-
随着致密砂岩油气勘探技术和认识程度的不断提高,致密砂岩储层已成为众多学者研究的重点。尽管致密砂岩的孔渗性较差,但仍可以在特定的条件下成为优质储层[1-2]。目前,普遍认为颗粒粒度、分选程度和组成成分等因素会影响致密砂岩的初始性质,而成岩作用则是决定其最终性质的关键因素[3-4]。前人对致密砂岩储层特征进行了相应的研究。朱如凯等对致密砂岩成岩作用中的流体演化对储层质量的影响进行了分析[5];杨华等对鄂尔多斯陇东地区延长组致密砂岩储层成岩作用进行了研究并探讨其对孔隙成因类型及发育程度的影响[6];张哨楠等对鄂尔多斯盆地北部山西组和下石盒子组成岩作用与储层物性的关系进行了分析,认为胶结作用是导致孔隙度降低的主要因素,并探讨自生黏土矿物、方解石胶结物以及硅质胶结物对储层物性的影响[7];雷涛等从岩石学类型、岩石颗粒粒度及孔隙组合等方面对杭锦旗地区储层物性的影响因素进行了分析[8],但是针对杭锦旗地区致密砂岩储层控制因素的研究尚显不足,成岩作用对孔隙发育的影响也不明确。为此,笔者基于前人研究成果,针对杭锦旗地区20余口取心井的下石盒子组岩心样品,进行偏光显微镜薄片观察鉴定,并结合扫描电镜、X射线衍射、压汞测试等资料,系统研究致密砂岩储层的成岩作用特征及其影响因素,分析孔隙演化过程,明确研究区储层物性的控制因素,对下步勘探部署提供指导。
-
1 区域地质概况
-
杭锦旗地区位于鄂尔多斯盆地北部伊盟隆起,属于杭锦旗断阶和伊陕斜坡的过渡地区,自古生界一直处于相对隆起状态,为油气运移的指向区,具有良好的油气勘探开发前景(图1)。杭锦旗地区自中元古代开始隆起,于志留纪和泥盆纪出现沉积间断,至晚石炭纪重新接受沉积。研究区上古生界主要目的层为太原组、山西组和下石盒子组,其中下石盒子组为主力勘探层系,沉积厚度相对较大,横向分布较稳定,以发育特低孔-特低渗透致密砂岩储层为主。
-
图1 杭锦旗地区区域构造位置
-
Fig.1 Regional tectonic location of Hangjinqi area
-
2 岩石学特征
-
岩石铸体薄片镜下观察结果表明,杭锦旗地区下石盒子组1段(盒1段)致密砂岩储层以岩屑砂岩为主。碎屑组分中石英含量为49%~82%,平均为61%;长石含量为0~9%,平均为2.5%;岩屑含量为13%~34%,平均为22%,且多为千枚岩岩屑和变质石英岩屑,也可见泥岩岩屑、砂岩岩屑、片岩岩屑、变质石英砂岩岩屑及脉石英岩屑等。孔隙中的填隙物含量为5%~28%,平均为12%;普遍发育碳酸盐胶结和黏土矿物胶结,偶见硅质胶结,部分层段杂基含量远大于平均值,且以伊利石为主。盒1段储层碎屑岩的结构特征为细-中粒,分选中等—好,磨圆相对较差,为次棱角状-次圆状,其中多数为次棱角状,颗粒接触关系多为线接触,以颗粒支撑的孔隙式胶结为主,部分可见杂基支撑的基底胶结。
-
3 物性特征及储集空间类型
-
3.1 物性特征
-
分析研究区7口取心井181块岩心样品的物性测试数据,发现下石盒子组岩心样品的孔隙度最大值为18.69%,平均为7.69%,主要分布于4%~12%,占岩心样品总数的81.92%;渗透率最大值为16.41mD,平均为0.89mD,主要分布于0.01~5mD,占岩心样品总数的92.90%(图2),属于典型的特低孔-特低渗透储层。此外,孔隙度和渗透率具有较明显的正相关关系,渗透率随孔隙度增大而增大,部分岩心样品的渗透率出现异常高值,可能是受局部裂缝发育的影响。
-
图2 杭锦旗地区下石盒子组致密砂岩储层物性特征
-
Fig.2 Characteristics of physical properties of the tight sandstone reservoir in the Lower Shihezi Formation in Hangjinqi area
-
3.2 储集空间类型
-
通过岩石铸体薄片观察及扫描电镜分析发现,杭锦旗地区下石盒子组致密砂岩储层发育的孔隙按成因分为原生和次生2种类型(表1)。残余原生粒间孔由于埋藏较深,成岩作用改造强烈,形成了复杂的次生孔隙-微裂缝为主要储集空间的储层 (图3)。在构造运动和成岩时期的机械压实作用影响下,岩石骨架颗粒受到一定程度的拉伸或挤压,从而形成裂隙,或在岩石骨架颗粒表面直接形成破裂缝[9-11]。长石和石英的破裂缝较为多见,使得储集砂体的渗透性得到一定改善。
-
图3 杭锦旗地区下石盒子组致密砂岩储层储集空间类型
-
Fig.3 Pore space types of the tight sandstone reservoir in the Lower Shihezi Formation in Hangjinqi area
-
4 成岩作用特征
-
碎屑物质在沉积之后会经历多种成岩作用改造,使得岩石的成分和结构发生较大变化,从而改变储层的物性[12-13]。其中,成岩作用对研究区下石盒子组储层物性的影响可以分为2个方面:一是破坏储层物性,例如压实、胶结、交代等作用;二是改善储层物性,例如溶蚀作用等。确定储层形成过程中成岩作用的类型及其对物性的影响,有助于清晰地认识储层的成岩历程和孔隙演化特征,明确储集空间的形成机理,并为有利储层预测提供必要的理论指导[14-15]。
-
4.1 压实作用
-
由于沉积后的快速埋藏,研究区下石盒子组储层的塑性矿物含量相对较高,机械压实作用程度普遍较高。偏光显微镜观察结果显示,压实作用特征主要表现为:①刚性矿物的脆性破裂(图4a),例如石英、长石及刚性岩屑的破裂。②塑性矿物的弯曲变形,例如云母和塑性岩屑的挤压形变,以及千枚岩岩屑的假杂基化(图4b)。③碎屑颗粒间大多为线接触和凹凸接触,也可见缝合线接触。由于压实作用强烈,颗粒之间紧密程度较高,甚至颗粒边缘已不明显,原生粒间孔大量减少。
-
4.2 胶结作用
-
4.2.1 自生黏土矿物
-
通过大量的铸体薄片镜下鉴定及扫描电镜观察分析,结合研究区46块岩心样品的X射线衍射分析,可以明确自生黏土矿物的类型及其平均含量,包括自生高岭石、自生伊利石、自生绿泥石以及伊/蒙混层。
-
杭锦旗地区下石盒子组致密砂岩储层的高岭石含量相对较高,平均约为5.1%,一般以胶结物的形式充填于孔隙或以交代其他矿物形态产出,扫描电镜下观察其晶体集合体多呈书页状(图4c)。高岭石通常是由长石颗粒在酸性条件下通过水岩交互作用溶蚀形成,与次生孔隙具有正相关关系,且在高岭石晶体中发育大量的晶间孔,为酸性环境的指示标志,对有利储层的形成也具有指示意义[16]。
-
图4 杭锦旗地区下石盒子组致密砂岩储层典型成岩作用
-
Fig.4 Typical diagenesis of the tight sandstone reservoir in the Lower Shihezi Formation in Hangjinqi area
-
伊利石含量平均约为2.2%。因其具有较高的双折射率,在岩石铸体薄片正交光下的最高干涉色通常可以达到一级顶部,易于观察;扫描电镜观察其呈片状、丝缕状充填于砂岩孔隙中(图4d),形成于富含K+ 的弱碱性环境。在成岩过程中,随着埋深的增加,伊利石含量也逐渐增高。
-
绿泥石含量平均约为3.7%,多为包膜附着于矿物颗粒表面,呈针柱状(图4e,4f)。伊/蒙混层含量平均约为1.9%,呈蜂窝状和片丝状覆盖于碎屑颗粒表面(图4g),为蒙脱石伊利石化的中间产物。
-
4.2.2 石英胶结物
-
研究区下石盒子组致密砂岩储层的石英胶结物含量平均约为1.6%,且除石英次生加大边外,还发育晶形完好的自生石英晶体。其中,石英次生加大边发育于碎屑石英颗粒边缘(图4h),形成于方解石胶结之前的早成岩阶段[17];但由于研究区石英颗粒表面的黏土膜相对较发育,可有效阻止石英次生加大边的形成,因此石英次生加大胶结的含量较低[18-19]。自生石英晶体的自形程度较高,晶粒较小,充填于孔隙之中,形成于较晚的成岩阶段。
-
4.2.3 碳酸盐胶结物
-
研究区碳酸盐胶结物主要为方解石和铁方解石,平均含量为5.8%。方解石胶结主要分为2个期次,其中早期泥晶方解石呈基底式胶结(图4i),主要形成于早成岩阶段,且形成于石英胶结和绿泥石包膜之后;虽然方解石胶结物充填孔隙影响了储层的物性,但也减弱了压实作用对储层物性的破坏程度,并为中后期成岩阶段的溶解作用提供了物质基础。而晚期的碳酸盐胶结物主要为含铁方解石(图4j),其呈孔隙式充填,严重堵塞孔隙,导致储层孔隙度降低、物性变差。
-
4.3 溶蚀作用
-
研究区下石盒子组致密砂岩储层的溶蚀作用比较发育,表现形式多为长石、岩屑颗粒内部的溶蚀以及部分黏土杂基的溶蚀,石英溶蚀相对少见。长石多为沿自身解理缝或破裂缝发生溶蚀(图4k),岩屑颗粒内部的长石较易发生溶蚀,因此岩屑颗粒中的长石被溶蚀后多呈蜂窝状。个别层系偶见石英颗粒的溶蚀,多表现为沿着颗粒边缘发生溶蚀,且溶蚀边缘呈港湾状。整体上,溶蚀作用改善了致密砂岩储层的物性。
-
4.4 交代作用
-
交代作用可以反映出矿物形成的先后顺序,表现为原生矿物或早期胶结物被晚期胶结物交代。铸体薄片观察发现,研究区常见的交代现象有黏土矿物交代石英、长石和岩屑等,碳酸盐矿物交代石英、长石和岩屑(图4l)等。
-
5 成岩作用对孔隙度演化的影响
-
不同的成岩作用对储层孔隙度的演化具有不同的影响[20],有时甚至起决定性的作用。基于现今储层特征研究成果,通过建立孔隙度演化定量模型,分析其演化过程,可为储层成因机制研究提供理论指导。
-
5.1 原始孔隙度的恢复
-
储层的埋藏及成岩演化过程将会导致其组构及原始孔隙发生改变。研究结果表明,储层原始孔隙度可以根据分选系数建立经验关系式。BEARD等据此建立孔隙度演化定量模型[21-22],其计算式为:
-
研究区锦32等13口井的铸体薄片镜下粒度统计结果表明,其分选系数为1.54~1.85,平均为1.68;原始孔隙度为33.28%~35.78%,平均为34.54%。根据物性数据得到的实测孔隙度 (7.69%),成岩作用演化损失的孔隙度大约为26.85%。
-
5.2 压实作用对孔隙度的影响
-
在早成岩阶段沉积物沉降过程中,原始孔隙经压实作用,一部分直接损失,另一部分被胶结堵塞。压实作用后剩余粒间孔孔隙度可根据实测原生粒间孔面孔率与胶结物面孔率、胶结物含量、实测孔隙度、总孔隙面孔率的关系求得,其计算式为:
-
压实作用损失的孔隙度及其损失率分别为:
-
统计研究区下石盒子组13口井的铸体薄片资料发现,其平均埋深为2 968.3m。压实作用后,剩余粒间孔的孔隙度为9.74%~19.21%,平均为14.29%,压实作用导致孔隙度减少约20.25%,孔隙度损失率为42.44%~72.77%,平均为58.62%,属于中等压实强度,表明压实作用是研究区下石盒子组致密砂岩储层孔隙度减小的主要成岩作用。
-
5.3 胶结作用对孔隙度的影响
-
胶结作用对储层的孔隙度演化也有重要影响。根据胶结物形成期次,将研究区下石盒子组致密砂岩储层的胶结物划分为早期和中晚期2个阶段,胶结作用后的剩余孔隙度及胶结作用的孔隙度损失率的计算式分别为:
-
统计结果表明,研究区下石盒子组致密砂岩储层经过早期胶结作用后的剩余孔隙度为4.25%~16.46%,平均为8.71%;早期胶结作用的孔隙度损失率为6.25%~28.95%,平均为16.15%。溶蚀作用之后的中晚期胶结物的含量平均为6.06%,孔隙度损失率平均为17.54%,2期胶结作用导致储层孔隙度减少约11.64%。
-
5.4 溶蚀作用对孔隙度的影响
-
溶蚀作用的强度与长石、岩屑和早期碳酸盐胶结物的含量呈正相关关系[23-25]。溶蚀作用是形成次生孔隙、改善孔渗条件的主要成岩作用之一,溶蚀作用增加的孔隙度的计算式为:
-
溶蚀作用主要发育于早期胶结作用之后。研究区溶蚀作用增加的孔隙度为2.53%~10.34%,平均为5.20%。
-
5.5 孔隙度演化定量模型
-
杭锦旗地区下石盒子组致密砂岩储层的埋深较大,成岩作用复杂。基于孔隙度演化定量模型,结合成岩作用类型和特征研究,根据矿物之间的交代、充填关系以及流体均一温度分析等,确定其从沉积初期至现今所经历的成岩作用演化序列依次为:压实作用/黏土矿物环边—早期碳酸盐胶结— 长石溶解/石英次生加大/自生高岭石—铁方解石胶结—自生石英颗粒—伊利石化。以储层现今孔隙的结构类型及其对应的铸体薄片特征为基准,恢复不同地质历史时期各成岩阶段的孔隙结构特征[26],建立研究区下石盒子组致密砂岩储层成岩阶段及孔隙度演化模型(图5),进而可以将孔隙度演化模式划分为机械压实作用减孔、早期胶结作用减孔、强烈溶蚀作用增孔、中晚期胶结作用减孔4个阶段。研究区下石盒子组致密砂岩储层的原始孔隙度平均为34.54%,经压实作用,孔隙度减少约20.25%,孔隙度约为14.29%;经早期胶结作用,孔隙度减少5.58%,孔隙度约为8.71%;再经溶蚀作用,孔隙度增加5.20%,孔隙度约为13.91%;最后经晚期胶结作用,孔隙度减少6.06%,最终孔隙度约为7.85%。孔隙度演化定量模型较合理地反映出孔隙度的演化规律及量变过程,可以更深入地了解储层物性的控制因素,为研究区下步的勘探部署提供数据。
-
图5 杭锦旗地区下石盒子组致密砂岩储层成岩阶段及孔隙度演化模型
-
Fig.5 Diagenetic stage and porosity evolution model of the tight sandstone reservoir in the Lower Shihezi Formation in Hangjinqi area
-
6 结论
-
杭锦旗地区下石盒子组致密砂岩储层的孔隙度平均为7.69%,渗透率平均为0.89mD,属于典型的特低孔-特低渗透储层。其储集空间类型以次生孔隙为主,岩性以岩屑砂岩为主,岩屑类型较为复杂,碳酸盐胶结和黏土矿物胶结普遍发育。储层的埋深较大,成岩作用复杂;其中,压实作用和2期碳酸盐胶结作用为主要的破坏性成岩作用,溶蚀作用为主要的建设性成岩作用,现今成岩期次主要处于中成岩阶段B期。孔隙度恢复计算结果表明,储层先后经历了压实作用、早期胶结作用、溶蚀作用、晚期胶结作用,其原始孔隙度平均为34.54%,经压实作用后的剩余粒间孔的孔隙度平均为14.29%,经早期胶结作用后剩余的孔隙度平均为8.71%,经溶蚀作用孔隙度增至13.91%,溶蚀作用之后中晚期胶结物的含量减少6.06%,计算得到的最终孔隙度为7.85%。基于孔隙度演化定量模型的建立,可以定量表征研究区下石盒子组致密砂岩储层不同成岩阶段孔隙度演化的差异性,对提高油气勘探品质及采收率具有重要意义。
-
符号解释:
-
ϕ1 ——砂岩尚未固结成岩的原始孔隙度,%;S d——分选系数,其为粒度概率累积曲线上概率数值为25%所对应的颗粒直径与75%所对应的颗粒直径的比值;ϕ2——压实作用后剩余粒间孔的孔隙度,%;C ——胶结物含量,%;ϕpm—— 实测原生粒间孔的面孔率,%;ϕc ——胶结物的面孔率,%; ϕ3——实测孔隙度,%;ϕ4——总孔隙的面孔率,%;ϕL—— 压实作用损失的孔隙度,%;F L——压实作用的孔隙度损失率,%;ϕ5——胶结作用后的剩余孔隙度,%;F C——胶结作用的孔隙度损失率,%;ϕ6——溶蚀作用增加的孔隙度,%; ϕd——溶蚀孔的面孔率,%。
-
参考文献
-
[1] 邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:50-93.ZOU Caineng,TAO Shizhen,HOU Lianhua,et al.Unconventional oil and gas geology[M].Beijing:Geological Publishing House,2011:50-93.
-
[2] HOLDITCH Stephen A.Tight gas sands[J].Journal of Petroleum Technology,2006,58(6):84-90.
-
[3] 梁承春,郭景祥.鄂尔多斯盆地红河油田延长组长81小层致密砂岩成岩作用与储层特征[J].油气地质与采收率,2017,24(1):57-63.LIANG Chengchun,GUO Jingxiang.Diagenesis and reservoir characteristics of tight sandstones of Chang81 member of Yan⁃ chang Formation in Honghe oilfield,Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2017,24(1):57-63.
-
[4] 刘冬冬,张晨,罗群,等.准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝发育特征及控制因素[J].中国石油勘探,2017,22(4):36-47.LIU Dongdong,ZHANG Chen,LUO Qun,et al.Development char⁃ acteristics and controlling factors of natural fractures in Permian Lucaogou Formation tight reservoir in Jimsar sag,Junggar Basin [J].China Petroleum Exploration,2017,22(4):36-47.
-
[5] 朱如凯,邹才能,张鼐,等.致密砂岩气藏储层成岩流体演化与致密成因机理——以四川盆地上三叠统须家河组为例[J].中国科学:D辑地球科学,2009,39(3):327-339.ZHU Rukai,ZOU Caineng,ZHANG Nai,et al.The diagenetic flu⁃ id evolution and tight genetic mechanism of tight sandstone gas reservoirs-Taking the upper Permian Xujiahe Formation in Sich⁃ uan basin as an example[J].Science in China:Series D Earth Sci⁃ ence,2009,39(3):327-339.
-
[6] 杨华,钟大康,姚泾利,等.鄂尔多斯盆地陇东地区延长组砂岩储层孔隙成因类型及其控制因素[J].地学前缘,2013,20(2):69-76.YANG Hua,ZHONG Dakang,YAO Jingli,et al.Pore genetic type and their controlling factors in sandstone reservoir of Yanchang Formation in Longdong area,Ordos Basin[J].Earth Science Fron⁃ tiers,2013,20(2):69-76.
-
[7] 张哨楠,胡江柰,沙文武,等.鄂尔多斯盆地南部镇泾地区延长组的沉积特征[J].矿物岩石,2000,20(4):25-30.ZHANG Shaonan,HU Jiangnai,SHA Wenwu,et al.The sedimen⁃ tary characteristics of Yanchang Formation in Zhenyuan and Jing⁃ chuan districts,southern part of Ordos Basin[J].Journal of Miner⁃ alogy and Petrology,2000,20(4):25-30.
-
[8] 雷涛,杨艺.杭锦旗地区储层物性特征及影响因素研究[J].石油化工应用,2013,32(8):64-67.LEI Tao,YANG Yi.Research on reservoir characteristics and in⁃ fluencing factors in Hangjinqi[J].Petrochemical Industry Appli⁃ cation,2013,32(8):64-67.
-
[9] 徐康,刘光祥,胡文瑄,等.川西地区须四段砂岩储层特征及主控因素分析[J].油气地质与采收率,2018,25(2):42-49.XU Kang,LIU Guangxiang,HU Wenxuan,et al.Reservoir charac⁃ teristics and main controlling factors of the 4th member of the Xuji⁃ ahe Formation in the Western Sichuan[J].Petroleum Geology and Recovery Efficiency,2018,25(2):42-49.
-
[10] 张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.
-
[11] 牟炜卫,李树同,闫灿灿.鄂尔多斯盆地姬塬西部地区长6致密油储层砂体成因模式[J].特种油气藏,2017,24(2):6-11.MOU Weiwei,LI Shutong,YAN Cancan.Genesis model of sand⁃ bodies in Chang6 tight oil reservoirs in the western area of Jiyuan,the Ordos Basin[J].Special Oil & Gas Reservoir,2017,24(2):6-11.
-
[12] 张浩,陈刚,朱玉双,等.致密油储层微观孔隙结构定量表征:以鄂尔多斯盆地新安边油田长7储层为例[J].石油实验地质,2017,39(1):112-119.ZHANG Hao,CHEN Gang,ZHU Yushuang,et al.Quantitative characterization of microscopic pore throat structure in tight sand⁃ stone oil reservoirs:A case study of Chang7 reservoir in Xin’anbi⁃ an oil field,Ordos Basin[J].Petroleum Geology & Experiment,2017,39(1):112-119.
-
[13] 邱隆伟,周涌沂,高青松,等.大牛地气田石炭系—二叠系致密砂岩储层孔隙结构特征及其影响因素[J].油气地质与采收率,2013,20(6):15-18,22.QIU Longwei,ZHOU Yongyi,GAO Qingsong,et al.Study of poros⁃ity structure and its influences on Carboniferous and Permian tight sand reservoir rock in Danniudi gasfield,Ordos basin[J].Pe⁃ troleum Geology and Recovery Efficiency,2013,20(6):15-18,22.
-
[14] 刘长利,刘欣,张莉娜,等.碎屑岩成岩作用及其对储层的影响:以鄂尔多斯盆地镇泾地区为例[J].石油实验地质,2017,39(3):348-354.LIU Changli,LIU Xin,ZHANG Lina,et al.Clastic rock diagenesis and its influence on reservoirs:A case study of Zhenjing area in the Ordos Basin[J].Petroleum Geology & Experiment,2017,39(3):348-354.
-
[15] 钟大康,周立建,孙海涛,等.储层岩石学特征对成岩作用及孔隙发育的影响——以鄂尔多斯盆地陇东地区三叠系延长组为例[J].石油与天然气地质,2012,33(6):890-899.ZHONG Dakang,ZHOU Lijian,SUN Haitao,et al.Influences of petrologic features on diagenesis and pore development:an exam⁃ ple from the Triassic Yanchang Formation in Longdong area,Or⁃ dos Basin[J].Oil & Gas Geology,2012,33(6):890-899.
-
[16] HADDAD S C,WORDEN R H,PRIOR D J,et al.Quartz cement in the Fontainebleau sandstone,Paris Basin,France:crystallogra⁃ phy and implications for mechanisms of cement growth[J].Journal of Sedimentary Research,2006,76(2):244-256.
-
[17] BLOCH S,LANDER R H,BONNELL L.Anomalously high porosi⁃ ty and permeability in deeply buried sandstone reservoirs:Origin and predictability[J].AAPG Bulletin,2002,86(2):301-328.
-
[18] 王凤娇,刘义坤,于苏浩.苏里格气田东区致密砂岩储层特征 [J].油气地质与采收率,2017,24(6):43-47.WANG Fengjiao,LIU Yikun,YU Suhao.Reservoir characteristics of tight sandstone in the eastern Sulige Gas Field[J].Petroleum Geology and Recovery Efficiency,2017,24(6):43-47.
-
[19] 周磊,操应长,葸克来,等.廊固凹陷河西务构造带沙四段低渗储层特征及其成因机制[J].中国石油大学学报:自然科学版,2013,37(3):8-16.ZHOU Lei,CAO Yingchang,XI Kelai,et al.Characteristics and genetic mechanism of low-permeability reservoir of the 4th mem⁃ ber of Shahejie formation in Hexiwu structural zone of Langgu sag [J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(3):8-16.
-
[20] 周林,陈波,凡睿,等.川北地区须四段致密砂岩储层特征及成岩演化[J].石油与天然气地质,2017,38(3):543-550,560.ZHOU Lin,CHEN Bo,FAN Rui,et al.Characteristics and diagen⁃ esis of tight sandstone reservoirs in the 4th member of Xujiahe For⁃ mation,northern Sichuan Basin[J].Oil & Gas Geology,2017,38(3):543-550,560.
-
[21] BEARD D C,WEYL P K.Influence of texture on porosity and per⁃ meability of unconsolidated sand[J].AAPG Bulletin,1973,57(2):349-369.
-
[22] 任大忠,孙卫,屈雪峰,等.鄂尔多斯盆地延长组长6储层成岩作用特征及孔隙度致密演化[J].中南大学学报:自然科学版,2016,47(8):2 706-2 714.REN Dazhong,SUN Wei,QU Xuefeng,et al.Characteristic of dia⁃ genesis and pore dense evolution of Chang6 reservoir of Triassic Yanchang Formation,Ordos Basin[J].Journal of Central South University:Science and Technology,2016,47(8):2 706-2 714.
-
[23] 廖明光,李驰,南郡祥,等.苏里格地区盒8段储层成岩作用与孔隙演化定量分析[J].特种油气藏,2017,24(3):15-20.LIAO Mingguang,LI Chi,NAN Junxiang,et al.Diagenesis and quantitative analysis of pore evolution of He8 member reservoir in Sulige region[J].Special Oil & Gas Reservoir,2017,24(3):15-20.
-
[24] 庞河清,曾焱,刘成川,等.川西坳陷须五段储层微观孔隙结构特征及其控制因素[J].中国石油勘探,2017,22(4):48-60.PANG Heqing,ZENG Yan,LIU Chengchuan,et al.Characteris⁃ tics and controlling factors of micro-pore structure of Xu5 reser⁃ voir in western Sichuan depression[J].China Petroleum Explora⁃ tion,2017,22(4):48-60.
-
[25] 李亚光.塔木察格盆地塔南凹陷铜钵庙组储层溶蚀作用特征及其影响因素[J].大庆石油地质与开发,2018,37(3):22-28.LI Yaguang.Dissolution characteristics and its influencing factors of Tongbomiao Formation reservoir in Tanan Sag of Tamutsag Ba⁃ sin[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(3):22-28.
-
[26] 周雪晴,张占松,张超谟,等.基于矿物组分和成岩作用的致密砂岩储层脆性评价方法——以鄂尔多斯盆地东北部某区块为例[J].油气地质与采收率,2017,24(5):10-16.ZHOU Xueqing,ZHANG Zhansong,ZHANG Chaomo,et al.A new brittleness evaluation method for tight sandstone reservoir based on mineral compositions and diagenesis:A case study of a certain block in the northeastern Ordos Basin[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2017,24(5):10-16.
-
摘要
杭锦旗地区是鄂尔多斯盆地致密气勘探的重点研究区域,其下石盒子组以岩屑砂岩为主,属于典型的特低孔-特低渗透储层。根据岩石铸体薄片观察、阴极发光、扫描电镜、毛管压力测试和黏土矿物 X射线衍射等分析结果,结合孔渗数据,研究鄂尔多斯盆地北部杭锦旗地区下石盒子组致密砂岩储层的主要成岩作用类型及其特征,建立成岩演化序列并分析其对孔隙发育的影响,进而构建孔隙度演化定量模型。结果表明:研究区下石盒子组发育以次生孔隙-微裂缝为主要储集空间的致密砂岩储层,其成岩作用类型多样,主要有压实作用、胶结作用、交代作用和溶蚀作用;其中,压实作用是造成原生孔隙大量损失的主要因素,导致储层孔隙度减少约20.25%;胶结作用破坏储层物性,早期和晚期胶结作用导致储层孔隙度分别减少约 5.58%和 6.06%;溶蚀作用形成次生孔隙,使储层孔隙度增加约5.20%。
Abstract
Hangjinqi area of Ordos Basin is a key research area for tight gas exploration,and the Lower Shihezi Formation is mainly lithic sandstone which is a typical low-porosity and extra-low-permeability reservoir. According to the analysis results of cast thin section observation,cathodoluminescence,SEM,capillary pressure test,X-diffraction of clay minerals and porosity and permeability,the main types of diagenesis and its characteristics of the tight sandstone reservoir in the Lower Shihezi Formation in Hangjinqi area of Ordos Basin were studied. And the evolution sequence of diagenesis was es- tablished and its effects on pore development were analyzed. A quantitative model for porosity evolution was constructed. The results show that the tight sandstone reservoir with secondary pores and microfracture is the main storage space in the Lower Shihezi Formation of the study area. There are various types of diagenesis in the Lower Shihezi Formation,which mainly include compaction,cementation,metasomatic alteration and dissolution. The compaction is the main factor causing great loss of primary pores,and the decrease of porosity is about 20.25%;the cementation destroys the physical properties of the reservoir. The early and the late cementation result in a decrease in porosity of about 5.58% and 6.06%,respectively. The secondary pores formed by dissolution leads to an increase in porosity of about 5.20%.