-
随着油气勘探向着深层、超深层发展,近年来致密砂岩储层成为油气勘探的重点,但由于经历了复杂的成岩作用和构造改造,该类储层通常具有物性差、孔隙结构复杂等特点[1-5]。须家河组为四川盆地碎屑岩层系天然气勘探的主要目的层位[6-9],近年来,国内同行通过地质、地球化学方法,对川西坳陷上三叠统须家河组超大埋深、超致密砂岩的致密化成因、储层孔隙演化历史等进行了较为系统的研究。然而由于其储层年代相对较老、埋藏深、成岩演化历史复杂,对有利储层的形成及识别研究较少[10-16]。研究表明,致密储层形成的优质储层,在优质沉积相带、良好成岩相带及裂隙发育带之间存在良好的耦合关系,这就需要对沉积、成岩及裂缝等影响因素及其耦合关系的形成机理进行研究,以寻求有效储层的表征方法。
-
储层岩石物理相的概念是熊琦华等提出的,是基于储层的宏观岩性特征、微观孔隙和孔喉结构特征等,并结合后期构造作用来表征储层特征[17]。随后众多学者对岩石物理相进行了定义,有的以物性特征为标准[18],有的以孔隙几何学特征为依据[19]。岩石物理相首先是一个含有地质相概念的成因单元,不是单因素控制的结果,而是沉积、成岩和后期构造等多种因素耦合的结果,可以通过岩石岩性、成分、结构和构造体现出所划分的各岩石物理相之间的性质差异预测有利储层。为此,以川西坳陷须四段上亚段为研究对象,综合分析沉积、成岩及构造因素等对储层的影响,对致密砂岩储层进行岩石物理相划分,以期为研究区优质储层预测提供基础地质资料。
-
1 区域地质概况
-
四川盆地位于四川省东部,盆地四周皆为高大山脉,其西南为大凉山,北为大巴山,西为龙门山,在这些山脉的环抱下,呈显著的构造盆地特征[20]。川西坳陷位于四川盆地西部,晚三叠世后形成,西部紧邻龙门山造山带,北东方向与昆仑-秦岭构造带相接,南部与康滇构造带相邻,东连川中隆起,面积约为 5×104 km2,规模较大,也被称为龙门山前陆盆地[21-22]。川西坳陷与特提斯洋和华北地块临近,构造活动强烈。
-
川西坳陷须家河组四段为一个三级层序,进一步划分为低位、湖侵和高位体系域,主要发育冲积扇-冲积平原-三角洲-湖泊沉积体系,其中低位体系域和高位体系域时期沉积相展布规律相似,以三角洲前缘沉积为主体,水下分流河道砂体大面积连片分布;湖侵体系域时期三角洲前缘延伸范围变小,以滨浅湖沉积为主。
-
2 沉积相特征
-
川西坳陷须家河组为三角洲沉积体系,须四段上亚段主要发育湖相三角洲沉积体系,沉积微相以水下分流河道、河口坝、分流间湾及席状砂为主(图1)。
-
图1 川西坳陷须四段上亚段沉积微相平面分布
-
Fig.1 Sedimentary microfacies of the Upper 4th Member of Xujiahe Formation in the western Sichuan Depression
-
水下分流河道 水下分流河道作为三角洲平原分流河道的水下延伸部分,由多个自下而上变细的沉积旋回组成,见明显的冲刷面。岩性以砂岩、粉砂岩为主,含有少量泥岩;交错层理、波状层理发育。
-
河口坝 河口坝是在河口处由于河流携带的砂泥等物质因流速降低堆积而产生的。沉积物主要由砂和粉砂组成,一般分选较好;主要发育楔状层理、平行层理、逆粒序层理等[20]。自下而上声波时差幅度由中幅变为高幅的齿化箱形、漏斗形,反映出下细上粗的逆粒序剖面结构特征。
-
分流间湾 水下分流河道之间与湖水相通的低洼地带即为分流间湾。岩性主要为泥岩、粉砂质泥岩,含有少量粉砂岩或泥质粉砂岩;发育小型交错层理、浪成沙纹层理、水平层理。
-
席状砂 河口坝及远砂坝在侧向迁移过程中,在湖浪作用改造下形成位于其前方的席状砂体,称为席状砂。常垂直于河流流向和平行湖岸线分布,沉积物粒度细、分选好、分布面积广,厚度较薄,砂质较纯。自然伽马曲线表现为低幅度的微齿化。
-
3 成岩相特征及分类
-
3.1 储层特征
-
3.1.1 岩石学特征
-
通过观察岩心及 2 260 个砂岩薄片鉴定,并对阴极发光照片和扫描电镜数据进行分析,发现川西坳陷须四段上亚段储层岩性以岩屑砂岩为主,岩屑石英砂岩、长石岩屑砂岩次之(图2)。须四段填隙物含量平均约为 11%,主要为碳酸盐胶结物,方解石含量平均为5.48%;杂基以泥质为主,含量平均为 4.37%;还有少量有机质等。
-
图2 川西坳陷须四段上亚段砂岩成分三角图
-
Fig.2 Triangular diagram of sandstone composition in the Upper 4th Member of Xujiahe Formation in the western Sichuan Depression
-
3.1.2 岩石结构特征
-
研究区须四段上亚段颗粒磨圆度普遍较好。碎屑颗粒主要为中粒、细粒、中-细粒结构,可见小部分粗粒与不等粒结构。其中颗粒分选为较好-中等,磨圆度为中等-较好,次棱角-次圆状;胶结类型以孔隙式、孔隙镶嵌式及镶嵌式胶结为主。砂岩颗粒以点接触、点-线接触为主,凹凸接触较少,胶结类型以孔隙-接触式及孔隙式为主。
-
3.2 成岩作用
-
分析岩心、铸体/普通薄片、X衍射、阴极发光及扫描电镜等资料,发现经长时间地质运动后,川西坳陷须四段上亚段储层遭受破坏性与建设性成岩作用,部分经历了影响程度较低的交代作用,使原生孔隙的保持与破坏和次生孔隙的形成、保持及破坏均受到较大影响。
-
3.2.1 压实作用
-
以化学压实及机械压实作用为主。其中,机械压实作用包括:①刚性碎屑颗粒和骨架颗粒重新排序;②塑性岩屑变形以假杂基定向排列为主;③云母类片状矿物出现弯曲变形现象。化学压实主要表现为石英颗粒之间进行压溶,产生点-线接触、点接触为主,凹凸接触较少;胶结类型以孔隙式及孔隙-接触式为主(图3a,3b)。
-
3.2.2 胶结作用
-
研究区以碳酸盐、硅质及黏土矿物胶结作用为主。
-
碳酸盐胶结作用 分析研究区须四段上亚段 669 块样品填隙物含量可知,碳酸盐胶结物含量为 5.96%,占胶结物总量的 81.31%。碳酸盐胶结物在自生矿物中含量最多,大部分是方解石及白云石 (图3c)。
-
硅质胶结作用 石英为研究区主要硅质胶结物。自生石英矿物包括石英自生加大与自生石英胶结物。尘线在石英次生加大部分发育,其中部分为无痕迹加大。另外,可见小部分自生石英矿物填隙物充填在孔隙之间,使孔隙度变小。
-
黏土矿物胶结作用 分析研究区全岩与黏土矿物颗粒中黏土矿物含量,发现伊利石在全岩与黏土矿物颗粒中占比分别为6.63%,40.92%;高岭石在全岩中占比为 2.55%,在黏土矿物颗粒中占比为 15.77%;绿泥石在全岩中占比则为3.54%,而在黏土矿物颗粒中占比为 21.86%。在黏土矿物颗粒中伊利石含量最高,其次为绿泥石,高岭石较少见(图3d,3e)。
-
3.2.3 溶蚀作用
-
溶蚀作用在研究区须四段上亚段储层普遍发育但强度较弱。据岩石薄片、铸体薄片及扫描电镜分析,绝大部分骨架有被溶蚀的现象,特别是微斜长石、条纹长石和不稳定岩屑溶蚀普遍,常以形成粒间、粒内溶孔为主,铸模孔、蜂窝状溶孔次之。溶蚀作用在纵、横向发育不均匀:长石的溶蚀作用常沿边部和双晶面进行;填隙物中杂基、绿泥石被溶蚀成贴粒溶缝、粒间溶孔和杂基内溶孔;方解石胶结物一般溶蚀微弱,形成少量次生粒间溶孔;石英的溶蚀比较微弱,在扫描电镜下,石英加大部分的表面存在一些大小不一的溶蚀坑,为后期水介质碱性化的产物。溶蚀作用微弱的主要原因有:①可溶碎屑贫乏,显著贫长石是研究区须四段骨架颗粒构成的重要特征之一。②砂岩中塑性颗粒含量高,储层受强烈压实作用,致密化时间早,流体流动性差,难以对骨架颗粒形成有效溶蚀。
-
图3 川西坳陷须四段上亚段成岩作用特征
-
Fig.3 Diagenesis characteristics of the Upper 4th Member of Xujiahe Formation in western Sichuan Depression
-
3.2.4 交代作用
-
交代作用在研究区须四段上亚段较为少见,可见稳定性非常低的长石沿其颗粒边缘或者解理面被交代(图3f)。
-
3.2.5 破裂作用
-
研究区须四段上亚段破裂作用能够使致密砂岩产生裂缝,微裂缝能够连通彼此独立或者细小的孔隙,有效地提升砂体的渗透性,从而改善储集性能,微裂缝的存在很大程度上改善烃类的运移。镜下分析表明,研究区须四段上亚段裂缝发育一般,破裂作用强度低。
-
3.3 成岩相划分
-
成岩相是成岩环境的一种物质表现,主要是在特殊环境中沉积物受成岩作用影响经历演化序列及成岩阶段后的产物[23-24]。主要反映由于成岩环境的差异形成的各种成岩矿物组合,其影响因素包括组合特征及成岩作用[25-27]。成岩相划分依据如下: ①溶蚀相定名主要依据显微薄片、扫描电镜等有明显的溶孔发育或颗粒具有溶蚀特征且胶结作用较为发育。对溶蚀作用中高岭石、碳酸盐等胶结物出现,将胶结物描述在名称的前面,如碳酸盐胶结-溶蚀相。②碳酸盐胶结相的定名主要依据胶结物的总含量。③压实相的定名主要依据砂岩中较低胶结物含量的总量且压实作用较为发育,局部可见少量的溶蚀作用。④对于研究区砂岩不发育且砂地比小于40%的地区定名为非储层。
-
根据薄片鉴定及扫描电镜等特征将川西坳陷须四段上亚段成岩相分为溶蚀相、碳酸盐胶结-溶蚀相、高岭石胶结-溶蚀相、碳酸盐胶结相和压实相 5种类型(表1,图4)。
-
图4 川西坳陷须四段上亚段成岩相平面图
-
Fig.4 Diagenetic facies of the Upper 4th Member of Xujiahe Formation in the western Sichuan Depression
-
4 构造相划分
-
区域构造背景及构造运动史均可以对储层物性产生影响。微观上,构造运动产生的构造应力容易使岩石破裂出现裂缝,而储层的渗流能力因裂缝的作用得以改善,有利于孔隙流体流动和油气运聚。宏观上,构造运动控制着沉积物埋藏史和古地温等,从而间接影响储集物性。但对研究区须四段上亚段砂岩而言,裂缝是构造相对储层物性影响的直观表现(图5),根据裂缝发育与否将研究区构造相分为裂缝相和无裂缝相。需要说明的是,研究区裂缝发育较少。由须四段上亚段构造相平面分布 (图6)可知,裂缝相主要发育在新场构造带中部和龙泉山构造带。
-
图5 川西坳陷须四段上亚段裂缝发育特征
-
Fig.5 Fracture characteristics of the Upper 4th Member of Xujiahe Formation in western Sichuan Depression
-
图6 川西坳陷须四段上亚段构造相平面分布
-
Fig.6 Plan view of the tectonic facies of the Upper 4th Member of Xujiahe Formation in the western Sichuan Depression
-
5 岩石物理相划分及测井响应特征
-
5.1 岩石物理相划分
-
岩石物理相的分类主要以成岩相划分为主,沉积相和构造相为辅。沉积相决定储层原始特征,构造相和成岩相综合决定储层分布及演化规律。在沉积相、成岩相和构造相划分的基础上,将三者进行叠加耦合可知,研究区须四段上亚段砂岩储层共发育 40种(4×5×2)岩石物理相类型,但储层的岩石物理相分类不能仅依靠理论来进行划分,因为其中会存在一些不合理的岩石物理相组合,例如:分流间湾-压实相-裂缝相、分流间湾-碳酸盐胶结相-裂缝相、分流间湾-溶蚀相-裂缝相、分流间湾-碳酸盐胶结-溶蚀相-裂缝相、分流间湾-溶蚀相-无裂缝相、分流间湾-碳酸盐胶结-溶蚀相-无裂缝相等组合,因此划分岩石物理相时需排除这些不合理的组合。
-
通过岩石薄片和岩心观察,将研究区须四段上亚段砂岩储层岩石物理相共划分为Ⅰ,Ⅱ1,Ⅱ2,Ⅲ 及Ⅳ共 5 类,Ⅰ类即高孔基质-裂缝型储层,形成于水动力较强的高能环境,储层受建设性成岩作用的影响,原生粒间孔和次生溶孔较为发育,裂缝发育,储层物性好;Ⅱ1类即高孔基质型储层,形成于水动力较强的高能环境,储层受建设性成岩作用的影响,但由于没有裂缝的发育使得渗透率大幅度降低,储层物性较Ⅰ类岩石物理相较差;Ⅱ2类即低孔基质-裂缝型储层,形成于水动力较强的高能环境,储层受破坏性成岩作用的影响,虽受压实作用和胶结作用影响,但裂缝发育,储层物性相对较好;Ⅲ类即低孔基质型储层,形成于水动力较强的高能环境,储层受破坏性成岩作用的影响且不发育裂缝,不能为流体提供运移的通道,造成储集物性较差; Ⅳ类即泥岩,本文主要描述致密砂岩,对泥岩不做详细描述。
-
分析研究区须四段上亚段物性资料和压汞曲线,表明不同岩石物理相其孔隙度和渗透率虽没有明显的分界,但总体上Ⅰ类岩石物理相对应发育层段的储集物性和孔隙结构最好,具有孔隙度高且渗透率显著增高的特征,主要是由于对应层段的储集空间以原生孔隙为主。Ⅱ1,Ⅱ2类岩石物理相对应发育层段的储集物性和孔隙结构较好。Ⅲ类岩石物理相对应发育层段的储集物性和孔隙结构最差 (图7,图8)。
-
图7 岩石物理相类型与物性关系
-
Fig.7 Relationship between petrophysical facies and physical properties
-
图8 岩石物理相类型与孔隙结构关系
-
Fig.8 Relationship between petrophysical facies and pore structure
-
5.2 岩石物理相测井响应特征
-
不同岩石物理相对应的沉积微相特征及成岩作用类型均有所不同,且通过电阻率等测井技术所得到的地层信息内容主要为物理性质,而岩石物理相不同,其在矿物学及岩石学特征等方面不同,会影响测井曲线,使之表现出的响应特征也有所区别,因此,能够利用岩石物理相和测井响应2种数据间的关系,选取自然电位、自然伽马、地层真电阻率、自然电位、补偿密度 5 种测井曲线,建立更有效的岩石物理相评价方法与判别标准(表2)。
-
5.3 岩石物理相平面分布
-
利用上述岩石物理相测井响应特征,通过对研究区单井岩石物理相测井解释和划分,将研究区须四段上亚段岩石物理相类型识别出来(图9)。最终通过由点及线,由线及面,实现岩石物理相平面分布预测(图10)。
-
由岩石物理相平面分布可知,有利岩石物理相带主要分布在川西坳陷东部,储集物性及孔隙结构最好的Ⅰ类岩石物理相仅分布在新场构造带,Ⅱ1类岩石物理相主要分布在成都凹陷东部和中江斜坡东部地区,Ⅱ2类岩石物理相主要分布于龙泉山构造带。这也是优质储集体发育带和研究区下一步寻找储集体的主要目标区域。
-
图9 川孝94井须四段上亚段储层单井岩石物理相划分
-
Fig.9 Petrophysical faices division of the Upper 4th Member of Xujiahe Formation(Well Chuanxiao94)
-
图10 川西坳陷须四段上亚段储层岩石物理相平面分布
-
Fig.10 Plane distribution of petrophysical facies in the Upper 4th Member of Xujiahe Formation in the western Sichuan Depression
-
6 结论
-
利用普通薄片、铸体薄片、扫描电镜、电子探针和 X 衍射等资料,将川西坳陷须四段上亚段划分为水下分流河道、河口坝、分流间湾和席状砂4种沉积微相,溶蚀相、碳酸盐胶结-溶蚀相、高岭石胶结-溶蚀相、碳酸盐胶结相和压实相5种成岩相,裂缝相和无裂缝相2种构造相。根据沉积相、成岩相、构造相的叠加耦合将研究区须四段上亚段储层划分为Ⅰ, Ⅱ1,Ⅱ2,Ⅲ及Ⅳ共 5 类岩石物理相,Ⅰ类为高孔基质-裂缝型储层,Ⅱ1类为高孔基质型储层,Ⅱ2类为低孔基质-裂缝型储层,Ⅲ类为低孔基质型储层,Ⅳ 类为泥岩。其中Ⅰ类岩石物理相储集物性最好,Ⅱ1 和Ⅱ2类岩石物理相储集物性较好。
-
参考文献
-
[1] 邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发,2008,35(5):526-540.ZOU Caineng,TAO Shizhen,ZHOU Hui,et al.Genesis,classifica⁃ tion and evaluation method of diagenetic facies[J].Petroleum Ex⁃ ploration and Development,2008,35(5):526-540.
-
[2] 凡睿,周林,吴俊,等.川东北地区须家河组致密砂岩储层流体识别方法研究[J].油气地质与采收率,2015,22(3):67-71,105.FAN Rui,ZHOU Lin,WU Jun,et al.Research on tight sandstone reservoir fluids identification in Xujiahe Formation,northeastern Sichuan basin[J].Petroleum Geology and Recovery Efficiency,2015,22(3):67-71,105.
-
[3] 李晓骁,任晓娟,罗向荣.低渗透致密砂岩储层孔隙结构对渗吸特征的影响[J].油气地质与采收率,2018,25(4):115-120,126.LI Xiaoxiao,REN Xiaojuan,LUO Xiangrong.Influence of pore structures on the characteristic of spontaneous imbibition in lowpermeability tight sandstone reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(4):115-120,126.
-
[4] 卢晨刚,张遂安,毛潇潇,等.致密砂岩微观孔隙非均质性定量表征及储层意义——以鄂尔多斯盆地X地区山西组为例[J].石油实验地质,2017,39(4):556-561.LU Chengang,ZHANG Suian,MAO Xiaoxiao,et al.Quantitative characterization of microscopic pore heterogeneity in tight sand⁃ stones and its reservoir significance:A case study of the Shanxi Formation in X area,Ordos Basin[J].Petroleum Geology & Exper⁃ iment,2017,39(4):556-561.
-
[5] 张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.
-
[6] 四川油气区石油志编写组.中国石油地质志:四川卷[M].北京:石油工业出版社,1990.Compiling Group of Petroleum Geology of Sichuan Oil and Gas Area.Petroleum geology of China:Sichuan volume[M].Beijing:Petroleum Industry Press,1990.
-
[7] 冯明石,刘家铎,孟万斌,等.四川盆地中西部须家河组储层特征与主控因素[J].石油与天然气地质,2009,30(6):713-719.FENG Mingshi,LIU Jiaduo,MENG Wanbin,et al.Characteristics and major controlling factors of reservoirs in the Xujiahe Forma⁃ tion of the central and western Sichuan Basin[J].Oil & Gas Geolo⁃ gy,2009,30(6):713-719.
-
[8] 郑定业,庞雄奇,张可,等.四川盆地上三叠系须家河组油气资源评价[J].特种油气藏,2017,24(4):67-72.ZHENG Dingye,PANG Xiongqi,ZHANG Ke,et al.Oil & gas re⁃ source evaluation for Xujiahe Formation in Upper Triassic Series in Sichuan Basin[J].Special Oil & Gas Reservoirs,2017,24(4):67-72.
-
[9] 郑志红,李登华,白森舒,等.四川盆地天然气资源潜力[J].中国石油勘探,2017,22(3):12-20.ZHENG Zhihong,LI Denghua,BAI Senshu,et al.Resource poten⁃ tials of natural gas in Sichuan Basin[J].China Petroleum Explora⁃ tion,2017,22(3):12-20.
-
[10] 杨克明,叶军,吕正祥.川西坳陷上三叠统须家河组天然气分布及成藏特征[J].石油与天然气地质,2004,25(5):501-505.YANG Keming,YE Jun,LÜ Zhengxiang.Characteristics of gas distribution and reservoiring in Upper Triassic Xujiahe Formation in Western Sichuan depression[J].Oil & Gas Geology,2004,25(5):501-505.
-
[11] 林良彪,陈洪德,翟常博,等.四川盆地西部须家河组砂岩组分及其古地理探讨[J].石油实验地质,2006,28(6):511-517.LIN Liangbiao,CHEN Hongde,ZHAI Changbo,et al.Sandstone compositions and paleogeographic evolution of the Upper Triassic Xujiahe Formation in the Western Sichuan Basin,China[J].Petro⁃ leum Geology & Experiment,2006,28(6):511-517.
-
[12] 张健,李国辉,谢继容,等.四川盆地上三叠统划分对比研究 [J].天然气工业,2006,26(1):12-15.ZHANG Jian,LI Guohui,XIE Jirong,et al.Stratigraphic division and correlation of Upper Triassic in Sichuan Basin[J].Natural Gas Industry,2006,26(1):12-15.
-
[13] 王文之,田景春,张翔,等.川南界市场—黄家场地区须家河组储集砂体成因类型及模式[J].中国地质,2013,40(2):469-476.WANG Wenzhi,TIAN Jingchun,ZHANG Xiang,et al.Genetic type and pattern of reservoir sand bodies of Xujiahe Formation in Jieshichang-Huangjiachang area of southern Sichuan Basin[J].Geology in China,2013,40(2):469-476.
-
[14] 李士祥,胡明毅,李浮萍.川西前陆盆地上三叠统须家河组砂岩成岩作用及孔隙演化[J].天然气地球科学,2007,18(4):535-539.LI Shixiang,HU Mingyi,LI Fuping.Diagenesis and porosity evolu⁃ tion of Upper Triassic Xujiahe Formation sandstone in Western Si⁃ chuan Foreland Basin[J].Natural Gas Geoscience,2007,18(4):535-539.
-
[15] 郑荣才,戴朝成,朱如凯,等.四川类前陆盆地须家河组层序— 岩相古地理特征[J].地质论评,2009,55(4):484-495.ZHENG Rongcai,DAI Chaocheng,ZHU Rukai,et al.Sequencebased lithofacies and paleogeographic characteristics of Upper Triassic Xujiahe Formation in Sichuan Basin[J].Geological Re⁃ view,2009,55(4):484-495.
-
[16] 陈涛涛,贾爱林,何东博,等.川中地区须家河组致密砂岩气藏气水分布规律[J].地质科技情报,2014,33(4):66-71.CHEN Taotao,JIA Ailin,HE Dongbo,et al.Gas and water distri⁃ bution regularity for tight sandstone reservoirs of Xujiahe Forma⁃ tion in Central Sichuan Basin[J].Geological Science and Technol⁃ ogy Information,2014,33(4):66-71.
-
[17] 熊琦华,彭仕宓,黄述旺,等.岩石物理相研究方法初探——以辽河凹陷冷东—雷家地区为例[J].石油学报,1994,15(增刊):68-75.XIONG Qihua,PENG Shimi,HUANG Shuwang,et al.A prelimi⁃ nary study of the new concept of petrophysical facies and its ini⁃ tial application in Lengdong-Leijia region in Liaohe depression [J].Acta Petrolei Sinica,1994,15(Supplement):68-75.
-
[18] SPAIN D R.Petrophysical evaluation of a slope fan/basin floor fan complex:Cherry Canyon Formation,Ward County,Texas[J].AAPG Bulletin,1992,76(6):805-827.
-
[19] 张一伟,熊琦华,王志章,等.枣园油田油藏精细描述技术与方法[J].石油学报,1994,15(增刊):10-18.ZHANG Yiwei,XIONG Qihua,WANG Zhizhang,et al.The tech⁃ nology and methods of reservoir description in Zaoyuan oilfield [J].Acta Petrolei Sinica,1994,15(Supplement):10-18.
-
[20] 赵文智,王红军,徐春春,等.川中地区须家河组天然气藏大范围成藏机理与富集条件[J].石油勘探与开发,2010,37(2):146-157.ZHAO Wenzhi,WANG Hongjun,XU Chunchun,et al.Reservoirforming mechanism and enrichment conditions of the extensive Xujiahe Formation gas reservoirs,central Sichuan Basin[J].Petro⁃ leum Exploration and Development,2010,37(2):146-157.
-
[21] 林良彪,陈洪德,姜平,等.川西前陆盆地须家河组沉积相及岩相古地理演化[J].成都理工大学学报:自然科学版,2006,33(4):376-383. LIN Liangbiao,CHEN Hongde,JIANG Ping,et al.Sedimentary fa⁃ cies and litho-paleogeographic evolution of the Upper Triassic Xujiahe Formation in West Sichuan foreland basin[J].Journal of Chengdu University of Technology:Science & Technology Edi⁃ tion,2006,33(4):376-383.
-
[22] 郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996:33-36. GUO Zhengwu,DENG Kangling,HAN Yonghui,et al.Sichuan Ba⁃ sin formation and evolution[M].Beijing:Geological Publishing House,1996:33-36.
-
[23] 马琳,郭巍,刘群,等.伊通盆地鹿乡断陷双阳组储层孔隙结构特征及其控制因素[J].世界地质,2010,29(2):284-291. MA Lin,GUO Wei,LIU Qun,et al.Pore structure characteristics and controlling factors of Shuangyang Formation reservoir in Lux⁃ iang fault depression,Yitong Basin[J].Global Geology,2010,29(2):284-291.
-
[24] 滕建彬.流体—岩石化学作用控制的成岩相划分与评价—— 以江家店—瓦屋地区沙三段下亚段为例[J].油气地质与采收率,2017,24(3):1-9.TENG Jianbin.Division and evaluation of diagenetic facies of res⁃ ervoirs in the control of fluid-rock chemical interaction:A case study of the lower Es3 in Jiangjiadian-Wawu area[J].Petroleum Geology and Recovery Efficiency,2017,24(3):1-9.
-
[25] 胡宗全,朱筱敏.准噶尔盆地西北缘侏罗系储层成岩作用及孔隙演化[J].石油大学学报:自然科学版,2002,26(3):16-19.HU Zongquan,ZHU Xiaomin.Diageneses and pore evolution of Jurassic reservoir in northwestern edge of Junggar basin[J].Jour⁃ nal of the University of Petroleum,China:Edition of Natural Sci⁃ ence,2002,26(3):16-19.
-
[26] 张响响,邹才能,朱如凯,等.川中地区上三叠统须家河组储层成岩相[J].石油学报,2011,32(2):257-264.ZHANG Xiangxiang,ZOU Caineng,ZHU Rukai,et al.Reservoir diagenetic facies of the Upper Triassic Xujiahe Formation in the central Sichuan Basin[J].Acta Petrolei Sinica,2011,32(2):257-264.
-
[27] 赖锦,王贵文,王书南,等.碎屑岩储层成岩相研究现状及进展 [J].地球科学进展,2013,28(1):39-50.LAI Jin,WANG Guiwen,WANG Shunan,et al.Research status and advances in the diagenetic facies of clastic reservoirs[J].Ad⁃ vances in Earth Science,2013,28(1):39-50.
-
摘要
川西坳陷须家河组是四川盆地主要产气层位之一。分析岩心观察及钻、测井等资料,认为须四段上亚段发育水下分流河道、河口坝、分流间湾及席状砂4种沉积微相,结合普通/铸体薄片、扫描电镜和X衍射等测试方法,深入开展储层成岩相及构造相研究,将成岩相划分为压实相、碳酸盐胶结相、溶蚀相、高岭石胶结-溶蚀相、碳酸盐胶结-溶蚀相5种;将构造相分为裂缝相和无裂缝相2种。综合沉积、成岩及构造因素,将研究区须四段上亚段岩石物理相划分为Ⅰ,Ⅱ1,Ⅱ2,Ⅲ及Ⅳ共 5 类,其中Ⅰ类为高孔基质-裂缝型储层,Ⅱ1类为高孔基质型储层,Ⅱ2类为低孔基质-裂缝型储层,Ⅲ类为低孔基质型储层,Ⅳ类为泥岩。结合测井曲线,建立各类岩石物理相的测井识别标准,为单井岩石物理相的划分提供依据。
Abstract
Xujiahe Formation in western Sichuan Depression is one of the main gas producing horizons in Sichuan Basin. Based on the analysis of core observations,drilling and well data,it is considered that four sedimentary microfacies includ- ing underwater distributary channel,estuary dam,distributary bay and sheet sand are developed in the Upper 4th Member of Xujiahe Formation. Combined with common/cast thin section observations,scanning electron microscopy and X-ray dif- fraction,the diagenetic facies and tectonic facies of the reservoirs are studied in depth,and the diagenetic facies is divided into compacted facies,carbonate cemented facies,dissolved facies,kaolinite-corrosion facies,and carbonate cemented-cor- rosion facies,tectonic facies is divided into fracture facies and non-fracture facies. By comprehensively considering the in- fluence of sedimentary,diagenetic and structural factors on the reservoir,the petrophysical facies of the reservoir in the Up- per 4th Member of Xujiahe Formation is divided into five types including Ⅰ,Ⅱ1,Ⅱ2,Ⅲand Ⅳphysical facies. Among them,TypeⅠis a high-porosity matrix-fractured reservoir,Type Ⅱ1 is a high-porosity matrix reservoir,Type Ⅱ2 is a lowporosity matrix-fracture reservoir,Ⅲis a low-porosity matrix reservoir,and Type Ⅳ is mudstone. Based on the logging da- ta,the logging criteria of various rock physical phases are established to provide a basis for the establishment of a single well petrophysical facies.