en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

束宁凯(1993—),女,江苏丹阳人,硕士,从事图书情报、构造地质学及油气勘探综合研究。联系电话:(0546)7396970,E-mail:522345876@qq.com。

通讯作者:

郑昕(1981—),男,江苏睢宁人,高级工程师。联系电话:(0546)8552526,E-mail:zhengxin102.slyt@sinopec.com。

中图分类号:TE122.3

文献标识码:A

文章编号:1009-9603(2019)03-0038-08

DOI:10.13673/j.cnki.cn37-1359/te.2019.03.005

参考文献 1
刘柏林,王友启.准噶尔盆地中部Ⅰ区块低含油饱和度油藏形成机理[J].新疆石油地质,2010,31(3):273-275.LIU Bolin,WANG Youqi.Low oil-saturated reservoir-forming mechanism in No.1 area in central Junggar Basin[J].Xinjiang Pe⁃ troleum Geology,2010,31(3):273-275.
参考文献 2
许秀才.古龙凹陷葡萄花油层低饱和度油藏成因[J].断块油气田,2017,24(3):320-323.XU Xiucai.Genesis of low oil-saturated reservoir of Putaohua oil layer in Gulong Sag[J].Fault-Block Oil & Gas Field,2017,24(3):320-323.
参考文献 3
刘俊田,李斌,郑玉萍,等.红台地区低饱和度油气藏成藏主控因素分析[J].特种油气藏,2016,23(4):37-41.LIU Juntian,LI Bin,ZHENG Yuping,et al.Key controlling-fac⁃ tors of low-saturation hydrocarbon accumulation in Hongtai[J].Special Oil & Gas Reservoirs,2016,23(4):37-41.
参考文献 4
陆先亮,束青林,曾祥平,等.孤岛油田精细地质研究[M].北京:石油工业出版社,2005.LU Xianliang,SHU Qinglin,ZENG Xiangping,et al.Fine geologi⁃ cal study of Gudao Oilfield[M].Beijing:Petroleum Industry Press,2005.
参考文献 5
王忠.孤岛油田馆陶组含油层系多源供烃判识及成藏分析[J].天然气地球科学,2011,22(3):399-406.WANG Zhong.Oil sources in multi-directions and accumulation analysis in Guantao Formation of Gudao Oilfield in Zhanhua Sag [J].Natural Gas Geoscience,2011,22(3):399-406.
参考文献 6
张善文,王永诗,石砥石,等.网毯式油气成藏体系——以济阳坳陷新近系为例[J].石油勘探与开发,2003,30(1):1-10.ZHANG Shanwen,WANG Yongshi,SHI Dishi,et al.Meshworkcarpet type oil and gas pool-forming system:Taking Neogene of Jiyang depression as an example[J].Petroleum Exploration and Development,2003,30(1):1-10.
参考文献 7
渠芳,陈清华.对孤岛油田西南缘断层活动性的新认识[J].地球科学与环境学报,2009,31(4):394-399,422.QU Fang,CHEN Qinghua.New recognitions about fault activity of the southwestern margin of Gudao oilfield[J].Journal of Earth Sci⁃ ences and Environment,2009,31(4):394-399,422.
参考文献 8
李兴国.陆相储层沉积微相与微型构造[M].北京:石油工业出版社,2000.LI Xingguo.Continental reservoir sedimentary microfacies and mi⁃ crostructure[M].Beijing:Petroleum Industry Press,2000.
参考文献 9
乔雨朋,邱隆伟,邵先杰,等.辫状河储层构型表征研究进展 [J].油气地质与采收率,2017,24(6):34-42.QIAO Yupeng,QIU Longwei,SHAO Xianjie,et al.Research prog⁃ ress on characterization of braided river reservoir architecture[J].Petroleum Geology and Recovery Efficiency,2017,24(6):34-42.
参考文献 10
李俊飞,霍春亮,叶小明,等.渤海海域L油田砂质辫状河储层构型特征[J].油气地质与采收率,2017,24(6):48-53.LI Junfei,HUO Chunliang,YE Xiaoming,et al.Internal architec⁃ ture characteristics of sandy braided-river reservoirs in L Oil⁃ field,Bohai Bay Basin[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(6):48-53.
参考文献 11
渠芳,陈清华,连承波.河流相储层构型及其对油水分布的控制[J].中国石油大学学报:自然科学版,2008,32(3):14-18.QU Fang,CHEN Qinghua,LIAN Chengbo.Fluvial facies reservoir architecture and its control over the distribution of oil and water[J].Journal of China University of Petroleum:Edition of Natural Science,2008,32(3):14-18.
参考文献 12
渠芳,陈清华,连承波.河流相储层细分对比方法探讨[J].西安石油大学学报:自然科学版,2008,23(1):17-21.QU Fang,CHEN Qinghua,LIAN Chengbo.Discussion on the method for the subdivision and comparison of fluvial reservoir[J].Journal of Xi’an Shiyou University:Natural Science Edition,2008,23(1):17-21.
参考文献 13
赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21(6):16-18,43.ZHAO Hanqing.Approach to the study thinking about reservoir heterogeneous system,sand-body internal construction structure and flow unit[J].Petroleum Geology & Oilfield Development in Daqing,2002,21(6):16-18,43.
参考文献 14
张昌民,尹太举,赵磊,等.辫状河储层内部建筑结构分析[J].地质科技情报,2013,32(4):7-13.ZHANG Changmin,YIN Taiju,ZHAO Lei,et al.Reservoir archi⁃ tectural analysis of braided channel[J].Geological Science and Technology Information,2013,32(4):7-13.
参考文献 15
鲜本忠.孤岛油田馆陶组上段河流相建筑结构及其在油藏描述中的应用[C].2004 第三届油气储层研讨会论文摘要集,2004.XIAN Benzhong.Architecture of fluvial facies in Upper Ng Mem⁃ ber of Gudao Oilfield and its application to reservoir description [C].Abstract of the Third Oil and Gas Reservoir Symposium(2004),2004.
参考文献 16
杨晓敏.披覆构造混源油来源与富集特征——以孤岛凸起为例[D].北京:中国地质大学(北京),2009.YANG Xiaomin.Sources and accumulation characteristics of mixed oil in drape structure:a case study of Gudao Uplift[D].Bei⁃ jing:China University of Geosciences(Beijing),2009.
参考文献 17
万雪峰.断裂向上和向下输导油气特征的差异性[J].大庆石油地质与开发,2018,37(3):16-21.WAN Xuefeng.Differences in the characteristics of the upward and downward hydrocarbon transportations by the faults[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2018,37(3):16-21.
参考文献 18
田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,1(2):20-24.TIAN Shicheng,CHEN Jianyu,ZHANG Shulin,et al.Dynamic pool-formation system[J].Explorationist,1996,1(2):20-24.
参考文献 19
严科,任怀强.稠油油藏油水倒置现象探讨——以孤岛油田中一区馆陶组 6-7 砂层组为例[J].石油勘探与开发,2009,36(5):635-640.YAN Ke,REN Huaiqiang.Oil/water inversion and juxtaposition in heavy oil reservoirs:Taking6-7 sand members of Guantao Forma⁃ tion,Gudao Oilfield as an example[J].Petroleum Exploration and Development,2009,36(5):635-640.
参考文献 20
陈振标.超稠油油藏油水倒置成因及含油面积圈定探析—— 以埕东油田埕911-平1块馆下段为例[J].油气地质与采收率,2017,24(5):53-57.CHEN Zhenbiao.Genesis of oil/water inversion and delineation of oil-bearing area in super-heavy oil reservoirs:A case study of the lower member of Guantao Formation in Block Cheng911-Ping1,Chengdong Oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(5):53-57.
参考文献 21
严科,杨少春,任怀强.稠油油藏油水分布模式及成因探讨[J].特种油气藏,2008,15(论文集):143-147.YAN Ke,YANG Shaochun,REN Huaiqiang.Study on oil and wa⁃ ter distribution pattern and cause in heavy oil reservoir[J].Spe⁃ cial Oil & Gas Reservoir,2008,15(Proceedings):143-147.
参考文献 22
孙洪军“.水包油”油藏成因机制探讨及石油地质意义[J].自然科学,2017,5(5):457-465.SUN Hongjun.Genetic mechanism discussion and petroleum geo⁃ logical significance of“oil-in-water”reservoir[J].Natural Sci⁃ ence,2017,5(5):457-465.
目录contents

    摘要

    低含油饱和度特稠油油藏的油水关系一般较为复杂,针对该类油藏开展油水分布规律研究是可动用储量评价与开发的基础。应用测井、岩心分析及开发动态等资料对孤岛油田东区馆6开展储层含油性评价及油水分布特征研究,认为其为油水关系复杂的低含油饱和度特稠油油藏。其油气成藏机制为:以重力、浮力为主的弱成藏动力难以排驱较小喉道孔隙中的原生水,致使河道边缘、河间滩地等物性较差的砂体含油饱和度较低;油气成藏后,孤北断层剧烈活动,致使其附近区域的地面原油密度超过1.01 g/cm3 ,具有一定长度的连续油柱足以克服毛细管力排出孔隙,聚集于构造低部位,形成油水倒置现象。以油藏成因机制研究为指导,根据油水分布特征及控制因素,将孤岛油田东区馆6低含油饱和度特稠油油藏的油水分布模式划分为4种类型,分别为岩性控制的Ⅰ类、构造控制的 Ⅱ类、构造和岩性双重控制的Ⅲ类、油水密度分异控制的Ⅳ类,并制定了差异化的开发策略,进而实现储量评价及有效动用。

    Abstract

    The oil and water relationship of low oil-saturated super-heavy oil reservoir is generally complicated. In this kind of reservoir,the study of oil-water distribution rule is the basis for probable reserves evaluation and development. Based on the data of logging,core analysis and development performance,the evaluation of oil-bearing property of reservoir and the oil and water distribution characteristics were studied in Ng6 layer in the east region of Gudao Oilfield,and it is be- lieved that the reservoir is a low oil-saturated reservoir with complicated oil and water relationship. The weak driving forces dominated by gravity and buoyancy are difficult to drain the original water in pores with small throats,which leads to a low- er oil saturation of sand bodies in the river edge and river beach with poor physical property. After the accumulation of oil and gas,the intense movement of Gubei Fault make oil density increase to 1.01 g/cm3 ,and continuous oil column with a cer- tain length is able to make oil overcome capillarity pressure and blow out of pore to gather in low part of the structure and make inversion of oil and water. Directed by reservoir development mechanism based on oil-water distribution characteris- tics and control factors,the oil-water distribution pattern of Ng6 low oil-saturated super-heavy oil can be divided into four patterns including,lithological controlled patternⅠ,tectonic controlled patternⅡ,tectonic and lithological controlled pat- ternⅢ,and oil-water density differentiation controlled patternⅣ. This research formulates the differentiated development strategy and realizes reserves evaluation and effective utilization.

  • 济阳坳陷低含油饱和度特稠油资源丰富,由于对该类型油藏的低含油饱和度成因、油水分布模式以及控制因素的研究程度较低,因此尚未建立系统的储量评价方法。孤岛油田东区馆6低含油饱和度特稠油油藏地质储量近千万吨,其油水关系复杂,试采呈现初期具有一定产能、含水率上升速度快、累积产油量低等特点。目前中外对该类型油藏的研究已取得一定进展,主要侧重于低含油饱和度的形成机制研究,认为其输导体系匹配不利,油气供给不充足,整体含油饱和度较低[1];地层倾角小,油水分异不充分,在油水过渡带形成复杂油水关系的低含油饱和度油藏[2];因古油藏遭受部分破坏,形成调整性油藏[3]。但这些观点均建立在相对宏观的区带成藏机理研究基础之上,缺乏对油气充注时孔喉半径与原始含油饱和度之间关系的定量研究,以及成藏后油气二次运移对油水分布模式影响的分析。为此,笔者在油气成藏动力学的指导下,通过对单位质量石油质点的力学分析,建立孔喉半径-原始含油饱和度关系,进而基于油水分布特征、控制因素分析,建立低含油饱和度特稠油的 4 种油水分布模式。研究成果对于丰富低含油饱和度特稠油成藏机理、提高复杂油水关系油藏的评价与开发水平具有重要意义。

  • 1 区域地质概况

  • 孤岛凸起及其周缘位于沾化凹陷中东部,其南、北、西三面分别受孤南、孤北和孤西断层所控制,为典型的洼中隆,是渤南、孤南、孤北3个生烃洼陷油气运移聚集的有利指向区,油气成藏条件优越[4-7]。孤岛油田东区馆 6 位于孤岛披覆背斜构造的东倾部位、馆6稠油环外围油水过渡带,含油面积为6.1 km2,整体呈西高东低、南高北低的单斜构造,断层不发育,地层倾角为0.8°~1.5°。研究区馆6砂层组为辫状河沉积体系,纵向上可以划分为馆 61+2、馆63、馆64、馆65 等4个小层,主力油层馆63 小层可细分为馆63-1、馆63-2、馆63-3 共3个韵律层,厚度一般为 2~5 m,局部区域达 8~10 m;储层胶结疏松,孔隙度为 32.9%~40.4%,平均为 35.5%,空气渗透率为 2 721~4 496 mD,平均为 3 721 mD,为高孔高渗透储层;脱气原油密度为 0.952 3~1.012 3 g/cm3,50℃ 地面脱气原油黏度为10 354~50 107 mPa•s。

  • 2 油水分布特征

  • 2.1 测井响应分析

  • 参考孤岛油田中区馆 6 稠油的电性标准,结合试油试采数据,确定东区馆 6 油水层的电性判识标准:油层电阻率大于等于5 Ω·m,声波时差大于等于 380 μs/m;油水同层电阻率为 3~5 Ω·m,声波时差为 350~380 μs/m;水层电阻率小于 3 Ω·m,声波时差为 350~380 μs/m。密井网条件下砂体含油性的判识结果显示,平面上忽油忽水、水包油、油包水现象较为普遍,小层、韵律层均无统一的油水界面(图1)。

  • 研究区储层为多期次砂体叠置而成,单井在不同韵律层的含油性差异在垂向上组合出不同的测井响应,具有纯油层、上油层下水层、中部油层及上水层下油层等 4种测井响应类型(图2)。同一圈闭中存在多种类型的测井响应主要与储层、流体的强非均质性有关。其中,中部油层及上水层下油层的测井响应与经典油水分布理论相悖;钻遇中部油层的井在研究区分布广泛,特点是储层纵向非均质性强;钻遇上水层下油层的井主要分布于研究区北部、邻近孤北断层的区域,其突出特点是原油密度在1.01 g/cm3 以上。

  • 2.2 岩心分析

  • 为深入研究储层含油性及控制因素,在研究区北部部署了密闭取心井东4-检33,经校正馆63 小层的含油饱和度为 58.3%,含水饱和度为 41.7%,相渗试验显示可动水饱和度为 17.6%~29.3%,平均为 23.9%,表明研究区为低含油饱和度、高可动水的稠油油藏。

  • 图1 孤岛油田东区馆63 和64 小层油水分布特征

  • Fig.1 Oil-water distribution characteristics in Ng63 and Ng64 layers in the east region of Gudao Oilfield

  • 岩心分析结果显示,储层含油性与物性呈正相关,孔隙度越高,则含油饱和度越高。东区馆6砂层组为辫状河沉积体系,具有河床游荡性强、河道不固定[8] 的特点,辫状河道、心滩坝通过侵蚀面相互叠置、切割,形成广泛展布的拼合板状结构储层[9-15]。拼合储层内部非均质性较强,除河道、心滩外还发育河道边缘、河间滩地等沉积微相[8],且不同沉积微相的孔喉半径及物性差异较大。东4-检33井馆63-1 韵律层为河水溢岸时在河道两侧形成的河道边缘沉积,以薄层细砂岩、粉砂岩为主,其 115 号岩样压汞试验显示孔喉半径为 3.5~22.2 μm,平均为 7.0 μm,孔隙度为29.4%,含油饱和度仅为23.5%;馆63-3 韵律层为辫状河道沉积,发育厚层细砂岩及少量中、粗砂岩,其 181 号岩样的孔喉半径为 5.1~53.9 μm,平均为 12.9 μm,孔隙度为 42.0%,含油饱和度高达64.4%(图3)。

  • 图2 孤岛油田东区馆6低含油饱和度特稠油测井响应类型

  • Fig.2 Well logging response of low oil-saturated super-heavy oil of Ng6 layer in the east region of Gudao Oilfield

  • 2.3 开发动态分析

  • 研究区试采井 16 口,均采用蒸汽吞吐;初期单井产液量为52.5 t/d,单井产油量为7.9 t/d,平均含水率为 85.0%;3个月后单井产液量为 45.5 t/d,单井产油量为 1.1 t/d,平均含水率为 97.5%,含水率月均上升 4 个百分点;平均单井累积产油量为 0.19×104 t,累积产水量为3.0×104 t,采出程度为0.38%。为实现研究区储量的有效动用,需深化油水分布模式及主控因素研究,为开发技术政策制定奠定基础。

  • 图3 孤岛油田东4-检33井岩心分析结果

  • Fig.3 Core analysis results of Well Dong4-Jian33 in Gudao Oilfield

  • 3 油气成藏条件分析

  • 研究区低含油饱和度及复杂油水关系是油气成藏过程中孔隙原生水排驱不均衡及成藏后局部构造运动稠化下的油水重力分异作用共同形成的。

  • 3.1 孔隙原生水排驱不均衡

  • 孤岛油田馆陶组存在馆陶组沉积末期、明化镇组沉积时期、平原组沉积时期共 3 个油气成藏期次[5]。对馆陶组原油中规则甾烷、4-甲基甾烷、三环萜烷、五环三萜烷等生物标志物特征的分析结果显示,其为渤南洼陷沙四段上亚段碳酸盐岩与渤南、孤北、孤南洼陷沙三段烃源岩所形成的混源油[16]。依据两端元混源模拟建立的混源油定量判识模板,确立了孤岛凸起及周缘地区油气资源量配置关系:渤南洼陷沙四段和沙三段供应的油气资源量占孤岛凸起及周缘地区总资源量的比例为 72%,孤南洼陷沙三段和沙一段供应的油气资源量所占的比例为 18%,孤北洼陷沙三段供应的油气资源量所占的比例为10%[16]

  • 孤岛油田东区馆陶组油藏主要于明化镇组沉积时期充注形成,渤南洼陷、孤南洼陷沙三段烃源岩生成的成熟油,分别沿孤北、孤南断裂带及馆下段厚层毯式砂体大规模运聚于馆上段[6-8],鉴于孤岛凸起及周缘地区的资源量配置关系,研究区主要油气来源应为渤南洼陷。渤南洼陷沙三段异常高压是油气水涌流由深部烃源岩沿开启断层幕式充注至馆下段低压仓储层,再沿沟通馆下段和馆上段的次级断裂体系汇聚至馆上段河道砂体的主要作用力[6],研究区不发育直接沟通馆下段和馆上段的断层[17],且距离渤南洼陷20 km以上,因此油气运移的驱动机制逐渐转换为重力控制的水动力及其自身的阿基米德浮力[18]

  • 明化镇组沉积末期,渤南洼陷油气优势运移路径主要指向孤岛凸起北侧[7]。油气沿馆上段储层自西北区逐步横向运移至东区[5],在油气充注过程中,单位质量的石油质点在储层中同时受重力(G)、净浮力(F)和毛细管力(p c)的共同作用[18-19] (图4)。

  • 图4 孤岛油田东区馆6油气充注成藏过程中单位石油质点受力分析

  • Fig.4 Mechanical analysis of unit oil during oil and gas filling and accumulation process of Ng6 layer in the east region of Gudao Oilfield

  • 净浮力是油水密度差异形成的,其方向与重力相反,单位面积为 1、垂直地层方向油柱高度为 Y的连续油柱的净浮力可以表示为:

  • F=ρw-ρogY
    (1)
  • 假设孤岛油田东区馆6的地层倾角为θ,单位面积为 1,沿地层方向长度为 X 的连续油柱的净浮力平行地层分量可以表示为:

  • Frx=(G-F)sinθ=ρoXg-ρw-ρoXgsinθsinθ
    (2)
  • 原油排驱原生孔隙水,须克服毛细管力。岩石亲水条件下的毛细管力可以表示为:

  • pc=2σ1rt-1rp
    (3)
  • 若孤岛油田东区馆 6 沿地层方向连续油柱长度、平均孔隙半径及地层条件下油水界面张力已知,则可以通过(2)式和(3)式计算出原油排驱孔隙原生水的临界喉道半径:

  • rt=1ρoXg-ρw-ρoXgsinθsinθ2σ+1rp
    (4)
  • 利用(4)式对研究区馆 6 临界喉道半径进行估算,考虑油气成藏后的轻烃组分逸失以及馆上段 6砂组及其上覆 5砂组—1+2砂组间存在的原油重力分异,馆上段原油密度平均取值为 0.92 g/cm3,地层条件下油水界面张力取值为0.008 N/m,孔隙半径取值为东 4-检 33井馆 63 小层岩心铸体薄片分析的平均值 60 μm,连续油柱长度取值为 650 m,地层倾角为 1.0°,估算出油气成藏过程中原油排驱储层中原生水的临界喉道半径为 5.5 μm,压汞试验亦显示对渗透率起主要贡献作用的孔喉半径区间为 6.3~40 μm(图5)。

  • 图5 孤岛油田东4-检33井馆63 小层孔喉半径与渗透率贡献分布

  • Fig.5 Pore radius and permeability contribution curve of Ng63 layer in Well Dong4-Jian33 in Gudao Oilfield

  • 油气侧向运聚遵循排烃优势通道原则,孔喉半径大、有效孔隙度高,则毛细管力小、排驱压力低,原生水易被油气驱替,反之则不易被排驱[6]。东 4-检 33 井馆 63 小层 6 块岩样的孔喉半径中值为 4.9~12.9 μm,馆 63 小层突进系数和变异系数分别高达 3.3和0.9,因此在油气成藏过程中,圈闭中部分孔隙所配置喉道的半径低于临界值,难以实现对孔隙原生水的有效排驱,孔隙充注不均衡是油藏含油饱和度变化大、油水关系复杂的根本原因。

  • 3.2 构造运动次生稠化及二次运移

  • 第四系平原组沉积时期孤岛油田东区馆6油藏形成后,孤北断层较孤南断层活动更为剧烈,导致其附近原油的黏度和密度远高于研究区其他区域[4-5]。一方面,构造运动释放应力,圈闭中原先的单一液相系统转化为气-液两相系统,轻烃组分以气态形式通过断层散失至浅层圈闭,剩余重质组分重新聚集成藏,所形成的稠油以高非烃+沥青质、低饱和烃含量为特征;东4-检33井原油组分分析结果显示,其烷烃含量为19.1%,芳烃含量为21.6%,非烃含量为 35.4%,沥青质含量为 23.9%,非烃+沥青质含量高达59.3%,明显高于其他区域。另一方面,构造稠化体现为大气淡水淋滤及氧化作用,断层活动期间的封闭性较差,地表水顺断层下渗,大气淡水的注入必然携带喜氧细菌及氧化物,使得断层附近的烃类在适宜的温度下发生降解和氧化,导致原油的稠化[19]。孤岛油田东区馆 6 特稠油的黏度、油田水矿化度在平面上具有明显的变化规律,由 SW 至 NE方向,50℃时地面脱气原油黏度由10 354 mPa·s 逐渐增至 50 107 mPa·s,密度由 0.952 3 g/cm3增至 1.01 g/cm3 以上,地层水矿化度由 8 000 mg/L逐渐降低至3 500 mg/L,硫氯系数逐渐增高,淡水淋滤特征明显,且地层水矿化度低值区与重质油分布区较为吻合。

  • 孤北断层附近的地面原油在构造运动下逐步稠化,形成密度大于地层水的原油,并在储层中二次运移[19-22]。单位质量的石油质点在储层中的受力状况与成藏过程相似,区别是二次运移中石油质点克服毛细管力排出孔隙,在 F rxp c 的条件下,原油聚集于构造低部位,形成油水倒置现象。依据(2) 式和(3)式,可推导出最小连续油柱长度:

  • X2σ1rt-1rpρog-ρw-ρogsinθsinθ
    (5)
  • 孤北断层附近的地面原油密度约为 1.012 g/ cm3,孔喉半径、地层倾角等参数取值同上文,估算最小连续油柱长度为 620 m,而研究区北部连续油柱长度均在 700 m 以上,因此满足二次运移形成油水倒置的条件。

  • 4 油水分布模式

  • 综合孤岛油田东区馆 63 小层各韵律层油水分布特征及控制因素,将含油砂体划分为Ⅰ—Ⅳ共 4 种油水分布模式(图2,图6)。其中,模式Ⅰ,Ⅱ和Ⅲ 的脱气原油密度为 0.952 3~0.992 1 g/cm3,为油气成藏过程中形成;模式Ⅳ的脱气原油密度为 1.01 g/ cm3 以上,为油气成藏后二次运移所形成。依据油水分布模式,可以确立差异化的开发技术政策,进而实现可动储量的筛选及动用。

  • 模式Ⅰ   该模式为岩性模式,为满含油的“孤立”砂体,以单一辫状河道为主,呈条带状、土豆状散布于洪泛平原中,“孤立”砂体通过过渡性岩性 (如砂质泥岩、泥质砂岩)或不易识别的微断裂与其他砂体连通、叠置[6]。该类砂体的孔喉半径大、孔隙度高,在油气成藏过程中仅需较弱的动力即可排驱孔隙中的原生水。模式Ⅰ的储量规模较小,占总储量的比例为5.0%。

  • 模式Ⅱ   该模式为构造模式,其油水分布受构造因素控制,高部位为油、低部位为水,油水界面较为统一,以单一河道砂体为主,物性较为均质。自第四系平原组沉积以来,孤南、孤北断层基本停止活动[7],油水两相流体在圈闭中分异调整,在原油密度低于 1.0 g/cm3、储层高孔高渗透、相对均质的区域,流体密度差异决定了该模式的油水分布特征。模式Ⅱ的储量占总储量的比例为24.6%。

  • 模式Ⅲ   该模式为构造、岩性模式,为连片展布的复合河道砂体[9-15],平面非均质性强,高部位为孔喉半径小、物性较差的粉细砂岩,中、低部位为物性较好的细-中砂岩,油气在排驱中低部位储层中的原生水后,无足够动力继续排驱高部位小孔喉中的原生水,整体呈高部位为水、腰部为油、低部位为水或“水包油”的特征。模式Ⅲ的砂体展布面积广,其储量占总储量的比例为40.1%。

  • 图6 孤岛油田东区馆6低含油饱和度特稠油油水分布模式

  • Fig.6 Oil-water distribution patterns of super-heavy oil in Ng6 layer in the east region of Gudao Oilfield

  • 模式Ⅳ   该模式的成因是构造运动引起的次生稠化作用形成的油水密度差异导致油水在圈闭中重置与分异,呈现高部位为水、低部位为油或“水包油”的特征[19-22],该模式主要分布于孤北断层附近。其原油组分中的烷烃含量相对较低,非烃+沥青质含量较高,原油密度为 1.01 g/cm3,50℃地面脱气原油黏度在35 000 mPa·s以上。模式Ⅳ的砂体主要分布于研究区的东北部,其储量占总储量的比例为30.3%。

  • 依据上述油水分布模式的划分,分别建立纯油层、边底水、弱顶水强边水、强顶水强边水等 4 种数值模拟模型,进而确立经济极限厚度、距离边水和顶水的最小距离、水平井最优井网井距及开发方式 (热采、化学降黏)等技术政策界限,已动用储量超过300×104 t,建产能超过4.5×104 t。

  • 5 结论

  • 孤岛油田东区馆6低含油饱和度特稠油油藏的储层含油性及油水关系受油气成藏机制控制,在油气成藏过程中,储层的非均质性导致油气排驱不均衡,油气成藏后局部构造运动形成密度大于 1.01 g/ cm3 的原油,当其沿地层方向连续长度大于一定值时,即发生二次运移,并聚集于构造低部位。以油气成藏机理为指导,依据油水分布特征、控制因素将孤岛油田东区馆6低含油饱和度特稠油油藏的油水分布模式划分为 4 种类型,并制定相应的开发技术政策,进而实现部分储量的有效动用。孤岛油田东区馆6低含油饱和度特稠油油藏的成因研究及油水分布模式建立,对于丰富稠油油藏的地质认识,提高复杂油水关系的稠油未动用储量评价及开发水平均具有重要意义。

  • 符号解释:

  • G ——重力,N;F ——净浮力,N;p c——毛细管力,Pa; F rx——净浮力平行地层分量,N;F ry——净浮力垂直地层分量,N;θ——地层倾角,(°);ρw——地层水密度,g/cm3ρo—— 地层原油密度,g/cm3g ——重力加速度,m/s2Y ——垂直地层方向油柱高度,m;X ——沿地层方向连续油柱长度,m; σ——表面张力,10-3 N/m;r t ——临界喉道半径,μm;r p—— 孔隙半径,μm。

  • 参考文献

    • [1] 刘柏林,王友启.准噶尔盆地中部Ⅰ区块低含油饱和度油藏形成机理[J].新疆石油地质,2010,31(3):273-275.LIU Bolin,WANG Youqi.Low oil-saturated reservoir-forming mechanism in No.1 area in central Junggar Basin[J].Xinjiang Pe⁃ troleum Geology,2010,31(3):273-275.

    • [2] 许秀才.古龙凹陷葡萄花油层低饱和度油藏成因[J].断块油气田,2017,24(3):320-323.XU Xiucai.Genesis of low oil-saturated reservoir of Putaohua oil layer in Gulong Sag[J].Fault-Block Oil & Gas Field,2017,24(3):320-323.

    • [3] 刘俊田,李斌,郑玉萍,等.红台地区低饱和度油气藏成藏主控因素分析[J].特种油气藏,2016,23(4):37-41.LIU Juntian,LI Bin,ZHENG Yuping,et al.Key controlling-fac⁃ tors of low-saturation hydrocarbon accumulation in Hongtai[J].Special Oil & Gas Reservoirs,2016,23(4):37-41.

    • [4] 陆先亮,束青林,曾祥平,等.孤岛油田精细地质研究[M].北京:石油工业出版社,2005.LU Xianliang,SHU Qinglin,ZENG Xiangping,et al.Fine geologi⁃ cal study of Gudao Oilfield[M].Beijing:Petroleum Industry Press,2005.

    • [5] 王忠.孤岛油田馆陶组含油层系多源供烃判识及成藏分析[J].天然气地球科学,2011,22(3):399-406.WANG Zhong.Oil sources in multi-directions and accumulation analysis in Guantao Formation of Gudao Oilfield in Zhanhua Sag [J].Natural Gas Geoscience,2011,22(3):399-406.

    • [6] 张善文,王永诗,石砥石,等.网毯式油气成藏体系——以济阳坳陷新近系为例[J].石油勘探与开发,2003,30(1):1-10.ZHANG Shanwen,WANG Yongshi,SHI Dishi,et al.Meshworkcarpet type oil and gas pool-forming system:Taking Neogene of Jiyang depression as an example[J].Petroleum Exploration and Development,2003,30(1):1-10.

    • [7] 渠芳,陈清华.对孤岛油田西南缘断层活动性的新认识[J].地球科学与环境学报,2009,31(4):394-399,422.QU Fang,CHEN Qinghua.New recognitions about fault activity of the southwestern margin of Gudao oilfield[J].Journal of Earth Sci⁃ ences and Environment,2009,31(4):394-399,422.

    • [8] 李兴国.陆相储层沉积微相与微型构造[M].北京:石油工业出版社,2000.LI Xingguo.Continental reservoir sedimentary microfacies and mi⁃ crostructure[M].Beijing:Petroleum Industry Press,2000.

    • [9] 乔雨朋,邱隆伟,邵先杰,等.辫状河储层构型表征研究进展 [J].油气地质与采收率,2017,24(6):34-42.QIAO Yupeng,QIU Longwei,SHAO Xianjie,et al.Research prog⁃ ress on characterization of braided river reservoir architecture[J].Petroleum Geology and Recovery Efficiency,2017,24(6):34-42.

    • [10] 李俊飞,霍春亮,叶小明,等.渤海海域L油田砂质辫状河储层构型特征[J].油气地质与采收率,2017,24(6):48-53.LI Junfei,HUO Chunliang,YE Xiaoming,et al.Internal architec⁃ ture characteristics of sandy braided-river reservoirs in L Oil⁃ field,Bohai Bay Basin[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(6):48-53.

    • [11] 渠芳,陈清华,连承波.河流相储层构型及其对油水分布的控制[J].中国石油大学学报:自然科学版,2008,32(3):14-18.QU Fang,CHEN Qinghua,LIAN Chengbo.Fluvial facies reservoir architecture and its control over the distribution of oil and water[J].Journal of China University of Petroleum:Edition of Natural Science,2008,32(3):14-18.

    • [12] 渠芳,陈清华,连承波.河流相储层细分对比方法探讨[J].西安石油大学学报:自然科学版,2008,23(1):17-21.QU Fang,CHEN Qinghua,LIAN Chengbo.Discussion on the method for the subdivision and comparison of fluvial reservoir[J].Journal of Xi’an Shiyou University:Natural Science Edition,2008,23(1):17-21.

    • [13] 赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21(6):16-18,43.ZHAO Hanqing.Approach to the study thinking about reservoir heterogeneous system,sand-body internal construction structure and flow unit[J].Petroleum Geology & Oilfield Development in Daqing,2002,21(6):16-18,43.

    • [14] 张昌民,尹太举,赵磊,等.辫状河储层内部建筑结构分析[J].地质科技情报,2013,32(4):7-13.ZHANG Changmin,YIN Taiju,ZHAO Lei,et al.Reservoir archi⁃ tectural analysis of braided channel[J].Geological Science and Technology Information,2013,32(4):7-13.

    • [15] 鲜本忠.孤岛油田馆陶组上段河流相建筑结构及其在油藏描述中的应用[C].2004 第三届油气储层研讨会论文摘要集,2004.XIAN Benzhong.Architecture of fluvial facies in Upper Ng Mem⁃ ber of Gudao Oilfield and its application to reservoir description [C].Abstract of the Third Oil and Gas Reservoir Symposium(2004),2004.

    • [16] 杨晓敏.披覆构造混源油来源与富集特征——以孤岛凸起为例[D].北京:中国地质大学(北京),2009.YANG Xiaomin.Sources and accumulation characteristics of mixed oil in drape structure:a case study of Gudao Uplift[D].Bei⁃ jing:China University of Geosciences(Beijing),2009.

    • [17] 万雪峰.断裂向上和向下输导油气特征的差异性[J].大庆石油地质与开发,2018,37(3):16-21.WAN Xuefeng.Differences in the characteristics of the upward and downward hydrocarbon transportations by the faults[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2018,37(3):16-21.

    • [18] 田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,1(2):20-24.TIAN Shicheng,CHEN Jianyu,ZHANG Shulin,et al.Dynamic pool-formation system[J].Explorationist,1996,1(2):20-24.

    • [19] 严科,任怀强.稠油油藏油水倒置现象探讨——以孤岛油田中一区馆陶组 6-7 砂层组为例[J].石油勘探与开发,2009,36(5):635-640.YAN Ke,REN Huaiqiang.Oil/water inversion and juxtaposition in heavy oil reservoirs:Taking6-7 sand members of Guantao Forma⁃ tion,Gudao Oilfield as an example[J].Petroleum Exploration and Development,2009,36(5):635-640.

    • [20] 陈振标.超稠油油藏油水倒置成因及含油面积圈定探析—— 以埕东油田埕911-平1块馆下段为例[J].油气地质与采收率,2017,24(5):53-57.CHEN Zhenbiao.Genesis of oil/water inversion and delineation of oil-bearing area in super-heavy oil reservoirs:A case study of the lower member of Guantao Formation in Block Cheng911-Ping1,Chengdong Oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(5):53-57.

    • [21] 严科,杨少春,任怀强.稠油油藏油水分布模式及成因探讨[J].特种油气藏,2008,15(论文集):143-147.YAN Ke,YANG Shaochun,REN Huaiqiang.Study on oil and wa⁃ ter distribution pattern and cause in heavy oil reservoir[J].Spe⁃ cial Oil & Gas Reservoir,2008,15(Proceedings):143-147.

    • [22] 孙洪军“.水包油”油藏成因机制探讨及石油地质意义[J].自然科学,2017,5(5):457-465.SUN Hongjun.Genetic mechanism discussion and petroleum geo⁃ logical significance of“oil-in-water”reservoir[J].Natural Sci⁃ ence,2017,5(5):457-465.

  • 参考文献

    • [1] 刘柏林,王友启.准噶尔盆地中部Ⅰ区块低含油饱和度油藏形成机理[J].新疆石油地质,2010,31(3):273-275.LIU Bolin,WANG Youqi.Low oil-saturated reservoir-forming mechanism in No.1 area in central Junggar Basin[J].Xinjiang Pe⁃ troleum Geology,2010,31(3):273-275.

    • [2] 许秀才.古龙凹陷葡萄花油层低饱和度油藏成因[J].断块油气田,2017,24(3):320-323.XU Xiucai.Genesis of low oil-saturated reservoir of Putaohua oil layer in Gulong Sag[J].Fault-Block Oil & Gas Field,2017,24(3):320-323.

    • [3] 刘俊田,李斌,郑玉萍,等.红台地区低饱和度油气藏成藏主控因素分析[J].特种油气藏,2016,23(4):37-41.LIU Juntian,LI Bin,ZHENG Yuping,et al.Key controlling-fac⁃ tors of low-saturation hydrocarbon accumulation in Hongtai[J].Special Oil & Gas Reservoirs,2016,23(4):37-41.

    • [4] 陆先亮,束青林,曾祥平,等.孤岛油田精细地质研究[M].北京:石油工业出版社,2005.LU Xianliang,SHU Qinglin,ZENG Xiangping,et al.Fine geologi⁃ cal study of Gudao Oilfield[M].Beijing:Petroleum Industry Press,2005.

    • [5] 王忠.孤岛油田馆陶组含油层系多源供烃判识及成藏分析[J].天然气地球科学,2011,22(3):399-406.WANG Zhong.Oil sources in multi-directions and accumulation analysis in Guantao Formation of Gudao Oilfield in Zhanhua Sag [J].Natural Gas Geoscience,2011,22(3):399-406.

    • [6] 张善文,王永诗,石砥石,等.网毯式油气成藏体系——以济阳坳陷新近系为例[J].石油勘探与开发,2003,30(1):1-10.ZHANG Shanwen,WANG Yongshi,SHI Dishi,et al.Meshworkcarpet type oil and gas pool-forming system:Taking Neogene of Jiyang depression as an example[J].Petroleum Exploration and Development,2003,30(1):1-10.

    • [7] 渠芳,陈清华.对孤岛油田西南缘断层活动性的新认识[J].地球科学与环境学报,2009,31(4):394-399,422.QU Fang,CHEN Qinghua.New recognitions about fault activity of the southwestern margin of Gudao oilfield[J].Journal of Earth Sci⁃ ences and Environment,2009,31(4):394-399,422.

    • [8] 李兴国.陆相储层沉积微相与微型构造[M].北京:石油工业出版社,2000.LI Xingguo.Continental reservoir sedimentary microfacies and mi⁃ crostructure[M].Beijing:Petroleum Industry Press,2000.

    • [9] 乔雨朋,邱隆伟,邵先杰,等.辫状河储层构型表征研究进展 [J].油气地质与采收率,2017,24(6):34-42.QIAO Yupeng,QIU Longwei,SHAO Xianjie,et al.Research prog⁃ ress on characterization of braided river reservoir architecture[J].Petroleum Geology and Recovery Efficiency,2017,24(6):34-42.

    • [10] 李俊飞,霍春亮,叶小明,等.渤海海域L油田砂质辫状河储层构型特征[J].油气地质与采收率,2017,24(6):48-53.LI Junfei,HUO Chunliang,YE Xiaoming,et al.Internal architec⁃ ture characteristics of sandy braided-river reservoirs in L Oil⁃ field,Bohai Bay Basin[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(6):48-53.

    • [11] 渠芳,陈清华,连承波.河流相储层构型及其对油水分布的控制[J].中国石油大学学报:自然科学版,2008,32(3):14-18.QU Fang,CHEN Qinghua,LIAN Chengbo.Fluvial facies reservoir architecture and its control over the distribution of oil and water[J].Journal of China University of Petroleum:Edition of Natural Science,2008,32(3):14-18.

    • [12] 渠芳,陈清华,连承波.河流相储层细分对比方法探讨[J].西安石油大学学报:自然科学版,2008,23(1):17-21.QU Fang,CHEN Qinghua,LIAN Chengbo.Discussion on the method for the subdivision and comparison of fluvial reservoir[J].Journal of Xi’an Shiyou University:Natural Science Edition,2008,23(1):17-21.

    • [13] 赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发,2002,21(6):16-18,43.ZHAO Hanqing.Approach to the study thinking about reservoir heterogeneous system,sand-body internal construction structure and flow unit[J].Petroleum Geology & Oilfield Development in Daqing,2002,21(6):16-18,43.

    • [14] 张昌民,尹太举,赵磊,等.辫状河储层内部建筑结构分析[J].地质科技情报,2013,32(4):7-13.ZHANG Changmin,YIN Taiju,ZHAO Lei,et al.Reservoir archi⁃ tectural analysis of braided channel[J].Geological Science and Technology Information,2013,32(4):7-13.

    • [15] 鲜本忠.孤岛油田馆陶组上段河流相建筑结构及其在油藏描述中的应用[C].2004 第三届油气储层研讨会论文摘要集,2004.XIAN Benzhong.Architecture of fluvial facies in Upper Ng Mem⁃ ber of Gudao Oilfield and its application to reservoir description [C].Abstract of the Third Oil and Gas Reservoir Symposium(2004),2004.

    • [16] 杨晓敏.披覆构造混源油来源与富集特征——以孤岛凸起为例[D].北京:中国地质大学(北京),2009.YANG Xiaomin.Sources and accumulation characteristics of mixed oil in drape structure:a case study of Gudao Uplift[D].Bei⁃ jing:China University of Geosciences(Beijing),2009.

    • [17] 万雪峰.断裂向上和向下输导油气特征的差异性[J].大庆石油地质与开发,2018,37(3):16-21.WAN Xuefeng.Differences in the characteristics of the upward and downward hydrocarbon transportations by the faults[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2018,37(3):16-21.

    • [18] 田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,1(2):20-24.TIAN Shicheng,CHEN Jianyu,ZHANG Shulin,et al.Dynamic pool-formation system[J].Explorationist,1996,1(2):20-24.

    • [19] 严科,任怀强.稠油油藏油水倒置现象探讨——以孤岛油田中一区馆陶组 6-7 砂层组为例[J].石油勘探与开发,2009,36(5):635-640.YAN Ke,REN Huaiqiang.Oil/water inversion and juxtaposition in heavy oil reservoirs:Taking6-7 sand members of Guantao Forma⁃ tion,Gudao Oilfield as an example[J].Petroleum Exploration and Development,2009,36(5):635-640.

    • [20] 陈振标.超稠油油藏油水倒置成因及含油面积圈定探析—— 以埕东油田埕911-平1块馆下段为例[J].油气地质与采收率,2017,24(5):53-57.CHEN Zhenbiao.Genesis of oil/water inversion and delineation of oil-bearing area in super-heavy oil reservoirs:A case study of the lower member of Guantao Formation in Block Cheng911-Ping1,Chengdong Oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(5):53-57.

    • [21] 严科,杨少春,任怀强.稠油油藏油水分布模式及成因探讨[J].特种油气藏,2008,15(论文集):143-147.YAN Ke,YANG Shaochun,REN Huaiqiang.Study on oil and wa⁃ ter distribution pattern and cause in heavy oil reservoir[J].Spe⁃ cial Oil & Gas Reservoir,2008,15(Proceedings):143-147.

    • [22] 孙洪军“.水包油”油藏成因机制探讨及石油地质意义[J].自然科学,2017,5(5):457-465.SUN Hongjun.Genetic mechanism discussion and petroleum geo⁃ logical significance of“oil-in-water”reservoir[J].Natural Sci⁃ ence,2017,5(5):457-465.