25],其组成与原油接近,能较好地解译页岩油的基本特征[26]。页岩油的可动性是页岩油勘探开发过程中需考虑的一个关键问题[27],有机溶剂抽提得到的可溶有机质是页岩油可动的最重要组分[28],其族组分及轻质烃含量均会影响页岩油的黏度及流动性[11,29-36],也是泥页岩层段能否作为页岩油“甜点”的重要判识参数。因此,围绕泥页岩中可溶有机质开展研究,既可揭示页岩油的黏度及流动性等基本特征,也可为页岩油“甜点”预测提供技术支撑,从而提高页岩油的勘探开发效益。
-
1 实验样品与方法
-
1.1 实验样品
-
样品取自东营凹陷沙四段下亚段(Es 4 下)、沙四段上亚段(Es 4 上)、沙三段下亚段(Es 3 下)和沙三段中亚段(Es 3 中)埋深为2 954.7~4 500.8m的泥质烃源岩。岩性以暗色泥页岩为主,有机质含量总体较高,总有机碳含量(TOC)为0.43%~8.30%,均值为3.16%,S1为0.06~12.23mg/g(均值为2.95mg/g),S 2 为0.23~53.26mg/g(均值为13.75mg/g),最高热解峰温(T max)显示已进入生烃门限,其值为422~448℃ (均值为438℃)(表1)。研究区沙四段和沙三段均发育湖相泥质烃源岩[37-40],不同沉积时期形成的泥页岩沉积环境存在较大差异,其中沙四段下亚段普遍发育含膏泥岩、含盐泥岩、膏质泥岩和盐质泥岩,为盐湖相沉积[40];沙四段上亚段又可细分为纯下次亚段(Es 4 上纯下)和纯上次亚段(Es 4 上纯上),纯下次亚段发育块状泥岩和石膏质泥岩,为间歇性咸水湖泊沉积;纯上次亚段主要发育深灰色-灰黑色油页岩,属于常年闭流咸水湖泊沉积;沙三段下亚段沉积了一套黑色页岩和油页岩,为半咸湖深湖相沉积;沙三段中亚段主要发育块状泥岩和粉砂岩,是湖盆水体变浅的结果[38,41-43]。
-
1.2 实验方法与条件
-
1.2.1 有机溶剂抽提和族组分分离方法
-
泥页岩样品充分研磨至80目以上,低温(不高于50℃)烘干后一直保持干燥。称取一定数量的泥页岩样品,并记录各样品的重量,在索式抽提器中以正戊烷为抽提剂抽提72h,控制水浴温度约为39℃,得到正戊烷抽提液和残渣。以二氯甲烷为抽提剂,在索式抽提器中对残渣抽提72h,得到二氯甲烷抽提液。然后浓缩二氯甲烷抽提液,沉淀沥青质并用万分之一精度的天平称重。将正戊烷抽提液和沉淀过沥青质的二氯甲烷抽提液过硅胶氧化铝层析柱。所用硅胶用氯仿抽提至无荧光,在电热烘箱中150℃温度活化6h,中性氧化铝在马弗炉中450℃温度活化6h。用正戊烷反复冲洗氧化铝硅胶柱得到饱和烃,用二氯甲烷反复冲洗得到芳烃,用甲醇冲洗得到非烃。将饱和烃、芳烃和非烃转移至已经恒重过的25ml称量瓶中自然晾干,用万分之一精度的天平进行称重。
-
1.2.2 气相色谱/质谱联用仪条件
-
采用美国安捷伦科技有限公司生产的气相色谱/质谱联用仪,型号为6890N型,色谱条件:进样口温度为280℃;载气为高纯氦气,流量为1.2ml/min,线速度为40cm/s;HP-5弹性石英毛细管柱为30m× 0.25mm×0.25mm。质谱仪为5973N四级杆质谱,四级杆温度为150℃,离子源为EI源,离子源温度为230℃,离子源电离能为70eV,接口温度为280℃,谱库为NIST02L。对于低沸点溶剂低温保存的饱和烃样品,采用的分析条件为:起始温度为40℃,恒温3min,先以3℃/min的升温速率升至100℃,再以4℃/min的升温速率升至290℃,恒温30min。
-
2 实验结果与分析
-
2.1 可溶有机质含量
-
由图1可知,不同层段可溶有机质含量上存在差异:沙四段下亚段样品的可溶有机质含量最低,为0.54~2.34mg/g,均值为1.20mg/g;沙四段上亚段样品的可溶有机质含量最多,为4.43~22.64mg/g,均值为11.38mg/g;沙三段下亚段样品的可溶有机质含量明显高于沙三段中亚段,为3.92~13.69mg/g,均值为6.54mg/g;沙三段中亚段样品的可溶有机质含量较低,为0.25~2.80mg/g,均值为1.41mg/g。沙四段上亚段和沙三段中、下亚段样品的可溶有机质含量总体表现出随埋深增加而增加的趋势,而沙四段下亚段样品中可溶有机质含量总体上随埋深变化不明显;沙四段上亚段和沙三段下亚段样品中可溶有机质含量明显高于沙四段下亚段和沙三段中亚段,说明沙四段上亚段和沙三段下亚段的页岩油勘探开发潜力更大,且以沙四段上亚段最好,是最有利的页岩油“甜点”发育区。
-
图1 东营凹陷古近系泥页岩样品可溶有机质含量
-
Fig.1 Total amount of soluble organic matter of Paleogene shale samples from different layers in Dongying Sag
-
2.2 族组分与流动性
-
将得到的可溶有机质分离为饱和烃、芳烃、非烃和沥青质4个族组分(图2),各层段不同族组分在含量上存在差异。饱和烃含量呈现出沙四段上亚段最高,含量为2.97~13.46mg/g,均值为7.53mg/g; 沙三段下亚段次之,含量为2.49~8.49mg/g,均值为4.19mg/g;沙三段中亚段与沙四段下亚段相当且较低,沙三段中亚段含量为0.04~1.69mg/g,均值为0.81mg/g;沙四段下亚段含量为0.25~1.58mg/g,均值为0.81mg/g。芳烃含量呈现出沙四段上亚段最高,含量为0.42~3.80mg/g,均值为1.78mg/g;沙三段下亚段次之,含量为0.35~2.09mg/g,均值为0.89mg/g;沙三段中亚段较低,含量为0.08~0.41mg/g,均值为0.22mg/g;沙四段下亚段最低,含量为0.05~0.15mg/g,均值为0.10mg/g。非烃含量呈现出与饱和烃含量一致的趋势,沙四段下亚段含量为0.13~0.50mg/g,均值为0.24mg/g,沙四段上亚段含量为0.70~2.16mg/g,均值为1.31mg/g,沙三段下亚段含量为0.57~2.11mg/g,均值为1.08mg/g,沙三段中亚段含量为0.09~0.60mg/g,均值为0.28mg/g。沥青质含量呈现出沙四段上亚段最高,含量为0.13~3.92mg/g,均值为0.76mg/g;沙三段下亚段次之,含量为0.07~0.99mg/g,均值为0.37mg/g;沙三段中亚段较低,含量为0.04~0.17mg/g,均值为0.10mg/g;沙四段下亚段最低,含量为0.02~0.11mg/g,均值为0.05mg/g。各层段不同族组分含量基本呈现出与可溶有机质含量一致的趋势,尤其是最为关注的饱和烃,沙四段上亚段和沙三段下亚段样品中饱和烃含量明显高于沙三段中亚段和沙四段下亚段,是页岩油资源更为有利的目标层段,以沙四段上亚段最好,且具有随埋深增加饱和烃含量逐渐增加的趋势,越有利于页岩油的“甜点”发育。
-
图2 东营凹陷古近系泥页岩样品各族组分含量
-
Fig.2 Group composition of Paleogene shale samples from different layers in Dongying Sag
-
泥页岩经抽提得到的可溶有机质的组分与原油相近,族组分的差异会影响其自身黏度大小,从而影响流动性。不同层段可溶有机质中的族组分占比存在差异(图3),沙四段上、下亚段及沙三段下亚段样品中以饱和烃为主,在可溶有机质含量的占比为46.28%~81.45%(均值为65.21%),芳烃(均值为13.68%)和非烃(均值为15.62%)次之,沥青质占比最低(均值为5.49%),而沙三段中亚段样品饱和烃含量明显低于其他层段(均值为46.74%),最低的1号样品仅占16.92%,且随埋深增加饱和烃含量逐渐增高,非烃含量逐渐降低的趋势。研究认为,原油黏度与其饱和烃含量成反比,与其胶质和沥青质含量成正比[29-36],芳烃有利于沥青质的分散,使胶质与沥青质形成的缔合体能有效地“分散”在饱和烃中,从而有利于降低黏度[31]。此外,带有机官能团且极性强的可溶有机质能够以化学结合的方式牢固的吸附于矿物表面[44-50]。显然,泥页岩中非烃和沥青质是更易化学吸附于矿物表面,使得矿物表面亲油,影响其流动性。因此,泥页岩中饱和烃与芳烃含量的增加有利于页岩油的流动,而非烃和沥青质含量增加会抑制页岩油的流动。由此,可以新定义一个参数——流动性指数(MI),其为饱和烃+芳烃与非烃+沥青质的质量比,用以衡量可溶有机质的流动性,MI 值越大代表可溶有机质流动性越强,反之则越弱。研究区4个层段可溶有机质流动性存在差异(图4),MI值总体上呈现出沙四段上亚段最高,为2.23~10.20,均值为5.16;沙三段下亚段次之,为2.60~8.32,均值为3.95;沙四段下亚段较低,为1.73~4.81,均值为3.29;沙三段中亚段最低,为0.93~6.41,均值为2.58。因此,沙四段上亚段和沙三段下亚段的页岩油更易流动,尤其是沙四段上亚段。此外,沙三段中、下亚段和沙四段上亚段样品的MI值总体表现出随埋深增加而增加的趋势,表明埋藏越深,越有利于页岩油流动。
-
图3 东营凹陷古近系泥页岩样品各族组分含量占比
-
Fig.3 Percentage composition of group component of Paleogene shale samples from different layers in Dongying Sag
-
2.3 饱和烃与流动性
-
可溶有机质中的液态烃是页岩油开发的重点,可分为轻质烃(C5—C14)和重质烃(C15+)[12],而轻质烃由于分子量较低,黏度较小,更易流动、易见产能,是页岩油可有效开采的重要部分[11]。此外,原油中的轻质烃组分可以作为石蜡、沥青质和胶质的溶剂,其含量直接影响蜡、沥青质及胶质的溶解状态,改变蜡晶的形态和分布,对含蜡原油低温流动性的贡献较大[36]。选取各层段代表性样品进行饱和烃色谱(图5)分析,根据饱和烃色谱图可以得到轻质烃和重质烃含量,进而计算出轻质烃和重质烃在可溶有机质中的含量及轻质烃与重质烃比值。本次采用的岩心样品未进行低温封存,尽管在索氏抽提过程中选用正戊烷试剂保护轻质烃,但从饱和烃色谱图中可以看出轻质烃的损失仍较为严重,只能计算出C10—C14轻质烃组分,且损失较多,因此,计算得到的应是样品中残留的轻质烃。从不同层段残留轻质烃含量分布(图6a)来看,总体上呈现出沙三段中亚段最高(均值为12.74%),沙三段下亚段次之(均值为9.20%),沙四段上亚段较低(均值为7.26%),沙四段下亚段最低的趋势(均值为6.82%)。同时,随着埋深增加,残留轻质烃含量呈现出逐渐降低的趋势。重质烃含量总体特征与残留轻质烃不同(图6b),呈现出沙四段下亚段(均值为59.33%)、沙三段下亚段(均值为59.19%)和沙四段上亚段(均值为58.66%)较高且相当,沙三段中亚段最低(均值为39.24%)的趋势。残留轻质烃与重质烃比值总体上的特征与残留轻质烃含量类似(图6c),表现为沙三段中亚段、沙三段下亚段、沙四段上亚段、沙四段下亚段依次降低的趋势,沙四段样品个别有高值。此次得到的是残留的轻质烃含量,无法还原原始的轻质烃含量,但之前对东营凹陷轻质烃含量恢复的研究结果表明[19,25],随埋深和成熟度增加,轻质烃的恢复系数增大,原始含量也呈增加趋势。比较原始轻质烃和残留轻质烃含量(图6d),可以直观的看出轻质烃散失量,对比沙四段上亚段和沙三段下亚段样品发现,沙四段上亚段轻质烃散失量更大。综合对比残留轻质烃、重质烃和原始轻质烃含量特征,发现沙四段上亚段原始轻质烃含量高于沙三段下亚段,且轻质烃散失量更多,这表明从轻质烃角度出发,沙四段上亚段可溶有机质流动性更好,且随埋深增加,流动性越好,越有利于页岩油勘探开发。
-
图4 东营凹陷古近系泥页岩样品MI分布
-
Fig.4 MI parameter of Paleogene shale samples from different layers in Dongying Sag
-
图5 东营凹陷古近系泥页岩代表性样品饱和烃色谱
-
Fig.5 Saturated hydrocarbon chromatography of Paleogene representative sample from different layers in Dongying Sag
-
图6 东营凹陷古近系泥页岩样品轻质烃和重质烃含量及轻质烃/重质烃比值(原始轻质烃含量数据来源于文献[23])
-
Fig.6 Light and heavy hydrocarbon content and light/heavy hydrocarbon ratio of Paleogene shale samples from different layers in Dongying Sag(original light hydrocarbon content data were collected from reference[23])
-
2.4 页岩油“甜点”预测
-
通过对东营凹陷古近系不同层段泥页岩可溶有机质含量、族组成和轻质烃含量等特征的对比,从页岩油物质基础和流动性2方面出发,确定出页岩油“甜点”预测参数,包括反映页岩油丰度的参数 (可溶有机质含量及饱和烃含量)及表征页岩油流动性参数(MI、轻质烃含量和轻质烃散失量)。首先,在物质基础方面,沙四段上亚段和沙三段下亚段样品中可溶有机质含量及饱和烃含量明显高于沙三段中亚段和沙四段下亚段,以沙四段上亚段更高,同时具有随着埋深增加而逐渐增高的趋势,通过这一参数的对比,可以判定沙四段上亚段和沙三段下亚段是更有利的页岩油发育层段。对比 MI和轻质烃含量,发现相比于沙三段下亚段,沙四段上亚段可溶有机质流动性更好。通过以上参数的对比分析,探讨页岩油的物质基础和流动性特征,可以有效预测出页岩油“甜点”区。
-
3 结论
-
综合分析东营凹陷古近系泥页岩中可溶有机质特征,确立页岩油“甜点”预测的参数,包括反映页岩油丰度的参数(可溶有机质含量和饱和烃含量)和表征页岩油流动性的参数(MI、轻质烃含量和轻质烃散失量)。研究区沙四段上亚段和沙三段下亚段可溶有机质含量和饱和烃含量明显高于沙三段中亚段和沙四段下亚段,是页岩油勘探开发的有利层段,且以沙四段上亚段最好。同时,随着埋深增加,沙四段上亚段和沙三段下亚段可溶有机质含量和饱和烃含量越高,页岩油“甜点”区越发育。相较于沙三段中亚段和沙四段下亚段,沙四段上亚段和沙三段下亚段可溶有机质中 MI参数较沙四段下亚段和沙三段中亚段更高,同时沙四段上亚段具有更高的原始轻质烃含量和轻质烃散失量,流动性更好。同时,沙四段上亚段和沙三段下亚段MI和原始轻质烃含量总体呈现出随埋深增加而增加的趋势,表明埋藏越深,越有利于页岩油流动。综合分析认为,东营凹陷沙四段上亚段和沙三段下亚段是页岩油有利的发育层段,以沙四段上亚段更好。
-
参考文献
-
[1] 王建丰,雷天柱,蔡进功,等.不同类型有机黏土超压下残留烃特征[J].大庆石油地质与开发,2017,36(4):40-46.WANG Jianfeng,LEI Tianzhu,CAI Jingong,et al.Characteristics of the residual hydrocarbon for different types of the organic clays under the overpressure[J].Petroleum Geology & Oilfield Develop⁃ ment in Daqing,2017,36(4):40-46.
-
[2] 盛湘,陈祥,章新文,等.中国陆相页岩油开发前景与挑战[J].石油实验地质,2015,37(3):267-271.SHENG Xiang,CHEN Xiang,ZHANG Xinwen,et al.Prospects and challenges of continental shale oil development in China[J].Petroleum Geology & Experiment,2015,37(3):267-271.
-
[3] 陈祥,王敏,严永新,等.泌阳凹陷陆相页岩油气成藏条件[J].石油与天然气地质,2011,32(4):568-576.CHEN Xiang,WANG Min,YAN Yongxin,et al.Accumulation conditions for continental shale oil and gas in the Biyang Depres⁃ sion[J].Oil & Gas Geology,2011,32(4):568-576.
-
[4] 梁世君,黄志龙,柳波,等.马朗凹陷芦草沟组页岩油形成机理与富集条件[J].石油学报,2012,33(4):588-594.LIANG Shijun,HUANG Zhilong,LIU Bo,et al.Formation mecha⁃ nism and enrichment conditions of Lucaogou Formation shale oil from Malang sag,Santanghu Basin[J].Acta Petrolei Sinica,2012,33(4):588-594.
-
[5] 张善文,王永诗,张林晔,等.济阳坳陷渤南洼陷页岩油气形成条件研究[J].中国工程科学,2012,14(6):49-55,63.ZHANG Shanwen,WANG Yongshi,ZHANG Linye,et al.Forma⁃ tion conditions of shale oil and gas in Bonan sub-sag,Jiyang De⁃ pression[J].Engineering Sciences,2012,14(6):49-55,63.
-
[6] 张廷山,彭志,杨巍,等.美国页岩油研究对我国的启示[J].岩性油气藏,2015,27(3):1-10.ZHANG Tingshan,PENG Zhi,YANG Wei,et al.Enlightenments of American shale oil research towards China[J].Lithologic Res⁃ ervoirs,2015,27(3):1-10.
-
[7] 张金川,林腊梅,李玉喜,等.页岩油分类与评价[J].地学前缘,2012,19(5):322-331.ZHANG Jinchuan,LIN Lamei,LI Yuxi,et al.Classification and evaluation of shale oil[J].Earth Science Frontiers,2012,19(5):322-331.
-
[8] 王鑫,蒋有录,王永诗,等.济阳坳陷生烃洼陷沉降类型及其油气地质意义[J].特种油气藏,2017,24(2):24-29.WANG Xin,JIANG Youlu,WANG Yongshi,et al.Settlement types of hydrocarbon-generating sag in the Jiyang Depression and their geologic significance for hydrocarbon accumulations[J].Spe⁃ cial Oil & Gas Reservoirs,2017,24(2):24-29.
-
[9] 张林晔,李政,朱日房,等.济阳坳陷古近系存在页岩气资源的可能性[J].天然气工业,2008,28(12):26-29. ZHANG Linye,LI Zheng,ZHU Rifang,et al.Resource potential of shale gas in paleogene in Jiyang depression[J].Natural Gas Indus⁃ try,2008,28(12):26-29.
-
[10] 张林晔,李政,李钜源,等.东营凹陷古近系泥页岩中存在可供开采的油气资源[J].天然气地球科学,2012,23(1):1-13. ZHANG Linye,LI Zheng,LI Juyuan,et al.Feasibility analysis of existing recoverable oil and gas resource in the Palaeogene shale of Dongying depression[J].Natural Gas Geoscience,2012,23(1):1-13.
-
[11] 李钜源.东营利津洼陷沙四段页岩含油气量测定及可动油率分析与研究[J].石油实验地质,2014,36(3):359-363. LI Juyuan.Oil and gas contents and movable oil amounts of shales in4th member of Shahejie Formation,Lijin subSag,Dongying Sag [J].Petroleum Geology & Experiment,2014,36(3):359-363.
-
[12] 包友书,张林晔,张金功,等.渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J].石油与天然气地质,2016,37(3):408-414.BAO Youshu,ZHANG Linye,ZHANG Jingong,et al.Factors in⁃ fluencing mobility of Paleogene shale oil in Dongying Sag,Bohai Bay Basin[J].Oil & Gas Geology,2016,37(3):408-414.
-
[13] 李钜源.东营凹陷泥页岩矿物组成及脆度分析[J].沉积学报,2013,31(4):616-620.LI Juyuan.Analysis on mineral components and frangibility of shales in Dongying Depression[J].Acta Sedimentologica Sinica,2013,31(4):616-620.
-
[14] 李钜源.渤海湾盆地东营凹陷古近系泥页岩孔隙特征及孔隙度演化规律[J].石油实验地质,2015,37(5):566-574.LI Juyuan.Pore characteristics and their evolution in Paleogene mud shales,Dongying Sag,Bohai Bay Basin[J].Petroleum Geolo⁃gy & Experiment,2015,37(5):566-574.
-
[15] 胡钦红,张宇翔,孟祥豪,等.渤海湾盆地东营凹陷古近系沙河街组页岩油储集层微米—纳米级孔隙体系表征[J].石油勘探与开发,2017,44(5):681-690.HU Qinhong,ZHANG Yuxiang,MENG Xianghao,et al.Character⁃ ization of micro-nano pore networks in shale oil reservoirs of Pa⁃ leogene Shahejie Formation in Dongying Sag of Bohai Bay Basin,East China[J].Petroleum Exploration and Development,2017,44(5):681-690.
-
[16] 刘毅,陆正元,冯明石,等.渤海湾盆地东营凹陷沙河街组页岩油储层微观孔隙特征[J].地质学报,2017,91(3):629-644.LIU Yi,LU Zhengyuan,FENG Mingshi,et al.Micro-pore charac⁃ teristics of shale oil reservoirs of the Shahejie Formation in the Dongying Sag,Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(3):629-644.
-
[17] 田同辉,陆正元,戚明辉,等.东营凹陷沙河街组页岩油储层微观孔隙结构研究[J].西南石油大学学报:自然科学版,2017,39(6):10-18.TIAN Tonghui,LU Zhengyuan,QI Minghui,et al.Study on micro⁃ scopic pore structure of shale oil reservoir in Shahejie Formation in the Dongying Sag[J].Journal of Southwest Petroleum Universi⁃ ty:Science & Technology Edition,2017,39(6):10-18.
-
[18] 张顺,刘惠民,宋国奇,等.东营凹陷页岩油储集空间成因及控制因素[J].石油学报,2016,37(12):1 495-1 507,1 527.ZHANG Shun,LIU Huimin,SONG Guoqi,et al.Genesis and con⁃ trol factors of shale oil reserving space in Dongying sag[J].Acta Petrolei Sinica,2016,37(12):1 495-1 507,1 527.
-
[19] 张林晔,包友书,李钜源,等.湖相页岩油可动性——以渤海湾盆地济阳坳陷东营凹陷为例[J].石油勘探与开发,2014,41(6):641-649.ZHANG Linye,BAO Youshu,LI Juyuan,et al.Movability of lacus⁃ trine shale oil:A case study of Dongying Sag,Jiyang Depression,Bohai Bay Basin[J].Petroleum Exploration and Development,2014,41(6):641-649.
-
[20] 钱门辉,蒋启贵,黎茂稳,等.湖相页岩不同赋存状态的可溶有机质定量表征[J].石油实验地质,2017,39(2):278-286.QIAN Menhui,JIANG Qigui,LI Maowen,et al.Quantitative char⁃ acterization of extractable organic matter in lacustrine shale with different occurrences[J].Petroleum Geology & Experiment,2017,39(2):278-286.
-
[21] 李志明,刘鹏,钱门辉,等.湖相泥页岩不同赋存状态油定量对比——以渤海湾盆地东营凹陷页岩油探井取心段为例[J].中国矿业大学学报,2018,47(6):1 252-1 263.LI Zhiming,LIU Peng,QIAN Menhui,et al.Quantitative compari⁃ son of different occurrence oil for lacustrine shale:A case from cored interval of shale oil special drilling wells in Dongying de⁃ pression,Bohai Bay basin[J].Journal of China University of Min⁃ ing & Technology,2018,47(6):1 252-1 263.
-
[22] 朱德顺.渤海湾盆地东营凹陷和沾化凹陷页岩油富集规律[J].新疆石油地质,2016,37(3):270-274.ZHU Deshun.Accumulation pattern of shale oil in Dongying Sag and Zhanhua Sag,Bohai Bay Basin[J].Xinjiang Petroleum Geolo⁃ gy,2016,37(3):270-274.
-
[23] 余涛,卢双舫,李俊乾,等.东营凹陷页岩油游离资源有利区预测[J].断块油气田,2018,25(1):16-21.YU Tao,LU Shuangfang,LI Junqian,et al.Prediction for favorable area of shale oil free resources in Dongying Sag[J].Fault-Block Oil & Gas Field,2018,25(1):16-21.
-
[24] 宁方兴,王学军,郝雪峰,等.济阳坳陷页岩油甜点评价方法研究[J].科学技术与工程,2015,15(35):11-16.NING Fangxing,WANG Xuejun,HAO Xuefeng,et al.Evaluation method of shale oil sweetspots in Jiyang Depression[J].Science Technology and Engineering,2015,15(35):11-16.
-
[25] JARVIE D M.Shale resource systems for oil and gas:Part1-shalegas resource systems[R].AAPG Memoir,2012,97:89-119.
-
[26] 宋国奇,张林晔,卢双舫,等.页岩油资源评价技术方法及其应用[J].地学前缘,2013,20(4):221-228.SONG Guoqi,ZHANG Linye,LU Shuangfang,et al.Resource evaluation method for shale oil and its application[J].Earth Sci⁃ ence Frontiers,2013,20(4):221-228.
-
[27] 卢双舫,薛海涛,王民,等.页岩油评价中的若干关键问题及研究趋势[J].石油学报,2016,37(10):1 309-1 322.LU Shuangfang,XUE Haitao,WANG Min,et al.Several key is⁃ sues and research trends in evaluation of shale oil[J].Acta Petro⁃ lei Sinica,2016,37(10):1 309-1 322.
-
[28] ZHU Xiaojun,CAI Jingong,LIU Weixin,et al.Occurrence of sta⁃ ble and mobile organic matter in the clay-sized fraction of shale:Significance for petroleum geology and carbon cycle[J].Interna⁃ tional Journal of Coal Geology,2016,160:1-10.
-
[29] 程亮,邹长军,杨林,等.稠油化学组成对其黏度影响的灰熵分析[J].石油化工高等学校学报,2006,19(3):6-10.CHENG Liang,ZOU Changjun,YANG Lin,et al.Grey correlation entropy about the effect of chemical composition of viscous crude oil on viscosity property[J].Journal of Petrochemical Universities,2006,19(3):6-10.
-
[30] 汪双清,沈斌,林壬子.稠油黏度与化学组成的关系[J].石油学报:石油加工,2010,26(5):795-799.WANG Shuangqing,SHEN Bin,LIN Renzi.Correlation for the vis⁃ cosity of heavy oil and its chemical composition[J].Acta Petrolei Sinica:Petroleum Processing Section,2010,26(5):795-799.
-
[31] 苏铁军,郑延成.稠油族组成与黏度关联研究[J].长江大学学报:自然科学版,2007,4(1):60-62.SU Tiejun,ZHENG Yancheng.Correlation between heavy oil com⁃ position and its viscosity[J].Journal of Yangtze University:Natu⁃ ral Science Edition,2007,4(1):60-62.
-
[32] 陈栋,李季,黄燕山,等.胶质和沥青质对原油流动性影响的红外光谱研究[J].应用化工,2010,39(7):1 100-1 104.CHEN Dong,LI Ji,HUANG Yanshan,et al.Influence of the col⁃ loid and asphaltene on fluidity of the crude oil by IR spectrum[J].Applied Chemical Industry,2010,39(7):1 100-1 104.
-
[33] 盖平原.胜利油田稠油黏度与其组分性质的关系研究[J].油田化学,2011,28(1):54-57,27.GAI Pingyuan.The relationship between the viscosity and fraction characteristics of the heavy oil of Shengli Oil Field[J].Oilfield Chemistry,2011,28(1):54-57,27.
-
[34] 张居和,冯子辉,方伟,等.松辽盆地北部原油烃类组成特征及黏度预测[J].中国科学:地球科学,2014,44(6):1 324-1 339.ZHANG Juhe,FENG Zihui,FANG Wei,et al.Crude-oil hydrocar⁃ bon composition characteristics and oil viscosity prediction in the northern Songliao Basin[J].Science China:Earth Sciences,2014,44(6):1 324-1 339.
-
[35] 伍鸿飞,敬加强,靳文博,等.原油族组成及碳数分布对其低温流动特性的影响[J].油气储运,2014,33(1):42-45,49.WU Hongfei,JING Jiaqiang,JIN Wenbo,et al.Effects of crude oil family composition and carbon number distribution on its low tem⁃ perature flow characteristics[J].Oil & Gas Storage and Transpor⁃ tation,2014,33(1):42-45,49.
-
[36] 刘海波,郭绪强.原油组分的性质与结构对其粘度的影响[J].新疆石油地质,2008,29(3):347-349.LIU Haibo,GUO Xuqiang.Influence of property and structure of crude oil on its viscosity[J].Xinjiang Petroleum Geology,2008,29(3):347-349.
-
[37] 王永诗,王勇,朱德顺,等.东营凹陷北部陡坡带砂砾岩优质储层成因[J].中国石油勘探,2016,21(2):28-36.WANG Yongshi,WANG Yong,ZHU Deshun,et al.Genetic mech⁃ anism of high-quality glutenite reservoirs at the steep slope in northern Dongying sag[J].China Petroleum Exploration,2016,21(2):28-36.
-
[38] 曾翔,蔡进功,董哲,等.泥页岩沉积特征与生烃能力——以东营凹陷沙河街组三段中亚段—沙河街组四段上亚段为例[J].石油学报,2017,38(1):31-43.ZENG Xiang,CAI Jingong,DONG Zhe,et al.Sedimentary charac⁃ teristics and hydrocarbon generation potential of mudstone and shale:a case study of Middle Submember of Member3 and Upper Submember of Member4 in Shahejie Formation in Dongying sag [J].Acta Petrolei Sinica,2017,38(1):31-43.
-
[39] 高阳.东营凹陷北部沙四段下亚段盐湖相烃源岩特征及展布 [J].油气地质与采收率,2014,21(1):10-15.GAO Yang.Characteristics and distribution of salt lake source rocks from lower submemeber of 4th member of Shahejie for ⁃ mation,north Dongying depression[J].Petroleum Geology and Re⁃ covery Efficiency,2014,21(1):10-15.
-
[40] 刘庆.东营凹陷樊页1井沙河街组烃源岩元素地球化学特征及其地质意义[J].油气地质与采收率,2017,24(5):40-45,52.LIU Qing.Element geochemical characteristics of source rocks in the Shahejie Formation in Well Fangye-1,Dongying sag and their geological significance[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(5):40-45,52.
-
[41] 刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es 3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.
-
[42] 张海峰,刘庆,张林晔,等.山东东营凹陷古近系沙河街组湖盆演化及烃源岩赋存相带[J].古地理学报,2005,7(3):383-397.ZHANG Haifeng,LIU Qing,ZHANG Linye,et al.Lacustrine ba⁃ sin evolution and favorable sedimentary facies belt for source rocks abounding in the Shahejie Formation of Paleogene in Dongy⁃ ing Sag,Shandong Province[J].Journal of Palaeogeography,2005,7(3):383-397.
-
[43] 杨田,操应长,王艳忠,等.深水重力流类型、沉积特征及成因机制——以济阳坳陷沙河街组三段中亚段为例[J].石油学报,2015,36(9):1 048-1 059.YANG Tian,CAO Yingchang,WANG Yanzhong,et al.Types,sed⁃ imentary characteristics and genetic mechanisms of deep-water gravity flows:a case study of the middle submember in Member3 of Shahejie Formation in Jiyang depression[J].Acta Petrolei Sini⁃ ca,2015,36(9):1 048-1 059.
-
[44] THENG B K G.Formation and properties of clay-polymer com⁃ plexes[M].Oxford:Elsevier Scientific Publishing Company,1979:295-296.
-
[45] KEIL R G,MAYER L M.12.12-Mineral matrices and organic mat⁃ ter[J].Treatise on Geochemistry,2014,12(2):337-359.
-
[46] PARBHAKAR A,CUADROS J,SEPHTON M A,et al.Adsorption of l-lysine on montmorillonite[J].Colloids & Surfaces A:Physico⁃ chemical & Engineering Aspects,2007,307(1):142-149.
-
[47] THOMAS M M,CLOUSE J A,LONGO J M.Adsorption of organic compounds on carbonate minerals:1 Model compounds and their influence on mineral wettability[J].Chemical Geology,1993,109(1/4):227-237.
-
[48] GEFFROY C,FOISSY A,PERSELLO J,et al.Surface complex⁃ ation of calcite by carboxylates in water[J].Journal of Colloid & Interface Science,1999,211(1):45-53.
-
[49] PAN C,FENG J,TIAN Y,et al.Interaction of oil components and clay minerals in reservoir sandstones[J].Organic Geochemistry,2005,36(4):633-654.
-
[50] LUTZOW M,KOGEL-KNABNER I,EKSCHMITT K,et al.Stabi⁃ lization of organic matter in temperate soils:Mechanisms and their relevance under different soil conditions-a review[J].European Journal of Soil Science,2006,57(4):426-445.
-
摘要
可溶有机质作为页岩油的重要载体,所蕴含的丰富信息对页岩油“甜点”预测具有重要意义。选取东营凹陷沙四段下亚段、沙四段上亚段、沙三段下亚段和沙三段中亚段泥页岩样品,对其可溶有机质族组分及饱和烃色谱进行分析,据可溶有机质含量、族组分及轻质烃含量等特征,确立反映页岩油丰富程度的参数(可溶有机质含量和饱和烃含量)及表征页岩油流动性的参数(流动性指数、轻质烃含量和轻质烃散失量)。结果表明,沙四段上亚段和沙三段下亚段可溶有机质含量与饱和烃含量明显高于沙四段下亚段和沙三段中亚段,以沙四段上亚段最高;沙四段上亚段和沙三段下亚段可溶有机质中流动性指数较沙四段下亚段和沙三段中亚段更高,同时沙四段上亚段具有更高的原始轻质烃含量和轻质烃散失量。综合分析认为,沙四段上亚段和沙三段下亚段是页岩油有利发育层段,其中以沙四段上亚段最好,是东营凹陷古近系页岩油“甜点”优选目标区。
Abstract
As an important carrier of shale oil,soluble organic matter contains abundant information which is of great signif- icance to the prediction of shale oil “sweet spots”. Shale samples drilled from Lower Es 4 Member,Upper Es 4 Member,Low- er Es 3 Member and Middle Es 3 Member in Dongying Sag were selected to analyze the group component of soluble organic matter and saturated hydrocarbon chromatography. According to the characteristics of soluble organic matter content,group composition and light hydrocarbon content,indicators including the total amount of soluble organic matter and the amount of saturated hydrocarbon were established to identify the abundance of shale oil,as well as indicators including the MI pa- rameter,light hydrocarbon content and loss of light hydrocarbon to characterize the mobility capacity of shale oil. The re- sults indicate that the content of soluble organic matter and saturated hydrocarbon of Upper Es 4 Member and Lower Es 3 Member was significantly larger than that of Lower Es 4 Member and Middle Es 3 Member,and that of Upper Es 4 Member were the highest among the four layers. Shale oil MI of Upper Es 4 Member and Lower Es 3 Member was higher than that of Lower Es 4 Member and Middle Es 3 Member. Meanwhile,the original light hydrocarbon content and loss of Upper Es 4 Mem- ber were higher. According to the comprehensive analysis,Lower Es 3 Member and Upper Es 4 Member are favorable develop- ment formations of shale oil. Further more,Upper Es 4 Member is the preferred target area of Paleogene shale oil “sweet spots” in Dongying Sag.
Keywords
shale oil ; soluble organic matter ; MI parameter ; light hydrocarbon ; “sweet spots”prediction