en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈德坡(1969—),男,山东东平人,高级工程师,博士,从事油气田开发地质综合研究。联系电话:(0546)8715172,E-mail:chendepo.slyt@sinopec.com。

中图分类号:TE122.2

文献标识码:A

文章编号:1009-9603(2019)02-0051-09

DOI:10.13673/j.cnki.cn37-1359/te.2019.02.007

参考文献 1
李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.
参考文献 2
王端平.对胜利油区提高原油采收率潜力及转变开发方式的思考[J].油气地质与采收率,2014,21(4):1-4.WANG Duanping.Some thoughts about potential of oil recovery ef⁃ ficiency and development model transition in Shengli district[J].Petroleum Geology and Recovery Efficiency,2014,21(4):1-4.
参考文献 3
杜晓康,李治平,田丰,等.水驱油田高含水期体积波及系数预测方法[J].大庆石油地质与开发,2018,37(1):83-87.DU Xiaokang,LI Zhiping,TIAN Feng,et al.Predicting method of the volumetric swept coefficient for high-watercut waterflooded oilfields[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):83-87.
参考文献 4
柏明星,张志超,李岩,等.砂岩油田高含水后期变流线精细调整研究[J].特种油气藏,2017,24(2):86-88,164.BAI Mingxing,ZHANG Zhichao,LI Yan,et al.Study on precise flooding direction adjustment of sandstone oilfields in the late stage with high water cut[J].Special Oil & Gas Reservoirs,2017,24(2):86-88,164.
参考文献 5
计秉玉.对大庆油田油藏研究工作的几点认识[J].大庆石油地质与开发,2006,25(1):9-13.JI Bingyu.Understanding of reservoir study in Daqing Oil Field [J].Petroleum Geology & Oilfield Development in Daqing,2006,25(1):9-13.
参考文献 6
李阳,吴胜和,侯加根,等.油气藏开发地质研究进展与展望 [J].石油勘探与开发,2017,44(4):569-579.LI Yang,WU Shenghe,HOU Jiagen,et al.Progress and prospects of reservoir development geology[J].Petroleum Exploration and Development,2017,44(4):569-579.
参考文献 7
丁帅伟,姜汉桥,赵冀,等.水驱砂岩油藏优势通道识别综述 [J].石油地质与工程,2015,29(5):132-136.DING Shuaiwei,JIANG Hanqiao,ZHAO Ji,et al.General descrip⁃ tion of preferential migration passage in water-flood sandstone reservoir[J].Petroleum Geology and Engineering,2015,29(5):132-136.
参考文献 8
肖康,穆龙新,姜汉桥,等.水驱优势通道下微观潜力分布及改变流线挖潜[J].西南石油大学学报:自然科学版,2017,39(5):92-100.XIAO Kang,MU Longxin,JIANG Hanqiao,et al.Microscopic dis⁃ tribution of potentially and changing streamline direction produc⁃ tion under water channeling path[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2017,39(5):92-100.
参考文献 9
陈红伟,冯其红,张先敏,等.考虑优势通道发育的层状水驱油藏开发指标预测方法[J].油气地质与采收率,2017,24(4):72-77.CHEN Hongwei,FENG Qihong,ZHANG Xianmin,et al.A meth⁃ od of development index prediction for multi-layer waterflooding reservoir with preferential flow path[J].Petroleum Geology and Recovery Efficiency,2017,24(4):72-77.
参考文献 10
韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J].石油勘探与开发,2010,37(5):583-591.HAN Dakuang.Discussions on concepts,countermeasures and technical routes for the redevelopment of high water-cut oilfields [J].Petroleum Exploration and Development,2010,37(5):583-591.
参考文献 11
韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.HAN Dakuang.Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J].Acta Petrolei Sinica,2007,28(2):73-78.
参考文献 12
邹存友,于立君.中国水驱砂岩油田含水与采出程度的量化关系[J].石油学报,2012,33(2):288-292.ZOU Cunyou,YU Lijun.A quantization relationship between wa⁃ ter cut and degree of reserve recovery for waterflooding sandstone reservoirs in China[J].Acta Petrolei Sinica,2012,33(2):288-292.
参考文献 13
吴胜和,纪友亮,岳大力,等.碎屑沉积地质体构型分级方案探讨[J].高校地质学报,2013,19(1):12-22.WU Shenghe,JI Youliang,YUE Dali,et al.Discussion on hierar⁃ chical scheme of architectural units in clastic deposits[J].Geolog⁃ ical Journal of China Universities,2013,19(1):12-22.
参考文献 14
TURNER B R,TESTER G N.The table rocks sandstone:A fluvial,friction-dominated lobate mouth bar sandbody in the Westphalian B Coal Measures,NE England[J].Sedimentary Geology,2006,190(1/4):97-119.
参考文献 15
陈彬滔,于兴河,王天奇,等.砂质辫状河岩相与构型特征—— 以山西大同盆地中侏罗统云冈组露头为例[J].石油与天然气地质,2015,36(1):111-117.CHEN Bintao,YU Xinghe,WANG Tianqi,et al.Lithofacies and architectural characteristics of sandy braided river deposits:a case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin,Shanxi Province[J].Oil & Gas Geology,2015,36(1):111-117.
参考文献 16
杨丽莎,陈彬滔,李顺利,等.基于成因类型的砂质辫状河泥岩分布模式——以山西大同侏罗系砂质辫状河露头为例[J].天然气地球科学,2013,24(1):93-98.YANG Lisha,CHEN Bintao,LI Shunli,et al.Pattern of genesisbased mudstone distribution for sandy braided river:A case study of sandy braided-river outcrop,Datong,Shanxi province,China [J].Natural Gas Geoscience,2013,24(1):93-98.
参考文献 17
张顺,刘惠民,陈世悦,等.中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例 [J].地质学报,2017,91(5):1 108-1 119.ZHANG Shun,LIU Huimin,CHEN Shiyue,et al.Classification scheme for lithofacies of fine-grained sedimentary rocks in fault⁃ ed basins of Eastern China:Insights from the fine-grained sedi⁃ mentary rocks in Paleogene,southern Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(5):1 108-1 119.
参考文献 18
曹志民,吴云,韩建,等.测井数据岩相分类的机器学习方法和大数据岩相分类探讨[J].化工自动化及仪表,2017,44(8):717-720,729.CAO Zhimin,WU Yun,HAN Jian,et al.Machine learning meth⁃ ods for log data lithofacies classification and big data lithology classification discussion[J].Control and Instruments in Chemical Industry,2017,44(8):717-720,729.
参考文献 19
付金华,邓秀芹,楚美娟,等.鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J].沉积学报,2013,31(5):928-938.FU Jinhua,DENG Xiuqin,CHU Meijuan,et al.Features of deep⁃ water lithofacies,Yanchang Formation in Ordos Basin and its pe⁃ troleum significance[J].Acta Sedimentologica Sinica,2013,31(5):928-938.
参考文献 20
魏巍,朱筱敏,朱世发,等.二连盆地额仁淖尔凹陷下白垩统云质岩致密油储层特征与成因[J].中国石油勘探,2017,22(3):71-80.WEI Wei,ZHU Xiaomin,ZHU Shifa,et al.Characteristics and ori⁃ gin of the Lower Cretaceous dolomitic tight oil reservoir in Ere⁃ naor sag,Erlian Basin[J].China Petroleum Exploration,2017,22(3):71-80.
参考文献 21
陈科洛,张廷山,梁兴,等.滇黔北坳陷五峰组-龙马溪组下段页岩岩相与沉积环境分析[J].沉积学报,2018,36(4):743-755.CHEN Keluo,ZHANG Tingshan,LIANG Xing,et al.Analysis of shale lithofacies and sedimentary environment on Wufeng Forma⁃ tion-Lower Longmaxi Formation in Dianqianbei Depression[J].Acta Sedimentologica Sinica,2018,36(4):743-755.
参考文献 22
刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es 3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.
参考文献 23
张茜,孙卫,杨晓菁,等.致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响:以鄂尔多斯盆地华庆地区长63储层为例[J].石油实验地质,2017,39(1):126-133.ZHANG Xi,SUN Wei,YANG Xiaojing,et al.Quantitative calcula⁃ tion of tight sandstone reservoir porosity evolution based on differ⁃ ent diagenesis:A case study of Chang 63 reservoir in Huaqing ar⁃ ea,Ordos Basin[J].Petroleum Geology & Experiment,2017,39(1):126-133.
参考文献 24
孙洪志,刘吉余.储层综合定量评价方法研究[J].大庆石油地质与开发,2004,23(6):8-10.SUN Hongzhi,LIU Jiyu.Research on comprehensive and quantita⁃ tive reservoir evaluation[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2004,23(6):8-10.
参考文献 25
宋子齐,谭成仟,曲政.利用灰色理论精细评价油气储层的方法[J].石油学报,1996,17(1):25-31.SONG Ziqi,TAN Chengqian,QU Zheng.Utilizing exact grey theo⁃ ry to evaluate oil and gas formation[J].Acta Petrolei Sinica,1996,17(1):25-31.
参考文献 26
夏玉成,徐凤银.灰色关联分析在模糊综合评判中的应用[J].西安矿业学院学报,1991,11(1):44-50.XIA Yucheng,XU Fengyin.Application of grey correlation analy⁃ sis in fuzzy comprehensive assessment[J].Journal of Xi’an Min⁃ ing Institute,1991,11(1):44-50.
参考文献 27
连承波,李汉林,钟建华,等.基于灰色关联分析的储层含油气性气测解释方法[J].中国石油大学学报:自然科学版,2008,32(1):29-32.LIAN Chengbo,LI Hanlin,ZHONG Jianhua,et al.Gas logging in⁃ terpretation method of oil-gas potential reservoirs based on grey correlation analysis[J].Journal of China University of Petroleum:Science & Technology Edition,2008,32(1):29-32.
参考文献 28
徐凤银,朱兴珊,颜其彬,等.储层定量评价中指标权重的计算途径[J].石油学报,1996,17(2):29-35.XU Fengyin,ZHU Xingshan,YAN Qibin,et al.An approach to de⁃ fine weight of indexes in the quantitative evaluation of reservoirs [J].Acta Petrolei Sinica,1996,17(2):29-35.
参考文献 29
于萍,李克.使用Microsoft Excel进行数据的灰关联分析[J].微型电脑应用,2011,27(3):29-30,37.YU Ping,LI Ke.Gray correlation analysis of data using Microsoft Excel[J].Microcomputer Applications,2011,27(3):29-30,37.
目录contents

    摘要

    中高渗透砂岩油藏经数十年的注水开发后进入特高含水后期,形成强吸水、低驱替效率的高耗水带,且高耗水带仅形成于单砂体的某一特定位置,以单砂体为研究单元的地质分析已难以满足该类油藏剩余油挖潜的需要。 为此,基于岩心、露头的岩相分析,以岩性为主控因素将开发地质研究单元细化为岩相组合级次,并利用灰色关联分析法实现岩相组合的常规测井资料地质解释。依据井资料归纳坨 11井区南沙二段 8砂组河口坝复合砂体和单砂体的岩相组合模式,并结合储层渗流特征,认为从地质因素方面考虑,复合砂体间高耗水带易在坝主体Ⅱ-坝主体Ⅱ叠置模式中发育,单砂体内高耗水带易在单一坝主体Ⅱ岩相组合发育的朵叶体中部形成,垂向上高耗水带位置与坝主体Ⅱ发育位置相对应。

    Abstract

    The mid-high permeability sandstone reservoir has been in the late stage of ultra-high water cut after several de- cades of water flooding. The high water consumption zone with strong water absorption and low displacement efficiency were inevitably formed in the sandstone reservoirs,moreover formed only at a specific position of single sandbody. It has been difficult for regarding the geological analysis of single sand body as the research unit to meet the needs of residual oil excavation in such reservoirs. Based on the lithofacies analysis of core and outcrop,the development geological research unit was refined into the lithofacies combination grade with lithology as the main controlling factor,and the conventional logging data of the lithofacies combination were interpreted geologically by the grey correlation analysis method. Based on the well data,the lithofacies modes of the composite mouth sand bars and the single sand bodies in No.8 sand group of the second member of Shahejie Formation were summarized in the south of Tuo11 area. Combining with the seepage character-istics of the reservoir,it was concluded from the standpoint of static geological factors that the high water consumption zone would develop in the superposition mode of bar Ⅱ-bar Ⅱ in the composite sand bodies,and in the middle part of the lobe body of the single main bar Ⅱ mode in the single sand body,and the development position of the high water consumption zone corresponds to that of the bar Ⅱ in vertical direction.

  • 中高渗透砂岩油藏经数十年的注水开发,相继进入特高含水后期,产量逐渐降低[1-5],并在局部区域发育强吸水、低驱替效率的高耗水带。而高耗水带受储层非均质性和射孔位置影响,仅形成于单砂体的某一特定位置[6-9],故单砂体级别的地质分析已难以满足特高含水后期油藏的综合治理需求,而该类油藏中仍有可观剩余油储量可以挖潜[10-12],故需将开发地质表征单元细化至单砂体内的岩相组合,这有利于厘清单砂体内储层质量的变化规律及其对流体渗流的影响。岩相是沉积相分析的子单元,其强调岩性和层理样式的特征,各类岩相形成于亚环境或微环境中能量存在差异的部位;岩相组合单元可以类比于层序地层单元中的纹层组级别、开发地层单元的韵律层级别和储层构型单元中的9级构型级别[13]。在露头区沉积特征的解剖中,TURNER等依据岩性和层理特征,将英国东部石炭系Table砂岩划分为细砂岩波状层理等7类岩相类型,并根据岩相的垂向序列总结岩相组合类型,据此来分析沉积特征[14];陈彬滔等基于大同盆地云岗组露头的岩相体,分析了辫状河构型单元物性规律和非均质特征[15-16]。在地下储层地质分析中,张顺等综合利用岩心描述、地球化学测试等资料对中国东部断陷湖盆细粒沉积进行了岩相类型划分[17],曹志民等尝试利用机器学习方法对常规储层岩相进行测井识别[18]。在非常规储层的研究中,地质分析单元已经普遍达到岩相级别[19-23],而常规砂岩储层中的岩相及岩相组合也对储层物性和流体渗流特征具有明显地控制作用,岩相组合的识别和模式的建立对特高含水后期的中高渗透砂岩油藏剩余油挖潜意义重大。

  • 1 区域地质概况

  • 胜坨油田位于济阳坳陷东营凹陷北部陈南— 胜北区带,是一个受近EW走向的陈南铲式正断层的派生断层控制形成的逆牵引背斜构造油藏,由12条主要断层分割成胜一区、胜二区和胜三区,坨11井区南油藏位于胜三区穹窿背斜构造南翼的断裂带。沙二段8砂组是坨11井区南油藏重要的含油层系,砂体叠合连片,储层平均孔隙度约为29.8%,平均渗透率约为692.4mD,油藏南边与边水相连,含水率约为98%,属于典型的特高含水后期中高渗透砂岩断块油藏。

  • 2 岩相组合类型及测井识别

  • 2.1 岩相组合类型及其特征

  • 坨11井区南沙二段8砂组为三角洲前缘亚相,主要发育河口坝微相,河口坝砂体整体呈反旋回特征,但单砂体内部在岩性和层理特征上仍存在差异,基于研究区岩心和三角洲前缘河口坝露头的岩相分析,将河口坝砂体分为粉砂岩块状层理岩相、细砂岩交错层理岩相、细砂岩平行层理岩相、中砂岩交错层理岩相等10种岩相单元,其中粉砂岩交错层理岩相、细砂岩交错层理岩相在研究区最为常见。

  • 由于不同层理类型在非取心井上难以找到显著的常规测井响应差异,基于岩心描述,分析不同岩相单元在垂向上的发育情况,认为研究区共发育15种岩相垂向序列。以岩性为主要变量将河口坝砂体分为坝主体Ⅰ—Ⅳ共4类岩相组合类型(图1)。坝主体Ⅰ岩相组合形成于三角洲前缘朵叶体的中部—近岸部位的强水动力环境,沉积物以中砂岩为主,发育大型交错层理,局部块状层理和平行层理发育,砂体呈反旋回特征;共发育3种岩相垂向序列,常见的为细砂岩平行层理-中砂岩交错层理-中砂岩块状层理岩相垂向序列,GRSP 曲线为漏斗型,微电极曲线向上幅度差增大;稳定水动力时期坝主体Ⅰ内可能只存在中砂岩交错层理单一岩相。坝主体Ⅱ岩相组合形成于三角洲前缘朵叶体中部的中等—强水动力环境,为坝主体中最常见的岩相组合类型,沉积物以细砂岩为主,各类规模交错层理、平行层理和块状层理均有发育,砂体呈反旋回特征;共发育4种岩相垂向序列,常见的为粉砂岩块状层理-细砂岩交错层理-细砂岩平行层理-中砂岩交错层理岩相序列,GRSP 曲线表现为齿化漏斗型,微电极幅度差较坝主体Ⅰ减小;稳定水动力时期坝主体Ⅱ内可能只存在细砂岩交错层理单一岩相。坝主体Ⅲ岩相组合形成于三角洲前缘朵叶体中部与侧缘相对弱水动力环境,沉积物以粉砂岩为主,发育交错层理和块状层理沉积构造,砂体呈反旋回或复合旋回特征;共发育4种岩相垂向序列,常见的为粉砂岩块状层理-粉砂岩交错层理-细砂岩交错层理岩相序列,GRSP 曲线严重齿化。坝主体Ⅳ岩相组合形成于三角洲前缘朵叶中部与坝缘的弱水动力位置,沉积物以泥质粉砂岩为主,发育交错层理、块状层理和生物扰动,砂体呈反旋回或复合旋回特征;共发育4种岩相垂向序列,常见的为泥质粉砂岩块状层理-泥质粉砂岩交错层理-细砂岩交错层理-粉砂岩块状层理岩相序列,微电极曲线幅度差较小,发育生物扰动(图1)。坝主体Ⅱ岩相组合为研究区最重要的岩相组合类型,在取心段中占比达70.5%;坝主体Ⅳ岩相组合中储层物性相对较差,多表现为单砂体内的夹层。

  • 2.2 岩相组合类型的测井识别

  • 岩相组合类型的定量评价方法涉及到岩性、物性等多项内容,而每项包含多个测井参数,这些参数对储层岩相组合类型的合理划分具有十分重要的意义。岩相组合类型的测井定量识别是在优选测井参数的基础上,对这些参数进行综合评价,得到一个综合评价指标,据此对岩相组合类型进行识别[24]。而灰色关联分析法是根据因素之间发展趋势的相似或者相异程度来衡量各因素间关联程度的一种方法[25-27]。将其应用于对岩相组合类型较为敏感的优选测井参数的分析过程,计算出不同测井参数之间灰色关联度,获得岩相测井评价的综合参数,实现测井岩相组合定量识别,具体分为7个步骤。

  • 图1 坨11井区南沙二段8砂组河口坝砂体岩相组合类型特征

  • Fig.1 Feature of different mouth sand bar lithofacies combination in No.8sand group of the second member of Shahejie Formation in the south of Tuo11area

  • 第一步,确定参考序列与比较序列。为从数据信息的内部结构上分析被评判事物与其影响因素之间的关系,必须用某种数量指标定量化反映被评判事物的性质[28]。这种按一定顺序排列的数量指标,称为关联分析的参考序列,记为:

  • Xt(0)t=1,2,,n
    (1)
  • 子序列又称比较序列,是决定或影响被评判事物性质的各子因素数据的有序排列[29],考虑主因素的m个子因素,则有比较序列:

  • Xt(0)(i)i=1,2,,mt=1,2,,n
    (2)
  • 对测井数据整理后选取曲线,参考序列选用 GR;比较序列包括 ΔSP(自然电位归一化幅度差), Rt(4米梯度电极系电阻率),Δ|ML|,AC,确定参考序列与比较序列,获得的原始数据矩阵为:

  • (3)
  • 第二步,对所有测井曲线数列进行无量纲化处理。由于系统中各测井参数的物理意义不同,数据的量纲也不同,因此,要消除原始数据量纲,并转换为可比较的数据列。进行均质化变换为:

  • (4)
  • 第三步,求取子母序列的差序列。变换后的母序列为Xt(1)(0),子序列为Xt(1)(i),可计算出同一观测深度各因素与母因素观测值之间的绝对差值为:

  • (5)
  • 第四步,求取差序列矩阵元素的最大值和最小值。所有差序列所组成矩阵的元素的最大值和最小值,即求出所有比较序列各个深度点绝对差值中的最大值和最小值,因为比较序列均相互交互,所以Δmin一般取0。

  • (6)
  • (7)
  • 第五步,求关联度。参考序列与比较序列的关联系数为:

  • (8)
  • 在灰色关联系数基础上进一步求出灰色关联度。所谓关联程度,实质上是曲线间几何形状的差别程度。因为关联系数是比较序列与参考序列曲线中各点的关联程度的值,所以有必要将各点的关联系数集中为一个值,作为比较序列与参考序列间关联程度的表示[29]。而各比较因素与参考因素之间的关联度为:

  • (9)
  • 通过(9)式,获得岩相组合识别参数的关联度序列为(-0.334,0.394,0.089,0.067,0.116)

  • 第六步,通过灰色关联分析法,得到岩相组合类型识别的综合评价指数为:

  • Ie=-0.3340.3940.0890.0670.116×GRΔSPRtΔ|ML|AC
    (10)
  • 第七步,确定研究区储层岩相组合定量识别标准。通过以上岩相组合类型的综合评价指数计算,利用 GR-Ie交会图确定储层岩相组合类型定量识别图版(图2),其中坝主体Ⅰ岩相组合类型的常规测井解释标准为 GR<56且 Ie>0.46,坝主体Ⅱ的解释标准为56<GR<76且0.2<Ie<0.55,坝主体Ⅲ的解释标准为69.5<GR<80且0<Ie<0.2,坝主体Ⅳ的解释标准为GR>80且 Ie<0,从而实现单井常规测井资料的岩相组合定量解释。

  • 图2 坨11井区南沙二段8砂组河口坝砂体岩相组合测井识别图版

  • Fig.2 Logging interpretation plate of different mouth sand bar lithofacies combination in No.8sand group of the second member of Shahejie Formation in the south of Tuo11area

  • 3 河口坝砂体岩相组合模式

  • 3.1 复合砂体岩相组合模式

  • 坨11井区南沙二段8砂组复合砂体对应开发上的小层级次,单砂体对应单层级次,基于层次约束的沉积储层分析思路,综合岩心、测井响应特征进行复合砂体岩相组合模式分析,进而约束单砂体岩相组合模式分析。不同期次的河口坝沉积形成垂向上的多期坝体堆砌,同期多支分流河道向不同区域的物源供给形成侧向上的多个坝体叠置,据研究区测井解释图版(图2)解释的单井上岩相组合为分析单元,认为研究区河口坝复合砂体发育7种平面岩相组合模式和5种垂向岩相组合模式。

  • 河口坝体近岸一侧发育分流河道,顺物源方向由河道砂体过渡为河口坝砂体,发育分流河道-坝后-坝主体Ⅱ岩相组合模式(图3a)和分流河道-坝主体Ⅰ-坝主体Ⅱ模式(图3b),由于该处为分流河道向湖盆延伸最远位置,故分流河道砂体粒度偏细,多为粉砂岩,沉积构造以槽状交错层理和块状层理为主;垂直物源方向发育典型的坝上河模式,坝体被分流河道下切,形成坝主体Ⅱ-分流河道-坝主体Ⅱ岩相组合模式(图3c)和坝主体Ⅱ-分流河道-坝主体Ⅰ模式(图3d),坝上河与河口坝间一般存在冲刷界面,坝上河砂体粒度相对粗,多为中砂岩和细砂岩,发育典型的正韵律,对应岩性测井曲线呈钟形。在坝体边部,侧向叠置的坝体接触关系有同期不同坝体的坝缘相互叠置(图3e)和坝主体相互叠置(图3f,3g)类型。在坝缘叠置模式(图3e) 中不同坝体间叠置厚度较小,叠置位置沉积物粒度偏细,常见粉砂岩和泥质粉砂岩;供源河道横向摆动距离小则形成坝主体叠置模式(图3f,3g),其不同坝体间叠置厚度较大,叠置处主要发育细砂岩。

  • 不同期次砂体在垂向上都以隔层分隔,隔层以原生沉积型的泥质渗流屏障为主,局部发育物性隔层,其岩性以粉砂质泥岩和泥质粉砂岩为主。基于井上岩相组合解释及其垂向序列的分析,研究区常见的河口坝复合砂体垂向岩相组合模式包括坝主体Ⅱ-隔层-坝主体Ⅲ(ST3-9-258井,图3h)和坝主体Ⅱ-隔层-坝主体Ⅱ(ST3-10X357井,图3i)模式,其多发育于河口坝朵叶体中部区域,以及坝主体 Ⅱ-隔层-分流河道(ST3-9XN210井,图3j)、分流河道-隔层-坝主体Ⅱ(ST3-10C288井,图3k)和坝主体I-隔层-坝主体Ⅱ(ST3-10-240井,图3l)垂向岩相组合模式,其多发育于河口坝朵叶体近岸区域。

  • 3.2 单砂体岩相组合模式

  • 河口坝复合砂体可基于砂体间夹层进一步划分为多个单砂体,单砂体的沉积作用受物源供给和可容空间影响,在河口处的沉积物搬运、沉积速率有所差异,湖浪改造作用程度亦不同,故研究区河口坝单砂体在侧向和垂向上分别发育了6种和4种岩相组合模式。

  • 单砂体在顺物源方向岩相组合类型一般表现为由高能环境向低能环境的沉积过渡,如河口坝朵叶体远岸部位发育的坝主体Ⅲ-坝主体Ⅳ岩相组合模式(图3n)和其中部发育的坝主体Ⅰ-坝主体Ⅲ模式(图3p),若在河口坝体近岸部位有明显的坝后发育,则存在坝后-坝主体Ⅱ-坝主体Ⅲ岩相组合模式 (图3q)和坝后-坝主体Ⅰ-坝主体Ⅱ模式(图3r),这类单砂体平面岩相组合模式中沉积物粒度总体呈向湖盆方向变细的趋势;在河口坝朵叶体近岸部位还发育局部顺物源向高能环境过渡的坝主体Ⅱ-坝主体Ⅰ模式(图3o);沉积时期湖盆水动力相对稳定期形成的规模较大的单砂体中,发育坝主体Ⅱ单一岩相组合模式(图3m),该类储层的非均质性弱且孔渗条件较好。

  • 单砂体内局部发育夹层,夹层类型以泥质和物性夹层为主,也存在少量钙质夹层。单砂体内局部发育的坝主体Ⅳ岩相组合即为单砂体内的夹层,夹层分割的岩相组合类型一般上部为偏高能环境,基于单砂体的井上岩相组合垂向序列分析,研究区常见的河口坝单砂体垂向岩相组合模式有坝主体Ⅱ-夹层-坝主体Ⅱ(ST3-10-240井,图3s)、坝主体Ⅱ-夹层-坝主体Ⅰ(ST3-9XN238井,图3t)、坝主体IV夹层-坝主体Ⅲ(ST3-8-217井,图3u)和坝主体Ⅲ-夹层-坝主体Ⅱ(ST3-8-248井,图3v)4种。

  • 图3 坨11井区南沙二段8砂组河口坝砂体岩相组合三维分布模式

  • Fig.3 Three-dimensional distribution pattern diagram of different mouth sand bar lithofacies combination in No.8sand group of the second member of Shahejie Formation in the south of Tuo11area

  • 4 岩相组合对储层和流体渗流的控制作用

  • 坝主体Ⅰ—Ⅲ岩相组合均为中高孔高渗透储层,但其在相渗特征上表现出明显的渗流差异。由不同岩相组合的归一化相渗曲线(图4a)可知,坝主体Ⅰ和Ⅱ岩相组合的油相相渗高于坝主体Ⅲ,故前两者的驱油效果好于坝主体Ⅲ,坝主体Ⅱ岩相组合的残余油饱和度仅为20.9%,而坝主体Ⅲ为26.5%(图4b)。坝主体Ⅱ岩相组合的水相渗透率明显高于其他类型,进入特高含水后期水相优先在坝主体 Ⅱ岩相组合内渗流,其残余油饱和度条件下的水相渗透率也最高(图4b),即坝主体Ⅱ岩相组合发育的部位最易形成高耗水带。

  • 图4 坨11井区南沙二段8砂组河口坝砂体岩相组合的相渗特征

  • Fig.4 Relative permeability characteristics of different mouth sand bar lithofacies combination in No.8sand group of the second member of Shahejie Formation in the south of Tuo11area

  • 高耗水带一般只在单砂体的某一特定位置发育,故针对单砂体进行岩相组合的细分能够更准确的确定高耗水带的分布范围。从岩相组合模式来看,位于朵叶体中部的坝主体Ⅱ岩相组合最易形成高耗水带(图3m),而在单砂体内的坝主体Ⅰ-坝主体Ⅱ岩相组合模式中注入水也可能优先在相对远岸的坝主体Ⅱ位置形成高耗水带(图3o),在垂向上,较低的夹层密度和频率难以抑制特高含水后期高耗水带的形成,高耗水带垂向上的位置多与坝主体Ⅱ发育位置对应。高耗水带的展布在空间上不仅限于单砂体内,且能跨过连通性好的复合砂体在砂体间发育,坝主体Ⅱ-坝主体Ⅱ叠置模式中砂体间无隔挡(图3f),高耗水带最易在该模式的复合砂体中形成。

  • 5 结论

  • 特高含水后期中高渗透砂岩油藏内存在高耗水带,且高耗水带一般仅出现在单砂体的局部位置,以岩心、岩相为基础,以坝主体Ⅰ—Ⅳ岩相组合类型分析单元,能够提高开发地质研究精度,且岩相组合在灰色系统理论建立的常规测井解释图版上能够准确区分。坨11井区南沙二段8砂组河口坝复合砂体和单砂体内部发育多种岩相组合模式,考虑静态地质因素,复合砂体间高耗水带易在坝主体 Ⅱ-坝主体Ⅱ叠置模式中发育,单砂体内高耗水带易在单一坝主体Ⅱ岩相组合中的朵叶体中部形成,垂向上坝主体Ⅱ岩相组合区域较易形成高耗水带。

  • 符号解释:

  • Xt(0) ——参考序列;t ——序列序数;n ——序列长度;Xt(0)(i)—— 比较序列;i —— 序列号;m —— 序列数;Xt(0)(0)——GR序列;Xt(0)(1)——∆SP 序列;Xt(0)(2)——Rt 序列;Xt(0)(3) ——Δ|ML|序列;Xt(0)(4)—— AC序列;Xt(1)(i)—— 经均质化变换后的第i类序列;Δl(i,0)——第i类比较序列与参考序列的绝对差值;Δmax——所有差序列元素的最大值; Δmin——所有差序列元素的最小值;Lt(i, 0)——关联系数; ρ——分辨系数,其目的是削弱最大绝对差数值太大而失真的影响,提高关联系数之间的差异显著性,一般情况下取值为0.1~0.5;ri ——关联度,关联度越大,则该比较序列与参考序列的变化趋势越相似;Ie——综合评价指数;GR ——参考数列;ΔSPRt,Δ|ML|,AC等——比较序列。

  • 参考文献

    • [1] 李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.

    • [2] 王端平.对胜利油区提高原油采收率潜力及转变开发方式的思考[J].油气地质与采收率,2014,21(4):1-4.WANG Duanping.Some thoughts about potential of oil recovery ef⁃ ficiency and development model transition in Shengli district[J].Petroleum Geology and Recovery Efficiency,2014,21(4):1-4.

    • [3] 杜晓康,李治平,田丰,等.水驱油田高含水期体积波及系数预测方法[J].大庆石油地质与开发,2018,37(1):83-87.DU Xiaokang,LI Zhiping,TIAN Feng,et al.Predicting method of the volumetric swept coefficient for high-watercut waterflooded oilfields[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):83-87.

    • [4] 柏明星,张志超,李岩,等.砂岩油田高含水后期变流线精细调整研究[J].特种油气藏,2017,24(2):86-88,164.BAI Mingxing,ZHANG Zhichao,LI Yan,et al.Study on precise flooding direction adjustment of sandstone oilfields in the late stage with high water cut[J].Special Oil & Gas Reservoirs,2017,24(2):86-88,164.

    • [5] 计秉玉.对大庆油田油藏研究工作的几点认识[J].大庆石油地质与开发,2006,25(1):9-13.JI Bingyu.Understanding of reservoir study in Daqing Oil Field [J].Petroleum Geology & Oilfield Development in Daqing,2006,25(1):9-13.

    • [6] 李阳,吴胜和,侯加根,等.油气藏开发地质研究进展与展望 [J].石油勘探与开发,2017,44(4):569-579.LI Yang,WU Shenghe,HOU Jiagen,et al.Progress and prospects of reservoir development geology[J].Petroleum Exploration and Development,2017,44(4):569-579.

    • [7] 丁帅伟,姜汉桥,赵冀,等.水驱砂岩油藏优势通道识别综述 [J].石油地质与工程,2015,29(5):132-136.DING Shuaiwei,JIANG Hanqiao,ZHAO Ji,et al.General descrip⁃ tion of preferential migration passage in water-flood sandstone reservoir[J].Petroleum Geology and Engineering,2015,29(5):132-136.

    • [8] 肖康,穆龙新,姜汉桥,等.水驱优势通道下微观潜力分布及改变流线挖潜[J].西南石油大学学报:自然科学版,2017,39(5):92-100.XIAO Kang,MU Longxin,JIANG Hanqiao,et al.Microscopic dis⁃ tribution of potentially and changing streamline direction produc⁃ tion under water channeling path[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2017,39(5):92-100.

    • [9] 陈红伟,冯其红,张先敏,等.考虑优势通道发育的层状水驱油藏开发指标预测方法[J].油气地质与采收率,2017,24(4):72-77.CHEN Hongwei,FENG Qihong,ZHANG Xianmin,et al.A meth⁃ od of development index prediction for multi-layer waterflooding reservoir with preferential flow path[J].Petroleum Geology and Recovery Efficiency,2017,24(4):72-77.

    • [10] 韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J].石油勘探与开发,2010,37(5):583-591.HAN Dakuang.Discussions on concepts,countermeasures and technical routes for the redevelopment of high water-cut oilfields [J].Petroleum Exploration and Development,2010,37(5):583-591.

    • [11] 韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.HAN Dakuang.Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J].Acta Petrolei Sinica,2007,28(2):73-78.

    • [12] 邹存友,于立君.中国水驱砂岩油田含水与采出程度的量化关系[J].石油学报,2012,33(2):288-292.ZOU Cunyou,YU Lijun.A quantization relationship between wa⁃ ter cut and degree of reserve recovery for waterflooding sandstone reservoirs in China[J].Acta Petrolei Sinica,2012,33(2):288-292.

    • [13] 吴胜和,纪友亮,岳大力,等.碎屑沉积地质体构型分级方案探讨[J].高校地质学报,2013,19(1):12-22.WU Shenghe,JI Youliang,YUE Dali,et al.Discussion on hierar⁃ chical scheme of architectural units in clastic deposits[J].Geolog⁃ ical Journal of China Universities,2013,19(1):12-22.

    • [14] TURNER B R,TESTER G N.The table rocks sandstone:A fluvial,friction-dominated lobate mouth bar sandbody in the Westphalian B Coal Measures,NE England[J].Sedimentary Geology,2006,190(1/4):97-119.

    • [15] 陈彬滔,于兴河,王天奇,等.砂质辫状河岩相与构型特征—— 以山西大同盆地中侏罗统云冈组露头为例[J].石油与天然气地质,2015,36(1):111-117.CHEN Bintao,YU Xinghe,WANG Tianqi,et al.Lithofacies and architectural characteristics of sandy braided river deposits:a case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin,Shanxi Province[J].Oil & Gas Geology,2015,36(1):111-117.

    • [16] 杨丽莎,陈彬滔,李顺利,等.基于成因类型的砂质辫状河泥岩分布模式——以山西大同侏罗系砂质辫状河露头为例[J].天然气地球科学,2013,24(1):93-98.YANG Lisha,CHEN Bintao,LI Shunli,et al.Pattern of genesisbased mudstone distribution for sandy braided river:A case study of sandy braided-river outcrop,Datong,Shanxi province,China [J].Natural Gas Geoscience,2013,24(1):93-98.

    • [17] 张顺,刘惠民,陈世悦,等.中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例 [J].地质学报,2017,91(5):1 108-1 119.ZHANG Shun,LIU Huimin,CHEN Shiyue,et al.Classification scheme for lithofacies of fine-grained sedimentary rocks in fault⁃ ed basins of Eastern China:Insights from the fine-grained sedi⁃ mentary rocks in Paleogene,southern Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(5):1 108-1 119.

    • [18] 曹志民,吴云,韩建,等.测井数据岩相分类的机器学习方法和大数据岩相分类探讨[J].化工自动化及仪表,2017,44(8):717-720,729.CAO Zhimin,WU Yun,HAN Jian,et al.Machine learning meth⁃ ods for log data lithofacies classification and big data lithology classification discussion[J].Control and Instruments in Chemical Industry,2017,44(8):717-720,729.

    • [19] 付金华,邓秀芹,楚美娟,等.鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J].沉积学报,2013,31(5):928-938.FU Jinhua,DENG Xiuqin,CHU Meijuan,et al.Features of deep⁃ water lithofacies,Yanchang Formation in Ordos Basin and its pe⁃ troleum significance[J].Acta Sedimentologica Sinica,2013,31(5):928-938.

    • [20] 魏巍,朱筱敏,朱世发,等.二连盆地额仁淖尔凹陷下白垩统云质岩致密油储层特征与成因[J].中国石油勘探,2017,22(3):71-80.WEI Wei,ZHU Xiaomin,ZHU Shifa,et al.Characteristics and ori⁃ gin of the Lower Cretaceous dolomitic tight oil reservoir in Ere⁃ naor sag,Erlian Basin[J].China Petroleum Exploration,2017,22(3):71-80.

    • [21] 陈科洛,张廷山,梁兴,等.滇黔北坳陷五峰组-龙马溪组下段页岩岩相与沉积环境分析[J].沉积学报,2018,36(4):743-755.CHEN Keluo,ZHANG Tingshan,LIANG Xing,et al.Analysis of shale lithofacies and sedimentary environment on Wufeng Forma⁃ tion-Lower Longmaxi Formation in Dianqianbei Depression[J].Acta Sedimentologica Sinica,2018,36(4):743-755.

    • [22] 刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es 3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.

    • [23] 张茜,孙卫,杨晓菁,等.致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响:以鄂尔多斯盆地华庆地区长63储层为例[J].石油实验地质,2017,39(1):126-133.ZHANG Xi,SUN Wei,YANG Xiaojing,et al.Quantitative calcula⁃ tion of tight sandstone reservoir porosity evolution based on differ⁃ ent diagenesis:A case study of Chang 63 reservoir in Huaqing ar⁃ ea,Ordos Basin[J].Petroleum Geology & Experiment,2017,39(1):126-133.

    • [24] 孙洪志,刘吉余.储层综合定量评价方法研究[J].大庆石油地质与开发,2004,23(6):8-10.SUN Hongzhi,LIU Jiyu.Research on comprehensive and quantita⁃ tive reservoir evaluation[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2004,23(6):8-10.

    • [25] 宋子齐,谭成仟,曲政.利用灰色理论精细评价油气储层的方法[J].石油学报,1996,17(1):25-31.SONG Ziqi,TAN Chengqian,QU Zheng.Utilizing exact grey theo⁃ ry to evaluate oil and gas formation[J].Acta Petrolei Sinica,1996,17(1):25-31.

    • [26] 夏玉成,徐凤银.灰色关联分析在模糊综合评判中的应用[J].西安矿业学院学报,1991,11(1):44-50.XIA Yucheng,XU Fengyin.Application of grey correlation analy⁃ sis in fuzzy comprehensive assessment[J].Journal of Xi’an Min⁃ ing Institute,1991,11(1):44-50.

    • [27] 连承波,李汉林,钟建华,等.基于灰色关联分析的储层含油气性气测解释方法[J].中国石油大学学报:自然科学版,2008,32(1):29-32.LIAN Chengbo,LI Hanlin,ZHONG Jianhua,et al.Gas logging in⁃ terpretation method of oil-gas potential reservoirs based on grey correlation analysis[J].Journal of China University of Petroleum:Science & Technology Edition,2008,32(1):29-32.

    • [28] 徐凤银,朱兴珊,颜其彬,等.储层定量评价中指标权重的计算途径[J].石油学报,1996,17(2):29-35.XU Fengyin,ZHU Xingshan,YAN Qibin,et al.An approach to de⁃ fine weight of indexes in the quantitative evaluation of reservoirs [J].Acta Petrolei Sinica,1996,17(2):29-35.

    • [29] 于萍,李克.使用Microsoft Excel进行数据的灰关联分析[J].微型电脑应用,2011,27(3):29-30,37.YU Ping,LI Ke.Gray correlation analysis of data using Microsoft Excel[J].Microcomputer Applications,2011,27(3):29-30,37.

  • 参考文献

    • [1] 李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.

    • [2] 王端平.对胜利油区提高原油采收率潜力及转变开发方式的思考[J].油气地质与采收率,2014,21(4):1-4.WANG Duanping.Some thoughts about potential of oil recovery ef⁃ ficiency and development model transition in Shengli district[J].Petroleum Geology and Recovery Efficiency,2014,21(4):1-4.

    • [3] 杜晓康,李治平,田丰,等.水驱油田高含水期体积波及系数预测方法[J].大庆石油地质与开发,2018,37(1):83-87.DU Xiaokang,LI Zhiping,TIAN Feng,et al.Predicting method of the volumetric swept coefficient for high-watercut waterflooded oilfields[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):83-87.

    • [4] 柏明星,张志超,李岩,等.砂岩油田高含水后期变流线精细调整研究[J].特种油气藏,2017,24(2):86-88,164.BAI Mingxing,ZHANG Zhichao,LI Yan,et al.Study on precise flooding direction adjustment of sandstone oilfields in the late stage with high water cut[J].Special Oil & Gas Reservoirs,2017,24(2):86-88,164.

    • [5] 计秉玉.对大庆油田油藏研究工作的几点认识[J].大庆石油地质与开发,2006,25(1):9-13.JI Bingyu.Understanding of reservoir study in Daqing Oil Field [J].Petroleum Geology & Oilfield Development in Daqing,2006,25(1):9-13.

    • [6] 李阳,吴胜和,侯加根,等.油气藏开发地质研究进展与展望 [J].石油勘探与开发,2017,44(4):569-579.LI Yang,WU Shenghe,HOU Jiagen,et al.Progress and prospects of reservoir development geology[J].Petroleum Exploration and Development,2017,44(4):569-579.

    • [7] 丁帅伟,姜汉桥,赵冀,等.水驱砂岩油藏优势通道识别综述 [J].石油地质与工程,2015,29(5):132-136.DING Shuaiwei,JIANG Hanqiao,ZHAO Ji,et al.General descrip⁃ tion of preferential migration passage in water-flood sandstone reservoir[J].Petroleum Geology and Engineering,2015,29(5):132-136.

    • [8] 肖康,穆龙新,姜汉桥,等.水驱优势通道下微观潜力分布及改变流线挖潜[J].西南石油大学学报:自然科学版,2017,39(5):92-100.XIAO Kang,MU Longxin,JIANG Hanqiao,et al.Microscopic dis⁃ tribution of potentially and changing streamline direction produc⁃ tion under water channeling path[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2017,39(5):92-100.

    • [9] 陈红伟,冯其红,张先敏,等.考虑优势通道发育的层状水驱油藏开发指标预测方法[J].油气地质与采收率,2017,24(4):72-77.CHEN Hongwei,FENG Qihong,ZHANG Xianmin,et al.A meth⁃ od of development index prediction for multi-layer waterflooding reservoir with preferential flow path[J].Petroleum Geology and Recovery Efficiency,2017,24(4):72-77.

    • [10] 韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J].石油勘探与开发,2010,37(5):583-591.HAN Dakuang.Discussions on concepts,countermeasures and technical routes for the redevelopment of high water-cut oilfields [J].Petroleum Exploration and Development,2010,37(5):583-591.

    • [11] 韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.HAN Dakuang.Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J].Acta Petrolei Sinica,2007,28(2):73-78.

    • [12] 邹存友,于立君.中国水驱砂岩油田含水与采出程度的量化关系[J].石油学报,2012,33(2):288-292.ZOU Cunyou,YU Lijun.A quantization relationship between wa⁃ ter cut and degree of reserve recovery for waterflooding sandstone reservoirs in China[J].Acta Petrolei Sinica,2012,33(2):288-292.

    • [13] 吴胜和,纪友亮,岳大力,等.碎屑沉积地质体构型分级方案探讨[J].高校地质学报,2013,19(1):12-22.WU Shenghe,JI Youliang,YUE Dali,et al.Discussion on hierar⁃ chical scheme of architectural units in clastic deposits[J].Geolog⁃ ical Journal of China Universities,2013,19(1):12-22.

    • [14] TURNER B R,TESTER G N.The table rocks sandstone:A fluvial,friction-dominated lobate mouth bar sandbody in the Westphalian B Coal Measures,NE England[J].Sedimentary Geology,2006,190(1/4):97-119.

    • [15] 陈彬滔,于兴河,王天奇,等.砂质辫状河岩相与构型特征—— 以山西大同盆地中侏罗统云冈组露头为例[J].石油与天然气地质,2015,36(1):111-117.CHEN Bintao,YU Xinghe,WANG Tianqi,et al.Lithofacies and architectural characteristics of sandy braided river deposits:a case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin,Shanxi Province[J].Oil & Gas Geology,2015,36(1):111-117.

    • [16] 杨丽莎,陈彬滔,李顺利,等.基于成因类型的砂质辫状河泥岩分布模式——以山西大同侏罗系砂质辫状河露头为例[J].天然气地球科学,2013,24(1):93-98.YANG Lisha,CHEN Bintao,LI Shunli,et al.Pattern of genesisbased mudstone distribution for sandy braided river:A case study of sandy braided-river outcrop,Datong,Shanxi province,China [J].Natural Gas Geoscience,2013,24(1):93-98.

    • [17] 张顺,刘惠民,陈世悦,等.中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例 [J].地质学报,2017,91(5):1 108-1 119.ZHANG Shun,LIU Huimin,CHEN Shiyue,et al.Classification scheme for lithofacies of fine-grained sedimentary rocks in fault⁃ ed basins of Eastern China:Insights from the fine-grained sedi⁃ mentary rocks in Paleogene,southern Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(5):1 108-1 119.

    • [18] 曹志民,吴云,韩建,等.测井数据岩相分类的机器学习方法和大数据岩相分类探讨[J].化工自动化及仪表,2017,44(8):717-720,729.CAO Zhimin,WU Yun,HAN Jian,et al.Machine learning meth⁃ ods for log data lithofacies classification and big data lithology classification discussion[J].Control and Instruments in Chemical Industry,2017,44(8):717-720,729.

    • [19] 付金华,邓秀芹,楚美娟,等.鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J].沉积学报,2013,31(5):928-938.FU Jinhua,DENG Xiuqin,CHU Meijuan,et al.Features of deep⁃ water lithofacies,Yanchang Formation in Ordos Basin and its pe⁃ troleum significance[J].Acta Sedimentologica Sinica,2013,31(5):928-938.

    • [20] 魏巍,朱筱敏,朱世发,等.二连盆地额仁淖尔凹陷下白垩统云质岩致密油储层特征与成因[J].中国石油勘探,2017,22(3):71-80.WEI Wei,ZHU Xiaomin,ZHU Shifa,et al.Characteristics and ori⁃ gin of the Lower Cretaceous dolomitic tight oil reservoir in Ere⁃ naor sag,Erlian Basin[J].China Petroleum Exploration,2017,22(3):71-80.

    • [21] 陈科洛,张廷山,梁兴,等.滇黔北坳陷五峰组-龙马溪组下段页岩岩相与沉积环境分析[J].沉积学报,2018,36(4):743-755.CHEN Keluo,ZHANG Tingshan,LIANG Xing,et al.Analysis of shale lithofacies and sedimentary environment on Wufeng Forma⁃ tion-Lower Longmaxi Formation in Dianqianbei Depression[J].Acta Sedimentologica Sinica,2018,36(4):743-755.

    • [22] 刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es 3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.

    • [23] 张茜,孙卫,杨晓菁,等.致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响:以鄂尔多斯盆地华庆地区长63储层为例[J].石油实验地质,2017,39(1):126-133.ZHANG Xi,SUN Wei,YANG Xiaojing,et al.Quantitative calcula⁃ tion of tight sandstone reservoir porosity evolution based on differ⁃ ent diagenesis:A case study of Chang 63 reservoir in Huaqing ar⁃ ea,Ordos Basin[J].Petroleum Geology & Experiment,2017,39(1):126-133.

    • [24] 孙洪志,刘吉余.储层综合定量评价方法研究[J].大庆石油地质与开发,2004,23(6):8-10.SUN Hongzhi,LIU Jiyu.Research on comprehensive and quantita⁃ tive reservoir evaluation[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2004,23(6):8-10.

    • [25] 宋子齐,谭成仟,曲政.利用灰色理论精细评价油气储层的方法[J].石油学报,1996,17(1):25-31.SONG Ziqi,TAN Chengqian,QU Zheng.Utilizing exact grey theo⁃ ry to evaluate oil and gas formation[J].Acta Petrolei Sinica,1996,17(1):25-31.

    • [26] 夏玉成,徐凤银.灰色关联分析在模糊综合评判中的应用[J].西安矿业学院学报,1991,11(1):44-50.XIA Yucheng,XU Fengyin.Application of grey correlation analy⁃ sis in fuzzy comprehensive assessment[J].Journal of Xi’an Min⁃ ing Institute,1991,11(1):44-50.

    • [27] 连承波,李汉林,钟建华,等.基于灰色关联分析的储层含油气性气测解释方法[J].中国石油大学学报:自然科学版,2008,32(1):29-32.LIAN Chengbo,LI Hanlin,ZHONG Jianhua,et al.Gas logging in⁃ terpretation method of oil-gas potential reservoirs based on grey correlation analysis[J].Journal of China University of Petroleum:Science & Technology Edition,2008,32(1):29-32.

    • [28] 徐凤银,朱兴珊,颜其彬,等.储层定量评价中指标权重的计算途径[J].石油学报,1996,17(2):29-35.XU Fengyin,ZHU Xingshan,YAN Qibin,et al.An approach to de⁃ fine weight of indexes in the quantitative evaluation of reservoirs [J].Acta Petrolei Sinica,1996,17(2):29-35.

    • [29] 于萍,李克.使用Microsoft Excel进行数据的灰关联分析[J].微型电脑应用,2011,27(3):29-30,37.YU Ping,LI Ke.Gray correlation analysis of data using Microsoft Excel[J].Microcomputer Applications,2011,27(3):29-30,37.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告