en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

熊伟(1971—),男,湖北监利人,高级工程师,博士,从事油气勘探及石油地质综合研究工作。联系电话:13561060291,E-mail:xiongwei597.slyt@sinopec.com。

中图分类号:TE121.1+4

文献标识码:A

文章编号:1009-9603(2019)03-0020-11

DOI:10.13673/j.cnki.cn37-1359/te.2019.03.003

参考文献 1
SULZBACHER H,JUNG R.Numerical simulation of geothermal energy production from hydraulic fractures in tight sedimentary rock formations by cyclic-injection-production-schemes [J].Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften,2010,161(1):99-109.
参考文献 2
周总瑛,刘世良,刘金侠.中国地热资源特点与发展对策[J].自然资源学报,2015,30(7):1 210-1 221.ZHOU Zongying,LIU Shiliang,LIU Jinxia.Study on the character⁃ istics and development strategies of geothermal resources in China [J].Journal of Natural Resources,2015,30(7):1 210-1 221.
参考文献 3
张红波.地热资源可循环利用井网模式评价方法——以东营凹陷中央隆起带地热田为例[J].油气地质与采收率,2017,24(1):86-91.ZHANG Hongbo.A well pattern evaluation method for geothermal resource recycling-A case study of geothermal field in the central uplift belt of Dongying sag[J].Petroleum Geology and Recovery Efficiency,2017,24(1):86-91.
参考文献 4
DUFFIELD W A,SASS J H.Geothermal energy:Clean power from the earth’s heat[M].Reston,Virginia:US Geological Survey,2003.
参考文献 5
闫强,于汶加,王安建,等.全球地热资源述评[J].可再生能源,2009,27(6):69-73.YAN Qiang,YU Wenjia,WANG Anjian,et al.Review on the glob⁃ al geothermal resources[J].Renewable Energy,2009,27(6):69-73.
参考文献 6
杨绪充.试论济阳坳陷的地温场[J].华东石油学院学报:自然科学版,1985,26(1):14-26.YANG Xuchong.Notes of geothermal field in Jiyang depression [J].Journal of East China Petroleum Institute:Edition of Natural Science,1985,26(1):14-26.
参考文献 7
DANSGAARD W.Stable isotopes in precipitation[J].Tellus,1964,16(4):436-468.
参考文献 8
CONNOLLY C A,WALTER L M,BAADSGAARD H,et al.Origin and evolution of formation waters,Alberta Basin,Western Canada Sedimentary Basin.Part II.Isotope systematics and water mixing [J].Applied Geochemistry,1990,5(4):397-413.
参考文献 9
SUKHIJA B S,NAGABHUSHANAM P,REDDY D V.Groundwa⁃ ter recharge in semi-arid regions of India:An overview of results obtained using tracers[J].Hydrogeology Journal,1996,4(3):50-71.
参考文献 10
WORDEN R H,COLEMAN M L,MATRAY J M.Basin scale evo⁃ lution of formation waters:A diagenetic and formation water study of the Triassic Chaunoy Formation,Paris Basin[J].Geochimica et Cosmochimica Acta,1999,63(17):2 513-2 528.
参考文献 11
BARNABY R J,OETTING G C,GAO G.Strontium isotopic signa⁃ tures of oil-field waters:Applications for reservoir characterization [J].AAPG Bulletin,2004,88(12):1 677-1 704.
参考文献 12
GRASSI S,CORTECCI G,SQUARCI P.Groundwater resource degradation in coastal plains:The example of the Cecina area(Tuscany-Central Italy)[J].Applied Geochemistry,2007,22(11):2 273-2 289.
参考文献 13
KHARAKA Y K,HANOR J S.Deep fluids in the continents:I.Sedimentary basins[J].Treatise on Geochemistry,2003,5:499-540.
参考文献 14
PHAN T T,CAPO R C,STEWART B W,et al.Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale,Appalachian Basin[J].Chemical Geology,2016,420:162-179.
参考文献 15
孙向阳,解习农.东营凹陷地层水化学特征与油气聚集关系 [J].石油实验地质,2001,23(3):291-296.SUN Xiangyang,XIE Xinong.Relationship between the chemical characteristics of formation water and hydrocarbon accumulation in the Dongying sag[J].Petroleum Geology & Experiment,2001,23(3):291-296.
参考文献 16
陈中红,查明.陆相断陷咸化湖盆地层水化学场响应及与油气聚集关系——以渤海湾盆地东营凹陷为例[J].地质科学,2010,45(2):476-489.CHEN Zhonghong,ZHA Ming.Response of formation water chemi⁃ cal fields and its relation to the hydrocarbon accumulation in the saline faulted-basin:A case study of Paleogene system in Dongy⁃ ing sag[J].Chinese Journal of Geology,2010,45(2):476-489.
参考文献 17
张善文,张林晔,包友书,等.东营凹陷地层流体特征与油气成藏[J].石油勘探与开发,2012,39(4):394-405.ZHANG Shanwen,ZHANG Linye,BAO Youshu,et al.Formation fluid characteristics and hydrocarbon accumulation in the Dongy⁃ ing Sag,Shengli Oilfield[J].Petroleum Exploration and Develop⁃ ment,2012,39(4):394-405.
参考文献 18
RITTENHOUSE G.Bromine in oil-field waters and its use in de⁃ termining possibilities of origin of these waters[J].AAPG Bulle⁃ tin,1967,51(12):2 430-2 440.
参考文献 19
COLLINS A G.Chemistry of some Anadarko Basin brines contain⁃ ing high concentrations of iodide[J].Chemical Geology,1969,4(1/2):169-187.
参考文献 20
DINELLI E,LIMA A,ALBANESE S,et al.Major and trace ele⁃ ments in tap water from Italy[J].Journal of Geochemical Explora⁃ tion,2012,112(1):54-75.
参考文献 21
PANNO S V,HACKLEY K C,LOCKE R A,et al.Formation wa⁃ ters from Cambrian-age strata,Illinois Basin,USA:Constraints on their origin and evolution[J].Geochimica et Cosmochimica Acta,2013,122(6):184-197.
参考文献 22
BRIMA E I.Physicochemical properties and the concentration of anions,major and trace elements in groundwater,treated drinking water and bottled drinking water in Najran area,KSA[J].Applied Water Science,2017,7(1):401-410.
参考文献 23
曾溅辉,吴琼,杨海军,等.塔里木盆地塔中地区地层水化学特征及其石油地质意义[J].石油与天然气地质,2008,29(2):223-229.ZENG Jianhui,WU Qiong,YANG Haijun,et al.Chemical charac⁃ teristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J].Oil & Gas Geolo⁃ gy,2008,29(2):223-229.
参考文献 24
刘元晴,曾溅辉,周乐,等.惠民凹陷沙河街组地层水化学特征及其成因[J].现代地质,2013,27(5):1 110-1 119.LIU Yuanqing,ZENG Jianhui,ZHOU Le,et al.Geochemical char⁃ acteristics and origin of Shahejie Formation water in Huimin Sag [J].Geoscience,2013,27(5):1 110-1 119.
参考文献 25
李建森,李廷伟,马海州,等.柴达木盆地西部新近系和古近系油田卤水水化学特征及其地质意义[J].水文地质工程地质,2013,40(6):28-36.LI Jiansen,LI Tingwei,MA Haizhou,et al.Investigation of the chemical characteristics and its geological significance of the Ter⁃ tiary oilfield brine in the western Qaidam basin[J].Hydrogeology and Engineering Geology,2013,40(6):28-36.
参考文献 26
肖骢,杜尧,陈柳竹,等.南海北部沉积盆地油田水水化学特征及其成因分析[J].水文地质工程地质,2015,42(2):16-23.XIAO Cong,DU Yao,CHEN Liuzhu,et al.Hydrochemical charac⁃ teristics and origin analysis of the oilfield water in the north part of the sedimentary basins in the South China Sea[J].Hydrogeolo⁃ gy & Engineering Geology,2015,42(2):16-23.
参考文献 27
刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.
参考文献 28
任建业,于建国,张俊霞.济阳坳陷深层构造及其对中新生代盆地发育的控制作用[J].地学前缘,2009,16(4):117-137.RENG Jianye,YU Jianguo,ZHANG Junxia.Structures of deep bed in Jiyang Sag and their control over the development of Meso⁃ zoic and Cenozoic basins[J].Earth Science Frontiers,2009,16(4):117-137.
参考文献 29
姜素华,李金山,夏冬明,等.剥蚀厚度恢复法在渤海湾盆地济阳坳陷孔店组应用[J].中国海洋大学学报:自然科学版,2011,41(4):97-102.JIANG Suhua,LI Jinshan,XIA Dongming,et al.The recovering denudation method and its application in Kongdian Formation of Jiyang Depression,Bohai Bay Basin[J].Periodical of Ocean Uni⁃ versity of China,2011,41(4):97-102.
参考文献 30
董敏,张瑞.东营凹陷输导体系构成特征[J].复杂油气藏,2015,8(4):19-22.DONG Min,ZHANG Rui.Constitution characteristics of the con⁃ ducting system in Dongying Sag[J].Complex Hydrocarbon Reser⁃ voirs,2015,8(4):19-22.
参考文献 31
张凯,倪金龙,马骁骐.东营凹陷沙三段断裂系统分形特征及构造储集层预测[J].桂林理工大学学报,2015,35(1):47-52.ZHANG Kai,NI Jinlong,MA Xiaoqi.Characteristics of fractural dimension and prediction of structural reservoir in Es3 of Dongy⁃ ing depression[J].Journal of Guilin University of Technology,2015,35(1):47-52.
参考文献 32
BIANCHINI G,PENNISI M,CIONI R,et al.Hydrochemistry of the high-boron groundwaters of the Cornia aquifer(Tuscany,Ita⁃ ly)[J].Geothermics,2005,34(3):297-319.
参考文献 33
AKOTEYON I S.Hydrochemical studies of ground water in parts of Lagos,Southwestern Nigeria[J].Bulletin of Geography.Physical Geography Series,2013,6(1):27-42.
参考文献 34
VERWEIJ J M.Hydrocarbon migration systems analysis[M].Am⁃ sterdam-London-New York-Tokyo:Elsevier,1993:121-189.
参考文献 35
覃伟,李仲东,郑振恒,等.鄂尔多斯盆地大牛地气田地层水特征及成因分析[J].岩性油气藏,2011,23(5):115-120.QIN Wei,LI Zhongdong,ZHENG Zhenheng,et al.Characteristics and genesis of formation water in Daniudi Gas Field,Ordos Basin [J].Lithologic Reservoirs,2011,23(5):115-120.
参考文献 36
郭士明.东营凹陷油田水化学特征及成因类型研究[J].石油天然气学报,2012,34(12):37-41.GUO Shiming.Genetic types and chemistry characteristics of oil⁃ field water in Dongying Depression[J].Journal of Oil and Gas Technology,2012,34(12):37-41.
参考文献 37
张红波.东营凹陷馆陶—东营组地热流体化学特征及成因分析[J].化工管理,2016,(26):121.ZHANG Hongbo.Chemical characteristics and genesis analysis of hydrothermal water of Guantao-Dongying Formation in Dongying Sag[J].Chemical Enterprise Management,2016,(26):121.
参考文献 38
王居峰.济阳坳陷东营凹陷古近系沙河街组沉积相[J].古地理学报,2005,7(1):45-58.WANG Jufeng.Sedimentary facies of the Shahejie Formation of Paleogene in Dongying Sag,Jiyang Depression[J].Journal of Pal⁃ aeogeography,2005,7(1):45-58.
参考文献 39
YUAN G H,GLUYAS J,CAO Y C,et al.Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongy⁃ ing Sag,Bohai Bay Basin,East China[J].Marine and Petroleum Geology,2015,62(1):77-89.
参考文献 40
杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.
参考文献 41
钱凯,王素民,刘淑范,等.东营凹陷早第三纪湖水盐度的计算 [J].石油学报,1982,3(4):95-102.QIAN Kai,WANG Sumin,LIU Shufan,et al.Evolution of salinity of lake water in Tertiary of the Dongying depression[J].Acta Petrolei Sinica,1982,3(4):95-102.
参考文献 42
陆现彩,胡文宣,符琦,等.利用碳酸盐矿物成分研究沉积-成岩过程中流体盐度演化──以东营凹陷沙四段低熟油烃源岩为例[J].沉积学报,1998,16(1):120-126.LU Xiancai,HU Wenxuan,FU Qi,et al.Study of salinity evolution of geofluids during syngenesis and diagenesis using composition of carbonate minerals-An example of the immature source rocks of Shasi Member in Dongying Depression[J].Acta Sedimentologi⁃ ca Sinica,1998,16(1):120-126.
参考文献 43
SCHMIDT V,MCDONALD D A.Texture and recognition of sec⁃ ondary porosity in sandstones[J].Special Publications,1979:209-225.
参考文献 44
BERNER E K,BERNER R A.The global water cycle:Geochemis⁃ try and environment[M].New Jersey:Prentice-Hall Canada,1987.
参考文献 45
COOKENBOO H O,BUSTIN R M.Pore water evolution in sand⁃ stones of the Groundhog Coalfield,northern Bowser Basin,British Columbia[J].Sedimentary Geology,1999,123(1/2):129-146.
参考文献 46
MENG W,ZENG J H,CAO Z,et al.Material exchange and migra⁃ tion between pore fluids and sandstones during diagenetic process⁃ es in rift basins:A case study based on analysis of diagenetic prod⁃ ucts in Dongying Sag,Bohai Bay Basin,East China[J].Geofluids,2018:1-20.
参考文献 47
王伟.东营凹陷新近系馆陶组油气成藏条件分析[J].石油地质与工程,2012,26(3):28-31.WANG Wei.Condition potential analysis of hydrocarbon accumu⁃ lation of Neogene Guantao formation in Dongying depression[J].Petroleum Geology and Engineering,2012,26(3):28-31.
参考文献 48
周训,李慈君.海水蒸发轨迹线及其应用[J].地球科学——中国地质大学学报,1995,20(4):410-414.ZHOU Xun,LI Cijun.Seawater evaporation trajectories and their application[J].Earth Science-Journal of China University of Geo⁃ sciences,1995,20(4):410-414.
参考文献 49
蔡春芳,梅博文,马亭,等.塔里木盆地油田水的成因与演化 [J].地质论评,1997,43(6):650-657.CAI Chunfang,MEI Bowen,MA Ting,et al.Origin and evolution of oilfield waters in the Tarim Basin[J].Geological Review,1997,43(6):650-657.
参考文献 50
HOERING T C.Thermal reactions of kerogen with added water,heavy water and pure organic substances[J].Organic Geochemis⁃ try,1984,5(4):267-278.
参考文献 51
EGLINTON T I,ROWLAND S J,CURTIS C D,et al.Kerogenmineral reactions at raised temperatures in the presence of water [J].Organic Geochemistry,1986,10(4):1 041-1 052.
参考文献 52
SCHIMMELMANN A,BOUDOU J P,LEWAN M D,et al.Experi⁃ mental controls on D/H and 13C/12C ratios of kerogen,bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry,2001,32(8):1 009-1 018.
参考文献 53
张善文.成岩过程中的“耗水作用”及其石油地质意义[J].沉积学报,2007,25(5):701-707.ZHANG Shanwen“.Water consumption”in diagenetic stage and its petroleum geological significance[J].Acta Sedimentologica Si⁃ nica,2007,25(5):701-707.
参考文献 54
王永诗,张守春,朱日房.烃源岩生烃耗水机制与油气成藏[J].石油勘探与开发,2013,40(2):242-249.WANG Yongshi,ZHANG Shouchun,ZHU Rifang.Water con⁃ sumption in hydrocarbon generation and its significance to reser⁃ voir formation[J].Petroleum Exploration and Development,2013,40(2):242-249.
参考文献 55
熊振,王良书,李成,等.东营凹陷现代热流场特征及地热异常成因[J].石油勘探与开发,1999,26(4):38-41.XIONG Zhen,WANG Liangshu,LI Cheng,et al.Determination and interpretation of the terrestrial heat flow in Dongying depres⁃ sion[J].Petroleum Exploration and Development,1999,26(4):38-41.
参考文献 56
FETH J H,GIBBS R J.Mechanisms controlling world water chem⁃ istry:Evaporation-crystallization process[J].Science,1971,172(3985):870-872.
目录contents

    摘要

    中国东部陆相断陷湖盆具有丰富的地下热水资源,但该类盆地缺乏针对地下热水的同位素及微量元素测试分析,限制了对该区地下热水来源及演化的研究,制约了地下热水的勘探及开发。以东营凹陷为例,利用地下热水的常量离子特征、离子参数等指标对研究区地下热水进行分类,结合不同类型地下热水的温压场特征及储水层水-岩反应产物,探讨不同类型地下热水的来源及演化。研究结果表明:东营凹陷主要存在3种不同类型的地下热水。第1类地下热水赋存于东营组及馆陶组,处于常温、常压的开放环境,为经历大气水入渗改造及蒸发浓缩作用的大气降水;第2类地下热水赋存于沙三段、沙二段、沙一段和东营组,处于常压-超压过渡体系,为经历浓缩改造及有机来源CO2改造的原始淡水-半咸水的湖泊水;第3类地下热水赋存于沙四段、沙三段,总体处于超压体系,为经历浓缩改造、有机来源CO2改造及硬石膏溶蚀改造的原始盐湖相的湖泊水。

    Abstract

    The faulted lacustrine basin in eastern China is rich in underground hot water resources. The lack of isotopic and trace element analysis tests for underground hot water in this type of basin limits the research of the origin and evolution of underground hot water in this area and restricts the exploration and development of underground hot water. In this study, Dongying Sag was taken as the main research area,the constant ion characteristics,ion parameters and other indicators were first used to classify the underground hot water in the research area. The source and evolution process of underground hot water in the faulted lacustrine basin were discussed by using temperature and pressure characteristics of different types of underground hot water and the water-rock reaction products of reservoirs. Studies have shown that there are three differ- ent types of underground hot water in Dongying Sag. The first type of underground hot water is meteoric water which is con- centrated in Dongying Formation and Guantao Formation,and it is in an open environment of normal temperature and atmo- spheric pressure that experiences a certain degree of atmospheric infiltration transformation and evaporation concentration of atmospheric precipitation. The second type of underground hot water is the lake water which is concentrated in the three segments of Shahejie Formation,Dongying Formation and Guantao Formation,and it is in an atmospheric-overpressure transition system that experiences water consumption concentration,CO2 injection from organic sources and related waterrock reactions. The third type of underground hot water is the origin saline lacustrine water which is concentrated in the fourth member and the third member of Shahejie Formation,and it is totally in an overpressure system that experiences wa- ter consumption concentration,CO2 injection from organic sources and karstenite dissolution.

  • 当前,能源短缺和环境污染已经严重制约人类社会的发展。地热资源作为新能源的重要组成部分,以其储量大、分布广、节能环保、稳定性好、利用系数高等特点,越来越引起世界各国的重视[1-3]。中国东部位于地热资源丰富的环太平洋地热带,普遍发育的中-新生代盆地蕴藏丰富的中-低温地下热水资源[24],其中渤海湾盆地平均热流值大于 65 W/ m2,是典型的热盆[25]。在渤海湾盆地的诸多凹陷中,东营凹陷具有相对较高的地温梯度及热流值,地热资源丰富[6]。明确地下热水的流体来源及演化过程对于预测地下热水分布、储量具有极为重要的意义。

  • 不同来源或经历不同演化过程的地下热水的同位素特征及微量元素特征具有一定的差异性,地质学家一般利用其推断地下热水的成因及演化过程,并提出了一系列的判识标准[7-14]。由于地下热水同位素及微量元素测试周期长、费用高,以东营凹陷为代表的中国东部断陷盆地普遍缺乏这些数据[15-17],制约了地下热水成因及演化过程研究,限制了地下热水资源的预测及开发。部分地质学家试图建立地下热水中常量离子与微量元素及同位素特征之间的关系,利用常量离子反演地下热水流体来源及演化过程[18-22]。但现阶段,该类研究集中于海相盆地中海水的蒸发浓缩及单一成岩过程中离子的亏损及富集,对于中国东部陆相湖盆中经历复杂而强烈浓缩及水-岩改造的地下热水并不完全适用。中国陆相盆地地下热水的研究主要集中于利用几种常见的离子系数定性-半定量的判断其封闭性及水-岩反应强度[15-1723-26],亟待加强利用地下热水中常量离子组分判断地下热水来源及水-岩反应过程的研究。

  • 考虑到沉积盆地水-岩反应的阶段性,认为其对于地下热水的改造也具有阶段性。埋藏过程中,砂泥岩层系内的地下热水与岩石骨架(矿物、有机质)等发生一系列的水-岩反应,某一地质作用导致的多种水-岩反应使得多种离子以不同比例进入地下热水。为此,笔者根据东营凹陷地下热水常量离子含量、离子系数对地下热水进行分类;利用 SPSS21 软件对同一类地下热水中常量离子的关联系数进行分析,结合地下热水的赋存状态,探讨不同常量离子的相关性及其可能的来源;利用SPSS21软件提取同一类地下热水中常量离子的主因子,结合地质条件分析、薄片观察,判断该主因子所代表的水-岩反应类型,并利用主因子的系数定量判断该类水-岩反应对地下热水常量离子含量的贡献量。该研究对于判断陆相沉积盆地地下热水的来源及水-岩改造过程具有重要的理论意义,对于陆相沉积盆地地下热水资源的预测及开发具有重要的实际意义。

  • 1 地下热水赋存状态

  • 1.1 构造特征

  • 东营凹陷是渤海湾裂谷系内大型宽缓的中、新生代张扭型半地堑伸展盆地[27],位于济阳坳陷的东南部,呈NEE走向,面积为5 700 km2,基本表现为北断南超、北陡南缓的箕状断陷盆地,四周为凸起所围绕。东营凹陷由北部陡坡带、利津洼陷、民丰洼陷、中央隆起带、牛庄洼陷及南部缓坡带等6个二级构造单元组成。

  • 东营凹陷属于中新生代叠加盆地,先后经历了印支期 SN 向挤压、燕山期 NE 向伸展及喜马拉雅期 NW 向伸展[28-30],发育数量众多的继承性断层[31]。复杂的断裂系统作为大气降水及深部热水的纵向输导层,使得研究区地下热水的成因、分布更加复杂。

  • 1.2 含水层及隔水层分布

  • 新生代,东营凹陷经历了多次的湖泊水体扩大-缩小过程,导致平面上不同成因的含水层、隔水层有规律的分布于不同构造单元,纵向上含水层、隔水层间互发育。东营凹陷新生界从上到下发育6 套含水层,分别为馆陶组(Ng)、东营组(Ed)、沙一段 (Es1)、沙二段(Es2)、沙三段(Es3)和沙四段(Es4),其中东营组为区域性含水层,其他均为局部性含水层;新生界从上到下发育6套隔水层,分别为明化镇组(Nm)、馆陶组、沙一段、沙二段、沙三段和沙四段,其中明化镇组为区域性隔水层,其他均为局部性隔水层。

  • 馆陶组含水层为河流相沉积的河道砂体,多套河道砂体连接成片形成了该层最主要的含水层;河道间的冲泛平原沉积形成的厚度稳定的泥岩是该层主要的隔水层。明化镇组为区域性隔水层,为泛滥平原沉积,岩性以棕黄色和棕红色泥岩为主,夹杂少量浅灰色、黄色、棕黄色粉砂岩。砂岩含量低,分布局限,连通性差。东营组为区域性含水层,全区发育的冲积扇-三角洲沉积体是该层主要的含水层。沙一段含水层分布局限,发育于凹陷边缘的冲积扇、碳酸盐岩滩坝及砂质滩坝是主要的含水层; 凹陷主体发育的湖相泥岩是该层主要的隔水层。沙二段含水层分布广泛,为河流-三角洲沉积形成的大套砂体;隔水层分布局限,仅发育于利津洼陷,为湖相泥岩。沙三段上亚段(Es3)含水层分布广泛,全区均有发育,为三角洲沉积砂体,隔水层发育局限。沙三段中亚段(Es3)含水层主要分布于东营凹陷南部,为三角洲沉积砂体,利津洼陷发育的湖相泥岩为主要的隔水层。沙三段下亚段(Es3)含水层分布局限,发育于凹陷边缘的冲积扇、三角洲砂体是主要的含水层;凹陷主体发育的湖相泥岩是主要的隔水层。沙四段广泛分布于陡坡带的冲积扇-扇三角洲砂体及缓坡带的颗粒碳酸盐岩滩坝、砂质滩坝是主要的含水层,分布于凹陷中心的盐湖相泥岩、油页岩、膏盐及膏泥岩是主要的隔水层。

  • 2 地下热水物理化学特征

  • 2.1 矿化度

  • 东营凹陷馆陶组地下热水的矿化度最低,为 0.50~4.77 g/L,平均为 2.41 g/L;东营组的矿化度略有增加,为 1.50~17.60 g/L,平均为 12.64 g/L;沙一段的矿化度持续增大,为 6.50~53.20 g/L,平均为 20.25 g / L;沙二段的矿化度持续增大,为 7.50~240.00 g/L,平均为 33.33 g/L;沙三段的矿化度迅速增大,为 8.00~264.00 g/L,平均为 72.38 g/L;沙四段的矿化度最高,为 76.00~340.00 g/L,平均为 192.24 g/L(图1)。总的来说,东营凹陷馆陶组、东营组及沙一段地下热水的矿化度变化较小,沙二段、沙三段及沙四段地下热水的矿化度变化较大,但总体规律是矿化度分布呈三段式:第 1 段深度小于 2 300 m,随深度的增大地下热水矿化度缓慢增大;第 2 段深度为 2 300~2 800 m,地下热水的矿化度随深度增大,从 120 g/L 迅速增大到 220 g/L;第 3 段深度大于 2 800 m,随深度增大地下热水的矿化度缓慢增加 (图1)。

  • 2.2 地下热水的分类及其地球化学特征

  • 依据东营凹陷地下热水化学离子组成的 Piper 图(图2),该区地下热水主要可以分为 3类,不同类型地下热水的水化学类型、化学组成和离子比值表现出明显差异(图3)。

  • 图1 东营凹陷地下热水的矿化度随深度的变化

  • Fig.1 Salinity variation of underground hot water with depth in Dongying Sag

  • 第1类地下热水的矿化度较低,小于5 g/L,依据苏林分类标准属于 NaHCO3型水,依据舒卡列夫分类标准属于 Cl•HCO3-Na或•HCO3•Cl-Na型水。其阴离子主要由 Cl-(平均摩尔比为 52%)及 HCO3-(平均摩尔比为 42%)构成,阳离子主要为 Na+(平均摩尔比为89%)。相较于第2、第3类地下热水,第1类地下热水的阴离子中 HCO3- 及 CO3 2- 含量明显偏高。钠氯系数(rNa+ /rCl-)较高,为 1.10~2.25,平均为 1.57,普遍大于 1,明显高于第 2、第 3 类地下热水。变质系数(r(Cl--Na+)/rMg2+)较低,为-27.8~3.52,平均为-13.2,普遍为负值,明显低于第 2、第 3 类地下热水。脱硫酸系数(rSO4 2- ×100/rCl-)较高,为 4.2~67.3,平均为 20.2,一般大于 5,分布范围与第 3类地下热水类似,明显高于第 2 类地下热水。碳酸盐平衡系数(r(HCO3- +CO3 2-)/rCa2+)为 0.2~23.2,平均为 4.8;碳酸盐平衡系数基本大于1,明显高于第2、第3 类地下热水。

  • 第2类地下热水的矿化度中等,为5~72 g/L,依据苏林分类标准主要为 CaCl2型水,少量为 NaHCO3 型水,按舒卡列夫分类标准整体属于 Cl-Na 型水。其阴离子主要由Cl-构成(平均摩尔比为92%),阳离子则以 Na+ 具有明显优势为特征(平均摩尔比为 85%),其他阴阳离子含量较低。钠氯系数中等,为 0.79~1.42,平均为 0.92,集中分布于 0.88~0.94。变质系数中等,为-10.8~8.7,平均为 2.7;普遍较第 1类地下热水偏高,但低于第3类地下热水。脱硫酸系数较低,为0.7~22.4,平均为3.9,较第1、第3类地下热水偏低。碳酸盐平衡系数为 0.1~7.2,平均为 1.31。

  • 图2 东营凹陷地下热水化学离子组成Piper图

  • Fig.2 Piper diagram of chemical composition of underground hot water in Dongying Sag

  • 第 3类地下热水矿化度最高,普遍高于 72 g/L,依据苏林分类标准整体为CaCl2型水,按舒卡列夫分类标准属于 Cl-Na•Ca 型水。阴离子主要为 Cl-(平均摩尔比为 93%),阳离子中 Na+ (平均摩尔比为 62%)和 Ca2+ (平均摩尔比为 42%)具有明显优势。钠氯系数最低,为 0.62~1.01,平均为 0.79;变质系数最高,为 0.19~32.7,平均为 9.8;脱硫酸系数变化幅度较大,为 0.1~16.8,平均为 0.7;碳酸盐平衡系数为0.03~2.7,平均为0.13。

  • 2.3 不同类型地下热水的温压环境

  • 第 1 类地下热水主要赋存于馆陶组,少部分赋存于东营组。埋藏深度为 300~1 500 m;地温梯度为 2.9~4.5℃/hm,地温为 39~71℃;地层压力系数为 0.90~1.09,为正常压力系统,地层压力为 6.3~14.8 MPa(图4)。

  • 第2类地下热水主要赋存于沙三段、沙二段、沙一段及东营组。埋藏深度为 1 200~3 200 m;地温梯度为 2.7~4.7℃/hm,地温主要为 65~140℃;地层压力系数为 0.76~1.21,以正常压力为主,存在一定的负压及少量的弱超压,为异常压力过渡带,地层压力为11.5~32.7 MPa(图4)。

  • 第3类地下热水主要赋存于沙四段、沙三段,少量发育于沙二段。埋藏深度为 2 500~4 800 m,地温梯度为 2.7~4.9℃/hm,地温主要为 95~184℃; 地层压力系数为 0.98~1.85,以正常压力及超压为主,存在部分的强超压,不存在负压,为超压发育区,地层压力为25.3~52.7 MPa(图4)。

  • 图3 东营凹陷不同类型地下热水矿化度与钠氯系数、脱硫酸系数、变质系数及碳酸盐平衡系数的关系

  • Fig.3 Relationship of mineralization of different types of underground hot water with their sodium chloride coefficient,desulfurization coefficient,metamorphic coefficient,and carbonate equilibrium coefficient in Dongying Sag

  • 图4 东营凹陷不同类型地下热水的温压场特征

  • Fig.4 Temperature-pressure field characteristics of different types of underground hot water in Dongying Sag

  • 3 地下热水来源及演化过程

  • 3.1 不同类型地下热水来源

  • 第1类地下热水的矿化度较低,以淡水为主,阴离子中 HCO3- 和 CO3 2- 占比较高,受大气水入渗的影响明显[122032-33]。钠氯系数普遍大于 1,变质系数普遍为负值,且赋存于常压的浅部储层内,表明其储存环境封闭性较差,水-岩反应程度较弱[172334-36]。前人研究表明,东营凹陷馆陶组地下热水的 δ2 H 值为-64.6‰~-63.5‰,δ18O 值为-8.2‰~-6.9‰,位于全球雨水线的右下角[37],证明馆陶组地下热水主要为经历轻微水-岩改造或未经历水-岩改造的入渗大气水。

  • 第 2类地下热水的化学成分与第 1类存在极大差异(图2),表明其地下热水的来源或埋藏过程中的改造过程与第1类地下热水并不相同。东营凹陷 Nm 发育全区分布的隔水层,直接覆盖于东营组上部,区域性隔层的存在限制了大气水的入渗。第 2 类地下热水赋存的储层沉积环境主要为湖泊-三角洲[38-39],原始沉积水体以湖相水体为主;阴离子以 Cl-为主,表明其经历了明显的水-岩改造[32];钠氯系数普遍大于海水的 0.85~0.87,表明其来源为湖水,变质系数普遍大于2,表明为经历明显水-岩改造的湖泊沉积水体[23-2634]

  • 第 3类地下热水的阴离子以 Cl-为主,阳离子中 Ca2+ 和 Mg2+ 所占比例明显高于第 1、第 2 类地下热水 (图2),表明其地下热水的来源或埋藏过程中的改造过程与第1、第2类地下热水并不相同。赋存于沙四段的地下热水基本上全部隶属于第 3 类地下热水,赋存于沙三段的地下热水部分隶属于第 3 类地下热水(占比 42%)。区域性盖层及局部盖层的存在使得第3类地下热水难以受到大气水的影响。沙四段本身为盐湖相沉积,沙三段为咸水-半咸水的湖相沉积[3840-42],其原始沉积水体盐度偏高。第3类地下热水钠氯系数普遍小于0.9,变质系数普遍大于 5,阴离子以 Cl-为主,均表明其封闭性良好,为经历明显水-岩改造的地下热水[23-263234]。所以,第 3 类地下热水为经历明显水-岩改造的盐湖-半咸水湖泊沉积水体。

  • 3.2 不同类型地下热水各类离子物质来源

  • 第 1 类地下热水  第 1 类地下热水(Na+ +K+)与 Cl-具有极高的相关系数(0.992);与Ca2+ 相关系数中等(0.628);与 Mg2+ 和 SO4 2- 的相关系数较低,分别为 0.348 和 0.132;与 HCO3- 呈负相关,相关系数为-0.430。HCO3- 与 Cl-,(Na+ +K+)和 Ca2+ 呈负相关,相关系数分别为-0.421,-0.430 和-0.155,相关性较差;与 Mg2+ 和 SO4 2- 呈正相关,相关系数分别为 0.644 和 0.531,相关系数中等(表1)。(Na+ +K+)和 Cl-来源及演化过程相似。而SO4 2- 及Mg2+ 的形成与HCO3- 具有一定的关联。Ca2+ 来源较为复杂,其来源及富集过程可能与多种地质作用相关。第1类地下热水埋藏较浅(< 1 500 m),地温较低(< 71℃),为常压压力系统(图4),整体处于早成岩阶段 A 及 B期,碎屑岩水-岩反应程度较低[43]。第 1 类地下热水赋存的馆陶组及东营组岩性为砂泥岩,不含易溶的蒸发岩及碳酸盐岩层[38-39]。大气携带的海盐(循环盐)成分是第 1 类地下热水唯一可能的(Na+ +K+)和 Cl-的来源[44],同时可能提供了部分的 Ca2+。大气水中富含的 CO2是 HCO3- 的最主要来源。大气水入渗过程中 CO2与水结合形成H2CO3,与碎屑岩中大量存在的岩屑及钙长石发生反应(图5a),使得 Mg2+ 和 Ca2+ 进入第 1 类地下热水,导致 Ca2+ 与(Na+ +K+)和 Cl-相关性中等[45-46]。馆陶组为河流相沉积,河道间泥岩富含高等植物碎屑[47],植物碎屑腐烂过程中释放大量的还原性 S,在大气水入渗过程中氧化形成 SO4 2-。 SO4 2-及 Mg2+的形成均与大气水相关,故而其与 HCO3- 具有相对较高的相关系数。

  • 表1 东营凹陷第1类地下热水常量离子含量相关系数

  • Table1 Correlation matrix of constant ion content of Type1 underground hot water in Dongying Sag

  • 第 2 类地下热水  第 2 类地下热水中(Na+ +K+) 与Cl-相关系数为0.982,较第1类地下热水相关系数略有下降;与 Ca2+ 和 Mg2+ 的相关系数中等,分别为 0.580 和 0.469;与 HCO3- 及 SO4 2- 基本上不具有相关性。Mg2+与 Ca2+相关系数中等(0.653)。HCO3-与 SO4 2- 相关性最高仅为0.279(表2)。也就是说第2类地下热水中(Na+ +K+)及 Cl-具有相似的来源及演化过程;HCO3- 具有独立的来源;Mg2+ 和 Ca2+ 来源复杂,但二者具有一定的关联。第2类地下热水赋存的储层岩性为砂泥岩,不含易溶的蒸发岩及碳酸岩层[38-39],Cl-的增加主要是由于浓缩作用[48-49]。水-岩反应及有机质生烃过程中,消耗大量H2O,使得第 2类地下热水发生明显的浓缩作用[50-54]。(Na+ +K+)与 Cl-相关系数高,表明(Na+ +K+)增加的主要因素也为浓缩作用,其他因素的影响较低。第 2 类地下热水与大气降水无关,东营凹陷深部幔源物质的上涌分布局限,影响范围小[55],有机质演化过程中形成的有机 CO2是可能的 HCO3- 来源[46]。SO4 2- 含量极低(< 0.41 g/L),表明其未经历膏盐类矿物溶蚀的影响,该深度段大量存在的碳酸盐矿物、火成岩及变质岩岩屑的溶蚀是可能的 Ca2+ 和 Mg2+ 来源(图5c—5e)[46]。第 2 类地下热水储层(1 200~3 200 m)经历多期碳酸盐胶结物的溶蚀、沉淀(图5b,5c),碳酸盐胶结物成分和岩屑组成复杂[46-55],Mg2+ 和Ca2+ 以不同的比例沉淀或溶蚀,导致二者的相关系数中等。

  • 第 3 类地下热水  第 3 类地下热水中(Na+ +K+)与 Cl-的相关系数为 0.941,较第 1、第 2 类地下热水均有下降;与 Ca2+ 的相关系数中等,为 0.789;与 Mg2+ 和 SO4 2- 及 HCO3- 基本上不具有相关性。Mg2+ 与 Ca2+ 相关系数为 0.195,相关性较差,与 SO4 2- 相关系数为 0.700。HCO3- 与其他离子相关性均较差,且均呈负相关(表3)。也就是说第 3 类地下热水中(Na+ +K+) 及Cl-具有相似的来源及演化过程,而Mg2+ 和SO4 2- 具有一定的关联,HCO3- 具有独立的来源。第3类地下热水赋存的沙四段为盐湖相沉积,发育大量的膏岩、膏泥岩及盐岩[38-39]。地下热水的浓缩作用导致其富含(Na+ +K+)及Cl-,降低了地下热水对于盐岩的溶解能力[48];Mg2+ 及 SO4 2- 含量较低,对石膏具有较强的溶解能力(图5f,图3)。沙三段不发育膏岩、膏泥岩及盐岩[38-39],但东营凹陷大量发育的断层导致沙四段溶解于石膏的地下热水上涌,使得第 3 类地下热水在沙三段也大量发育[46]

  • 图5 东营凹陷不同地下热水储层典型成岩现象

  • Fig.5 Typical diagenesis phenomenon of different types of underground hot water reservoirs in Dongying Sag

  • 表2 东营凹陷第2类地下热水常量离子含量相关系数

  • Table2 Correlation matrix of constant ion content of Type2 underground hot water in Dongying Sag

  • 表3 东营凹陷第3类地下热水常量离子含量相关系数

  • Table3 Correlation matrix of constant ion content of Type3 underground hot water in Dongying Sag

  • 3.3 地下热水的演化

  • 第1类地下热水  利用SPSS21软件对第1类地下热水中常量离子组分(14 组)进行主因子分析后提取 2 个主因子(保留 82.644% 的信息):主因子 1= 0.956(Na+ + K+)+ 0.637Ca2+ + 0.202Mg2+ + 0.954Cl- + 0.107SO4 2--0.111HCO3-,主因子 2=-0.156(Na+ +K+)+ 0.37Ca2+ + 0.731Mg2+-0.151Cl- + 0.611SO4 2- + 0.901 HCO3-。其中主因子 1主要控制(Na+ +K+)和 Cl-的增加(贡献量超过 95%),影响 Ca2+ 的增加(贡献量为 63.7%),与第 1 类地下热水的总矿化度呈明显的正相关;主因子 2主要控制 HCO3- 的增加(贡献量大于 90%),影响 Mg2+,SO4 2- 及 Ca2+ 的增加(贡献量为 35%~75%),与第 1 类地下热水的总矿化度呈明显的负相关(图6)。

  • 图6 第1类地下热水主因子与矿化度关系

  • Fig.6 Relationship between main factors of Type1 underground hot water with salinity

  • 考虑到第1类地下热水的赋存地质特征及主要离子的来源认为:主成分 1 代表的是第 1 类地下热水在浅部经历的蒸发浓缩作用;主成分 2 代表的是大气水入渗过程中不稳定岩屑、钙长石的黏土矿物化及大气水的淡化作用(图5a)。第1类地下热水矿化度较低,水-岩反应程度较低,可以利用 Gibbs 图版来进行分类及成因分析[56]。第1类地下热水为蒸发浓缩水(图7),也就是说,其为经历溶滤作用的大气降水蒸发浓缩的产物。

  • 第 2类地下热水  第 2类地下热水中 SO4 2- 含量极低(< 0.41 g / L),研究过程中未予考虑。利用 SPSS21软件对常量离子组分(441组)进行主因子分析后提取 2 个主因子(保留 88.739% 的信息):主因子 1=0.799(Na+ +K+)+0.71Ca2+ +0.207Mg2+ +0.988Cl--0.122HCO3-;主因子 2=0.214(Na+ + K+)+ 0.317Ca2+ + 0.71Mg2+ +0.087Cl- +0.983HCO3-。主因子 1 主要控制 Cl-的增加(贡献量为 98.8%),影响(Na+ +K+),Ca2+ 和 Mg2+ 的增加(贡献量为 20%~80%),其中增加量的贡献占比依次减小。沉积盆地Cl-来源较少,也相对稳定,Cl-的增大反映了浓缩过程[48-49]。浓缩过程中除HCO3- 外,其他离子浓度均增大,主要反映浓缩过程中碱性离子富集,导致 HCO3-向 CO3 2- 转化。主因子2主要控制有机来源的HCO3-(贡献量为98.3%)、部分(Na+ +K+)(贡献量为 21.4%)、部分 Ca2+(贡献量为 31.7%)及部分 Mg2+ (贡献量为 71%)的来源。显微镜薄片观察发现大量的长石溶蚀及长石的高岭石化,可以提供大量的(Na+ +K+);早期碳酸盐胶结及变质岩岩屑的溶蚀可以提供大量的 Ca2+ 和 Mg2+[46]。也就是说,主因子 2代表有机来源 CO2的注入,导致长石的溶蚀转化、碳酸盐胶结及岩屑溶蚀(图5b— 5e)。

  • 第3类地下热水  利用SPSS21软件对第3类地下热水中常量离子组分(374组)进行主因子分析后提取 3 个主因子(保留 90.591% 的信息):主因子 1= 0.885(Na+ + K+)+ 0.917Ca2+ + 0.381Mg2+ + 0.944Cl- + 0.280SO4 2--0.333HCO3-;主因子 2=-0.012(Na+ +K+)-0.280Ca2+ + 0.716Mg2+-0.013Cl- + 0.733SO4 2--0.146 HCO3-;主因子 3=0.166(Na+ + K+)+ 0.15Ca2+ + 0.12 Mg2+ +0.079Cl- +0.044SO4 2- +0.933HCO3-。主因子 1 控制 Cl- (贡献量为 94.4%),Ca2+ (贡献量为 91.7%)和 (Na+ +K+)(贡献量为 88.5%)的增加,对 Mg2+ 及 SO4 2-贡献较小。主因子 1作用下,除 HCO3- 下降,其他主要离子均增加,反映的是浓缩作用[48-49]。主因子 2 控制 Mg2+ 及 SO4 2- 的增加(贡献量超过 70%)、Ca2+ 及 HCO3- 的减少,考虑到沙四段发育大量的膏盐层[38-39],该因子主要反映石膏的溶解作用。大量石膏的溶解使得孔隙流体中 Mg2+ 增加,促进深部富镁方解石及白云石的沉淀,使得 Ca2+ 及 HCO3- 减少(图5f)。主因子3控制HCO3- 的增加,对HCO3- 的影响达到了 93.3%。对(Na+ +K+),Ca2+ 和 Mg2+ 的增加量贡献较小(不超过 20%)。主因子 3代表有机来源 CO2的注入,导致长石的溶蚀转化及碳酸盐的溶蚀。

  • 图7 第1类地下热水吉布斯图[56]

  • Fig.7 Gibbs diagram of Type1 underground hot water[56]

  • 4 结论

  • 东营凹陷地下热水主要有 3种类型。第 1类地下热水主要赋存于馆陶组,具有低矿化度(< 5 g/L) 的特征,阴离子主要由 Cl-及 HCO3-构成,阳离子则主要为Na+ ,属于Cl•HCO3-Na型水,总体处于常温常压的开放环境。(Na+ +K+)和Cl-主要受蒸发浓缩作用控制,HCO3-,Mg2+ 及 SO4 2- 主要受大气水入渗过程中水-岩反应的控制,Ca2+ 受二者共同作用。第 1类地下热水为经历大气水入渗改造及蒸发浓缩作用的大气降水。

  • 第2类地下热水主要赋存于沙三段、沙二段、沙一段和东营组,矿化度中等(5~72 g/L),阴离子主要由Cl-构成,阳离子则以Na+ 具有明显优势为特征,属于 Cl-Na 型水,总体处于常压-超压过渡体系。 Cl-主要受蒸发浓缩作用控制,HCO3- 主要受有机来源CO2控制,(Na+ +K+),Ca2+ 及Mg2+ 受二者共同控制,不同地质作用的贡献量存在较大差异。第2类地下热水为经历浓缩改造及有机来源CO2改造的原始淡水-半咸水的湖泊水。

  • 第3类地下热水主要赋存于沙四段、沙三段,阴离子主要为 Cl-,阳离子中 Na+ 和 Ca2+ 具有明显优势,属于 Cl-Na•Ca 型水,总体处于超压体系。Mg2+ 和 SO4 2- 主要受石膏溶蚀及有机来源 CO2的控制,Cl-主要受浓缩作用控制,HCO3-受有机来源 CO2控制,其他离子受 3种地质要素共同作用。第 3类地下热水为经历浓缩改造、有机来源 CO2改造及硬石膏溶蚀改造的原始盐湖相的湖泊水。

  • 参考文献

    • [1] SULZBACHER H,JUNG R.Numerical simulation of geothermal energy production from hydraulic fractures in tight sedimentary rock formations by cyclic-injection-production-schemes [J].Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften,2010,161(1):99-109.

    • [2] 周总瑛,刘世良,刘金侠.中国地热资源特点与发展对策[J].自然资源学报,2015,30(7):1 210-1 221.ZHOU Zongying,LIU Shiliang,LIU Jinxia.Study on the character⁃ istics and development strategies of geothermal resources in China [J].Journal of Natural Resources,2015,30(7):1 210-1 221.

    • [3] 张红波.地热资源可循环利用井网模式评价方法——以东营凹陷中央隆起带地热田为例[J].油气地质与采收率,2017,24(1):86-91.ZHANG Hongbo.A well pattern evaluation method for geothermal resource recycling-A case study of geothermal field in the central uplift belt of Dongying sag[J].Petroleum Geology and Recovery Efficiency,2017,24(1):86-91.

    • [4] DUFFIELD W A,SASS J H.Geothermal energy:Clean power from the earth’s heat[M].Reston,Virginia:US Geological Survey,2003.

    • [5] 闫强,于汶加,王安建,等.全球地热资源述评[J].可再生能源,2009,27(6):69-73.YAN Qiang,YU Wenjia,WANG Anjian,et al.Review on the glob⁃ al geothermal resources[J].Renewable Energy,2009,27(6):69-73.

    • [6] 杨绪充.试论济阳坳陷的地温场[J].华东石油学院学报:自然科学版,1985,26(1):14-26.YANG Xuchong.Notes of geothermal field in Jiyang depression [J].Journal of East China Petroleum Institute:Edition of Natural Science,1985,26(1):14-26.

    • [7] DANSGAARD W.Stable isotopes in precipitation[J].Tellus,1964,16(4):436-468.

    • [8] CONNOLLY C A,WALTER L M,BAADSGAARD H,et al.Origin and evolution of formation waters,Alberta Basin,Western Canada Sedimentary Basin.Part II.Isotope systematics and water mixing [J].Applied Geochemistry,1990,5(4):397-413.

    • [9] SUKHIJA B S,NAGABHUSHANAM P,REDDY D V.Groundwa⁃ ter recharge in semi-arid regions of India:An overview of results obtained using tracers[J].Hydrogeology Journal,1996,4(3):50-71.

    • [10] WORDEN R H,COLEMAN M L,MATRAY J M.Basin scale evo⁃ lution of formation waters:A diagenetic and formation water study of the Triassic Chaunoy Formation,Paris Basin[J].Geochimica et Cosmochimica Acta,1999,63(17):2 513-2 528.

    • [11] BARNABY R J,OETTING G C,GAO G.Strontium isotopic signa⁃ tures of oil-field waters:Applications for reservoir characterization [J].AAPG Bulletin,2004,88(12):1 677-1 704.

    • [12] GRASSI S,CORTECCI G,SQUARCI P.Groundwater resource degradation in coastal plains:The example of the Cecina area(Tuscany-Central Italy)[J].Applied Geochemistry,2007,22(11):2 273-2 289.

    • [13] KHARAKA Y K,HANOR J S.Deep fluids in the continents:I.Sedimentary basins[J].Treatise on Geochemistry,2003,5:499-540.

    • [14] PHAN T T,CAPO R C,STEWART B W,et al.Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale,Appalachian Basin[J].Chemical Geology,2016,420:162-179.

    • [15] 孙向阳,解习农.东营凹陷地层水化学特征与油气聚集关系 [J].石油实验地质,2001,23(3):291-296.SUN Xiangyang,XIE Xinong.Relationship between the chemical characteristics of formation water and hydrocarbon accumulation in the Dongying sag[J].Petroleum Geology & Experiment,2001,23(3):291-296.

    • [16] 陈中红,查明.陆相断陷咸化湖盆地层水化学场响应及与油气聚集关系——以渤海湾盆地东营凹陷为例[J].地质科学,2010,45(2):476-489.CHEN Zhonghong,ZHA Ming.Response of formation water chemi⁃ cal fields and its relation to the hydrocarbon accumulation in the saline faulted-basin:A case study of Paleogene system in Dongy⁃ ing sag[J].Chinese Journal of Geology,2010,45(2):476-489.

    • [17] 张善文,张林晔,包友书,等.东营凹陷地层流体特征与油气成藏[J].石油勘探与开发,2012,39(4):394-405.ZHANG Shanwen,ZHANG Linye,BAO Youshu,et al.Formation fluid characteristics and hydrocarbon accumulation in the Dongy⁃ ing Sag,Shengli Oilfield[J].Petroleum Exploration and Develop⁃ ment,2012,39(4):394-405.

    • [18] RITTENHOUSE G.Bromine in oil-field waters and its use in de⁃ termining possibilities of origin of these waters[J].AAPG Bulle⁃ tin,1967,51(12):2 430-2 440.

    • [19] COLLINS A G.Chemistry of some Anadarko Basin brines contain⁃ ing high concentrations of iodide[J].Chemical Geology,1969,4(1/2):169-187.

    • [20] DINELLI E,LIMA A,ALBANESE S,et al.Major and trace ele⁃ ments in tap water from Italy[J].Journal of Geochemical Explora⁃ tion,2012,112(1):54-75.

    • [21] PANNO S V,HACKLEY K C,LOCKE R A,et al.Formation wa⁃ ters from Cambrian-age strata,Illinois Basin,USA:Constraints on their origin and evolution[J].Geochimica et Cosmochimica Acta,2013,122(6):184-197.

    • [22] BRIMA E I.Physicochemical properties and the concentration of anions,major and trace elements in groundwater,treated drinking water and bottled drinking water in Najran area,KSA[J].Applied Water Science,2017,7(1):401-410.

    • [23] 曾溅辉,吴琼,杨海军,等.塔里木盆地塔中地区地层水化学特征及其石油地质意义[J].石油与天然气地质,2008,29(2):223-229.ZENG Jianhui,WU Qiong,YANG Haijun,et al.Chemical charac⁃ teristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J].Oil & Gas Geolo⁃ gy,2008,29(2):223-229.

    • [24] 刘元晴,曾溅辉,周乐,等.惠民凹陷沙河街组地层水化学特征及其成因[J].现代地质,2013,27(5):1 110-1 119.LIU Yuanqing,ZENG Jianhui,ZHOU Le,et al.Geochemical char⁃ acteristics and origin of Shahejie Formation water in Huimin Sag [J].Geoscience,2013,27(5):1 110-1 119.

    • [25] 李建森,李廷伟,马海州,等.柴达木盆地西部新近系和古近系油田卤水水化学特征及其地质意义[J].水文地质工程地质,2013,40(6):28-36.LI Jiansen,LI Tingwei,MA Haizhou,et al.Investigation of the chemical characteristics and its geological significance of the Ter⁃ tiary oilfield brine in the western Qaidam basin[J].Hydrogeology and Engineering Geology,2013,40(6):28-36.

    • [26] 肖骢,杜尧,陈柳竹,等.南海北部沉积盆地油田水水化学特征及其成因分析[J].水文地质工程地质,2015,42(2):16-23.XIAO Cong,DU Yao,CHEN Liuzhu,et al.Hydrochemical charac⁃ teristics and origin analysis of the oilfield water in the north part of the sedimentary basins in the South China Sea[J].Hydrogeolo⁃ gy & Engineering Geology,2015,42(2):16-23.

    • [27] 刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.

    • [28] 任建业,于建国,张俊霞.济阳坳陷深层构造及其对中新生代盆地发育的控制作用[J].地学前缘,2009,16(4):117-137.RENG Jianye,YU Jianguo,ZHANG Junxia.Structures of deep bed in Jiyang Sag and their control over the development of Meso⁃ zoic and Cenozoic basins[J].Earth Science Frontiers,2009,16(4):117-137.

    • [29] 姜素华,李金山,夏冬明,等.剥蚀厚度恢复法在渤海湾盆地济阳坳陷孔店组应用[J].中国海洋大学学报:自然科学版,2011,41(4):97-102.JIANG Suhua,LI Jinshan,XIA Dongming,et al.The recovering denudation method and its application in Kongdian Formation of Jiyang Depression,Bohai Bay Basin[J].Periodical of Ocean Uni⁃ versity of China,2011,41(4):97-102.

    • [30] 董敏,张瑞.东营凹陷输导体系构成特征[J].复杂油气藏,2015,8(4):19-22.DONG Min,ZHANG Rui.Constitution characteristics of the con⁃ ducting system in Dongying Sag[J].Complex Hydrocarbon Reser⁃ voirs,2015,8(4):19-22.

    • [31] 张凯,倪金龙,马骁骐.东营凹陷沙三段断裂系统分形特征及构造储集层预测[J].桂林理工大学学报,2015,35(1):47-52.ZHANG Kai,NI Jinlong,MA Xiaoqi.Characteristics of fractural dimension and prediction of structural reservoir in Es3 of Dongy⁃ ing depression[J].Journal of Guilin University of Technology,2015,35(1):47-52.

    • [32] BIANCHINI G,PENNISI M,CIONI R,et al.Hydrochemistry of the high-boron groundwaters of the Cornia aquifer(Tuscany,Ita⁃ ly)[J].Geothermics,2005,34(3):297-319.

    • [33] AKOTEYON I S.Hydrochemical studies of ground water in parts of Lagos,Southwestern Nigeria[J].Bulletin of Geography.Physical Geography Series,2013,6(1):27-42.

    • [34] VERWEIJ J M.Hydrocarbon migration systems analysis[M].Am⁃ sterdam-London-New York-Tokyo:Elsevier,1993:121-189.

    • [35] 覃伟,李仲东,郑振恒,等.鄂尔多斯盆地大牛地气田地层水特征及成因分析[J].岩性油气藏,2011,23(5):115-120.QIN Wei,LI Zhongdong,ZHENG Zhenheng,et al.Characteristics and genesis of formation water in Daniudi Gas Field,Ordos Basin [J].Lithologic Reservoirs,2011,23(5):115-120.

    • [36] 郭士明.东营凹陷油田水化学特征及成因类型研究[J].石油天然气学报,2012,34(12):37-41.GUO Shiming.Genetic types and chemistry characteristics of oil⁃ field water in Dongying Depression[J].Journal of Oil and Gas Technology,2012,34(12):37-41.

    • [37] 张红波.东营凹陷馆陶—东营组地热流体化学特征及成因分析[J].化工管理,2016,(26):121.ZHANG Hongbo.Chemical characteristics and genesis analysis of hydrothermal water of Guantao-Dongying Formation in Dongying Sag[J].Chemical Enterprise Management,2016,(26):121.

    • [38] 王居峰.济阳坳陷东营凹陷古近系沙河街组沉积相[J].古地理学报,2005,7(1):45-58.WANG Jufeng.Sedimentary facies of the Shahejie Formation of Paleogene in Dongying Sag,Jiyang Depression[J].Journal of Pal⁃ aeogeography,2005,7(1):45-58.

    • [39] YUAN G H,GLUYAS J,CAO Y C,et al.Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongy⁃ ing Sag,Bohai Bay Basin,East China[J].Marine and Petroleum Geology,2015,62(1):77-89.

    • [40] 杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.

    • [41] 钱凯,王素民,刘淑范,等.东营凹陷早第三纪湖水盐度的计算 [J].石油学报,1982,3(4):95-102.QIAN Kai,WANG Sumin,LIU Shufan,et al.Evolution of salinity of lake water in Tertiary of the Dongying depression[J].Acta Petrolei Sinica,1982,3(4):95-102.

    • [42] 陆现彩,胡文宣,符琦,等.利用碳酸盐矿物成分研究沉积-成岩过程中流体盐度演化──以东营凹陷沙四段低熟油烃源岩为例[J].沉积学报,1998,16(1):120-126.LU Xiancai,HU Wenxuan,FU Qi,et al.Study of salinity evolution of geofluids during syngenesis and diagenesis using composition of carbonate minerals-An example of the immature source rocks of Shasi Member in Dongying Depression[J].Acta Sedimentologi⁃ ca Sinica,1998,16(1):120-126.

    • [43] SCHMIDT V,MCDONALD D A.Texture and recognition of sec⁃ ondary porosity in sandstones[J].Special Publications,1979:209-225.

    • [44] BERNER E K,BERNER R A.The global water cycle:Geochemis⁃ try and environment[M].New Jersey:Prentice-Hall Canada,1987.

    • [45] COOKENBOO H O,BUSTIN R M.Pore water evolution in sand⁃ stones of the Groundhog Coalfield,northern Bowser Basin,British Columbia[J].Sedimentary Geology,1999,123(1/2):129-146.

    • [46] MENG W,ZENG J H,CAO Z,et al.Material exchange and migra⁃ tion between pore fluids and sandstones during diagenetic process⁃ es in rift basins:A case study based on analysis of diagenetic prod⁃ ucts in Dongying Sag,Bohai Bay Basin,East China[J].Geofluids,2018:1-20.

    • [47] 王伟.东营凹陷新近系馆陶组油气成藏条件分析[J].石油地质与工程,2012,26(3):28-31.WANG Wei.Condition potential analysis of hydrocarbon accumu⁃ lation of Neogene Guantao formation in Dongying depression[J].Petroleum Geology and Engineering,2012,26(3):28-31.

    • [48] 周训,李慈君.海水蒸发轨迹线及其应用[J].地球科学——中国地质大学学报,1995,20(4):410-414.ZHOU Xun,LI Cijun.Seawater evaporation trajectories and their application[J].Earth Science-Journal of China University of Geo⁃ sciences,1995,20(4):410-414.

    • [49] 蔡春芳,梅博文,马亭,等.塔里木盆地油田水的成因与演化 [J].地质论评,1997,43(6):650-657.CAI Chunfang,MEI Bowen,MA Ting,et al.Origin and evolution of oilfield waters in the Tarim Basin[J].Geological Review,1997,43(6):650-657.

    • [50] HOERING T C.Thermal reactions of kerogen with added water,heavy water and pure organic substances[J].Organic Geochemis⁃ try,1984,5(4):267-278.

    • [51] EGLINTON T I,ROWLAND S J,CURTIS C D,et al.Kerogenmineral reactions at raised temperatures in the presence of water [J].Organic Geochemistry,1986,10(4):1 041-1 052.

    • [52] SCHIMMELMANN A,BOUDOU J P,LEWAN M D,et al.Experi⁃ mental controls on D/H and 13C/12C ratios of kerogen,bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry,2001,32(8):1 009-1 018.

    • [53] 张善文.成岩过程中的“耗水作用”及其石油地质意义[J].沉积学报,2007,25(5):701-707.ZHANG Shanwen“.Water consumption”in diagenetic stage and its petroleum geological significance[J].Acta Sedimentologica Si⁃ nica,2007,25(5):701-707.

    • [54] 王永诗,张守春,朱日房.烃源岩生烃耗水机制与油气成藏[J].石油勘探与开发,2013,40(2):242-249.WANG Yongshi,ZHANG Shouchun,ZHU Rifang.Water con⁃ sumption in hydrocarbon generation and its significance to reser⁃ voir formation[J].Petroleum Exploration and Development,2013,40(2):242-249.

    • [55] 熊振,王良书,李成,等.东营凹陷现代热流场特征及地热异常成因[J].石油勘探与开发,1999,26(4):38-41.XIONG Zhen,WANG Liangshu,LI Cheng,et al.Determination and interpretation of the terrestrial heat flow in Dongying depres⁃ sion[J].Petroleum Exploration and Development,1999,26(4):38-41.

    • [56] FETH J H,GIBBS R J.Mechanisms controlling world water chem⁃ istry:Evaporation-crystallization process[J].Science,1971,172(3985):870-872.

  • 参考文献

    • [1] SULZBACHER H,JUNG R.Numerical simulation of geothermal energy production from hydraulic fractures in tight sedimentary rock formations by cyclic-injection-production-schemes [J].Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften,2010,161(1):99-109.

    • [2] 周总瑛,刘世良,刘金侠.中国地热资源特点与发展对策[J].自然资源学报,2015,30(7):1 210-1 221.ZHOU Zongying,LIU Shiliang,LIU Jinxia.Study on the character⁃ istics and development strategies of geothermal resources in China [J].Journal of Natural Resources,2015,30(7):1 210-1 221.

    • [3] 张红波.地热资源可循环利用井网模式评价方法——以东营凹陷中央隆起带地热田为例[J].油气地质与采收率,2017,24(1):86-91.ZHANG Hongbo.A well pattern evaluation method for geothermal resource recycling-A case study of geothermal field in the central uplift belt of Dongying sag[J].Petroleum Geology and Recovery Efficiency,2017,24(1):86-91.

    • [4] DUFFIELD W A,SASS J H.Geothermal energy:Clean power from the earth’s heat[M].Reston,Virginia:US Geological Survey,2003.

    • [5] 闫强,于汶加,王安建,等.全球地热资源述评[J].可再生能源,2009,27(6):69-73.YAN Qiang,YU Wenjia,WANG Anjian,et al.Review on the glob⁃ al geothermal resources[J].Renewable Energy,2009,27(6):69-73.

    • [6] 杨绪充.试论济阳坳陷的地温场[J].华东石油学院学报:自然科学版,1985,26(1):14-26.YANG Xuchong.Notes of geothermal field in Jiyang depression [J].Journal of East China Petroleum Institute:Edition of Natural Science,1985,26(1):14-26.

    • [7] DANSGAARD W.Stable isotopes in precipitation[J].Tellus,1964,16(4):436-468.

    • [8] CONNOLLY C A,WALTER L M,BAADSGAARD H,et al.Origin and evolution of formation waters,Alberta Basin,Western Canada Sedimentary Basin.Part II.Isotope systematics and water mixing [J].Applied Geochemistry,1990,5(4):397-413.

    • [9] SUKHIJA B S,NAGABHUSHANAM P,REDDY D V.Groundwa⁃ ter recharge in semi-arid regions of India:An overview of results obtained using tracers[J].Hydrogeology Journal,1996,4(3):50-71.

    • [10] WORDEN R H,COLEMAN M L,MATRAY J M.Basin scale evo⁃ lution of formation waters:A diagenetic and formation water study of the Triassic Chaunoy Formation,Paris Basin[J].Geochimica et Cosmochimica Acta,1999,63(17):2 513-2 528.

    • [11] BARNABY R J,OETTING G C,GAO G.Strontium isotopic signa⁃ tures of oil-field waters:Applications for reservoir characterization [J].AAPG Bulletin,2004,88(12):1 677-1 704.

    • [12] GRASSI S,CORTECCI G,SQUARCI P.Groundwater resource degradation in coastal plains:The example of the Cecina area(Tuscany-Central Italy)[J].Applied Geochemistry,2007,22(11):2 273-2 289.

    • [13] KHARAKA Y K,HANOR J S.Deep fluids in the continents:I.Sedimentary basins[J].Treatise on Geochemistry,2003,5:499-540.

    • [14] PHAN T T,CAPO R C,STEWART B W,et al.Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale,Appalachian Basin[J].Chemical Geology,2016,420:162-179.

    • [15] 孙向阳,解习农.东营凹陷地层水化学特征与油气聚集关系 [J].石油实验地质,2001,23(3):291-296.SUN Xiangyang,XIE Xinong.Relationship between the chemical characteristics of formation water and hydrocarbon accumulation in the Dongying sag[J].Petroleum Geology & Experiment,2001,23(3):291-296.

    • [16] 陈中红,查明.陆相断陷咸化湖盆地层水化学场响应及与油气聚集关系——以渤海湾盆地东营凹陷为例[J].地质科学,2010,45(2):476-489.CHEN Zhonghong,ZHA Ming.Response of formation water chemi⁃ cal fields and its relation to the hydrocarbon accumulation in the saline faulted-basin:A case study of Paleogene system in Dongy⁃ ing sag[J].Chinese Journal of Geology,2010,45(2):476-489.

    • [17] 张善文,张林晔,包友书,等.东营凹陷地层流体特征与油气成藏[J].石油勘探与开发,2012,39(4):394-405.ZHANG Shanwen,ZHANG Linye,BAO Youshu,et al.Formation fluid characteristics and hydrocarbon accumulation in the Dongy⁃ ing Sag,Shengli Oilfield[J].Petroleum Exploration and Develop⁃ ment,2012,39(4):394-405.

    • [18] RITTENHOUSE G.Bromine in oil-field waters and its use in de⁃ termining possibilities of origin of these waters[J].AAPG Bulle⁃ tin,1967,51(12):2 430-2 440.

    • [19] COLLINS A G.Chemistry of some Anadarko Basin brines contain⁃ ing high concentrations of iodide[J].Chemical Geology,1969,4(1/2):169-187.

    • [20] DINELLI E,LIMA A,ALBANESE S,et al.Major and trace ele⁃ ments in tap water from Italy[J].Journal of Geochemical Explora⁃ tion,2012,112(1):54-75.

    • [21] PANNO S V,HACKLEY K C,LOCKE R A,et al.Formation wa⁃ ters from Cambrian-age strata,Illinois Basin,USA:Constraints on their origin and evolution[J].Geochimica et Cosmochimica Acta,2013,122(6):184-197.

    • [22] BRIMA E I.Physicochemical properties and the concentration of anions,major and trace elements in groundwater,treated drinking water and bottled drinking water in Najran area,KSA[J].Applied Water Science,2017,7(1):401-410.

    • [23] 曾溅辉,吴琼,杨海军,等.塔里木盆地塔中地区地层水化学特征及其石油地质意义[J].石油与天然气地质,2008,29(2):223-229.ZENG Jianhui,WU Qiong,YANG Haijun,et al.Chemical charac⁃ teristics of formation water in Tazhong area of the Tarim Basin and their petroleum geological significance[J].Oil & Gas Geolo⁃ gy,2008,29(2):223-229.

    • [24] 刘元晴,曾溅辉,周乐,等.惠民凹陷沙河街组地层水化学特征及其成因[J].现代地质,2013,27(5):1 110-1 119.LIU Yuanqing,ZENG Jianhui,ZHOU Le,et al.Geochemical char⁃ acteristics and origin of Shahejie Formation water in Huimin Sag [J].Geoscience,2013,27(5):1 110-1 119.

    • [25] 李建森,李廷伟,马海州,等.柴达木盆地西部新近系和古近系油田卤水水化学特征及其地质意义[J].水文地质工程地质,2013,40(6):28-36.LI Jiansen,LI Tingwei,MA Haizhou,et al.Investigation of the chemical characteristics and its geological significance of the Ter⁃ tiary oilfield brine in the western Qaidam basin[J].Hydrogeology and Engineering Geology,2013,40(6):28-36.

    • [26] 肖骢,杜尧,陈柳竹,等.南海北部沉积盆地油田水水化学特征及其成因分析[J].水文地质工程地质,2015,42(2):16-23.XIAO Cong,DU Yao,CHEN Liuzhu,et al.Hydrochemical charac⁃ teristics and origin analysis of the oilfield water in the north part of the sedimentary basins in the South China Sea[J].Hydrogeolo⁃ gy & Engineering Geology,2015,42(2):16-23.

    • [27] 刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.

    • [28] 任建业,于建国,张俊霞.济阳坳陷深层构造及其对中新生代盆地发育的控制作用[J].地学前缘,2009,16(4):117-137.RENG Jianye,YU Jianguo,ZHANG Junxia.Structures of deep bed in Jiyang Sag and their control over the development of Meso⁃ zoic and Cenozoic basins[J].Earth Science Frontiers,2009,16(4):117-137.

    • [29] 姜素华,李金山,夏冬明,等.剥蚀厚度恢复法在渤海湾盆地济阳坳陷孔店组应用[J].中国海洋大学学报:自然科学版,2011,41(4):97-102.JIANG Suhua,LI Jinshan,XIA Dongming,et al.The recovering denudation method and its application in Kongdian Formation of Jiyang Depression,Bohai Bay Basin[J].Periodical of Ocean Uni⁃ versity of China,2011,41(4):97-102.

    • [30] 董敏,张瑞.东营凹陷输导体系构成特征[J].复杂油气藏,2015,8(4):19-22.DONG Min,ZHANG Rui.Constitution characteristics of the con⁃ ducting system in Dongying Sag[J].Complex Hydrocarbon Reser⁃ voirs,2015,8(4):19-22.

    • [31] 张凯,倪金龙,马骁骐.东营凹陷沙三段断裂系统分形特征及构造储集层预测[J].桂林理工大学学报,2015,35(1):47-52.ZHANG Kai,NI Jinlong,MA Xiaoqi.Characteristics of fractural dimension and prediction of structural reservoir in Es3 of Dongy⁃ ing depression[J].Journal of Guilin University of Technology,2015,35(1):47-52.

    • [32] BIANCHINI G,PENNISI M,CIONI R,et al.Hydrochemistry of the high-boron groundwaters of the Cornia aquifer(Tuscany,Ita⁃ ly)[J].Geothermics,2005,34(3):297-319.

    • [33] AKOTEYON I S.Hydrochemical studies of ground water in parts of Lagos,Southwestern Nigeria[J].Bulletin of Geography.Physical Geography Series,2013,6(1):27-42.

    • [34] VERWEIJ J M.Hydrocarbon migration systems analysis[M].Am⁃ sterdam-London-New York-Tokyo:Elsevier,1993:121-189.

    • [35] 覃伟,李仲东,郑振恒,等.鄂尔多斯盆地大牛地气田地层水特征及成因分析[J].岩性油气藏,2011,23(5):115-120.QIN Wei,LI Zhongdong,ZHENG Zhenheng,et al.Characteristics and genesis of formation water in Daniudi Gas Field,Ordos Basin [J].Lithologic Reservoirs,2011,23(5):115-120.

    • [36] 郭士明.东营凹陷油田水化学特征及成因类型研究[J].石油天然气学报,2012,34(12):37-41.GUO Shiming.Genetic types and chemistry characteristics of oil⁃ field water in Dongying Depression[J].Journal of Oil and Gas Technology,2012,34(12):37-41.

    • [37] 张红波.东营凹陷馆陶—东营组地热流体化学特征及成因分析[J].化工管理,2016,(26):121.ZHANG Hongbo.Chemical characteristics and genesis analysis of hydrothermal water of Guantao-Dongying Formation in Dongying Sag[J].Chemical Enterprise Management,2016,(26):121.

    • [38] 王居峰.济阳坳陷东营凹陷古近系沙河街组沉积相[J].古地理学报,2005,7(1):45-58.WANG Jufeng.Sedimentary facies of the Shahejie Formation of Paleogene in Dongying Sag,Jiyang Depression[J].Journal of Pal⁃ aeogeography,2005,7(1):45-58.

    • [39] YUAN G H,GLUYAS J,CAO Y C,et al.Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongy⁃ ing Sag,Bohai Bay Basin,East China[J].Marine and Petroleum Geology,2015,62(1):77-89.

    • [40] 杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.

    • [41] 钱凯,王素民,刘淑范,等.东营凹陷早第三纪湖水盐度的计算 [J].石油学报,1982,3(4):95-102.QIAN Kai,WANG Sumin,LIU Shufan,et al.Evolution of salinity of lake water in Tertiary of the Dongying depression[J].Acta Petrolei Sinica,1982,3(4):95-102.

    • [42] 陆现彩,胡文宣,符琦,等.利用碳酸盐矿物成分研究沉积-成岩过程中流体盐度演化──以东营凹陷沙四段低熟油烃源岩为例[J].沉积学报,1998,16(1):120-126.LU Xiancai,HU Wenxuan,FU Qi,et al.Study of salinity evolution of geofluids during syngenesis and diagenesis using composition of carbonate minerals-An example of the immature source rocks of Shasi Member in Dongying Depression[J].Acta Sedimentologi⁃ ca Sinica,1998,16(1):120-126.

    • [43] SCHMIDT V,MCDONALD D A.Texture and recognition of sec⁃ ondary porosity in sandstones[J].Special Publications,1979:209-225.

    • [44] BERNER E K,BERNER R A.The global water cycle:Geochemis⁃ try and environment[M].New Jersey:Prentice-Hall Canada,1987.

    • [45] COOKENBOO H O,BUSTIN R M.Pore water evolution in sand⁃ stones of the Groundhog Coalfield,northern Bowser Basin,British Columbia[J].Sedimentary Geology,1999,123(1/2):129-146.

    • [46] MENG W,ZENG J H,CAO Z,et al.Material exchange and migra⁃ tion between pore fluids and sandstones during diagenetic process⁃ es in rift basins:A case study based on analysis of diagenetic prod⁃ ucts in Dongying Sag,Bohai Bay Basin,East China[J].Geofluids,2018:1-20.

    • [47] 王伟.东营凹陷新近系馆陶组油气成藏条件分析[J].石油地质与工程,2012,26(3):28-31.WANG Wei.Condition potential analysis of hydrocarbon accumu⁃ lation of Neogene Guantao formation in Dongying depression[J].Petroleum Geology and Engineering,2012,26(3):28-31.

    • [48] 周训,李慈君.海水蒸发轨迹线及其应用[J].地球科学——中国地质大学学报,1995,20(4):410-414.ZHOU Xun,LI Cijun.Seawater evaporation trajectories and their application[J].Earth Science-Journal of China University of Geo⁃ sciences,1995,20(4):410-414.

    • [49] 蔡春芳,梅博文,马亭,等.塔里木盆地油田水的成因与演化 [J].地质论评,1997,43(6):650-657.CAI Chunfang,MEI Bowen,MA Ting,et al.Origin and evolution of oilfield waters in the Tarim Basin[J].Geological Review,1997,43(6):650-657.

    • [50] HOERING T C.Thermal reactions of kerogen with added water,heavy water and pure organic substances[J].Organic Geochemis⁃ try,1984,5(4):267-278.

    • [51] EGLINTON T I,ROWLAND S J,CURTIS C D,et al.Kerogenmineral reactions at raised temperatures in the presence of water [J].Organic Geochemistry,1986,10(4):1 041-1 052.

    • [52] SCHIMMELMANN A,BOUDOU J P,LEWAN M D,et al.Experi⁃ mental controls on D/H and 13C/12C ratios of kerogen,bitumen and oil during hydrous pyrolysis[J].Organic Geochemistry,2001,32(8):1 009-1 018.

    • [53] 张善文.成岩过程中的“耗水作用”及其石油地质意义[J].沉积学报,2007,25(5):701-707.ZHANG Shanwen“.Water consumption”in diagenetic stage and its petroleum geological significance[J].Acta Sedimentologica Si⁃ nica,2007,25(5):701-707.

    • [54] 王永诗,张守春,朱日房.烃源岩生烃耗水机制与油气成藏[J].石油勘探与开发,2013,40(2):242-249.WANG Yongshi,ZHANG Shouchun,ZHU Rifang.Water con⁃ sumption in hydrocarbon generation and its significance to reser⁃ voir formation[J].Petroleum Exploration and Development,2013,40(2):242-249.

    • [55] 熊振,王良书,李成,等.东营凹陷现代热流场特征及地热异常成因[J].石油勘探与开发,1999,26(4):38-41.XIONG Zhen,WANG Liangshu,LI Cheng,et al.Determination and interpretation of the terrestrial heat flow in Dongying depres⁃ sion[J].Petroleum Exploration and Development,1999,26(4):38-41.

    • [56] FETH J H,GIBBS R J.Mechanisms controlling world water chem⁃ istry:Evaporation-crystallization process[J].Science,1971,172(3985):870-872.