-
等深流是指由于地球旋转而在大洋中形成的温盐环流,其平行海底等深线稳定低速流动[1-2]。这种环流往往交替出现低流速期和高流速期,在低流速期的速度一般为 5~20 cm/s,持续时间从数星期至数月;在高流速期的速度一般为 20~40 cm/s,持续时间为数天至数星期,可形成海底风暴[2],其中在现今直布罗陀海峡的上部大陆斜坡地区,速度可达 180~250 cm/s[3]。在现代海洋中,等深流沉积覆盖了大面积的海底地区,主要分布于大陆斜坡至深海盆地等深水环境中,常沿大陆边缘发育大型等深岩丘或等深岩席。
-
鄂尔多斯盆地西缘中、晚奥陶世为深水等深流极为发育时期。桌子山地区公乌素组等深流沉积是发现最早并进行详细沉积学研究的实例[4],随后在平凉地区官庄剖面平凉组和桌子山地区青年农场乌拉力克组也发现了等深流沉积[5],前者形成等深岩丘,后者未形成等深岩丘。此后,又陆续发现克里摩里组和拉仲什组等深流沉积[6]。对于桌子山地区克里摩里组等深流沉积,笔者前期进行了较为详细的沉积学和地球化学研究,论述了沉积鉴别标志[7]、主要控制因素[8] 及沉积介质特征[9],并总结了沉积模式[10]。为此,笔者在已有研究的基础上,以碳和氧同位素数据为基础,对沉积时流体的性质进行研究,提出等深暖流沉积的观点,这是对地层记录中等深暖流沉积的首次识别,对于鄂尔多斯盆地西缘中、晚奥陶世深水环流体系研究以及下古生界深水油气勘探均具有重要的意义。
-
1 区域地质背景
-
研究区位于鄂尔多斯盆地西缘北部的内蒙古桌子山地区(图1)。在中奥陶统达瑞威尔阶克里摩里组沉积时期,其北部为阿拉善古陆和伊盟古陆,东部为开阔碳酸盐岩台地,台地边缘斜坡呈向西南开口的环带状分布,中部为深水盆地[11]。研究区奥陶系自下而上由下统三道坎组、中统桌子山组和克里摩里组及上统乌拉力克组、拉什仲组、公乌素组和蛇山组组成。
-
根据沉积环境可将研究区分为台地相和斜坡相两大类,其中台地相发育于三道坎组和桌子山组。三道坎组发育浅灰色石英砂岩、灰白色白云质石灰岩、石灰岩互层,中、下部夹数层生物碎屑石灰岩,属于局限台地沉积;桌子山组发育浅灰色厚层石灰岩,有时含泥质或硅质结核,局部具有瘤状构造,属于碳酸盐岩台地沉积。斜坡相发育于克里摩里组、乌拉力克组、拉什仲组、公乌素组和蛇山组,克里摩里组以深灰色薄层石灰岩与灰黑色泥岩为主,泥质成分向上递增,属于台地边缘斜坡沉积;乌拉力克组主要发育含碳硅质泥岩,上部为黑色碳质泥岩,底部为含砾屑石灰岩,为深水盆地相并含有碳酸盐岩碎屑流沉积;拉什仲组主要发育灰绿色砂岩、泥岩,上部夹生物碎屑石灰岩,为浊流沉积[12-13]; 公乌素组为薄层石灰岩、泥岩、砂岩互层,为低密度浊流与等深流沉积[6];蛇山组下部为黄绿色含砂钙质泥岩夹生物碎屑石灰岩,上部为中厚层砾状生物碎屑石灰岩,相当于盆地西缘南部的背锅山组下部,为浅海陆棚沉积。
-
图1 鄂尔多斯盆地西缘中奥陶世达瑞威尔期古地理略图[11]
-
Fig.1 Paleogeographic schematic of Darriwilian in Middle Ordovician,western Ordos Basin[11]
-
桌子山地区奥陶纪水体由浅变深,从克里摩里组沉积时期开始为深水沉积,水体快速加深,至克里摩里组上段沉积时期达到最大深度[7],从拉什仲组沉积末期开始变浅,为大陆斜坡环境[14],此后在公乌素组沉积时期出现3次大陆斜坡与深海盆地的转化[15],至蛇山组沉积时期才变为浅海陆棚沉积环境。此外,克里摩里组下段极具旋回性的薄层石灰岩直接指示深水沉积环境[8]。
-
2 等深流沉积构造
-
桌子山地区克里摩里组下段以浅灰色-深灰色薄层泥晶-粉晶石灰岩夹极薄层灰黑色泥岩为特征,但在石灰岩中却发育大量具有双向递变特征的沉积构造(图2)。主要包括在单一石灰岩层中自下而上的细粒层-粗粒层-细粒层沉积序列和平行层-均匀层-平行层沉积序列,此外也发现由极薄层泥质(毫米级)隔开的薄层-厚层-薄层沉积序列。
-
在上述 3 种沉积序列中,发育最为广泛的是细粒层-粗层粒-细粒层沉积序列,单层石灰岩从下到上由细粉晶-粗粉晶-细粉晶构成。在风化面上细粉晶为主的部分呈现为浅黄色,粗粉晶为主的部分呈现为浅灰色,在新鲜面上均为深灰色,且肉眼分辨不出差异。粗粉晶与细粉晶部分之间的界线可为突变,界面较平直,粗粉晶部分可呈层状(图2a),也可呈条带状(图2b);二者之间的界线也可呈渐变,包括上、下界面均为渐变(图2c)或仅1个界面呈渐变(图2c),即上界面呈渐变,而下界面为突变,整个粗粉晶部分略显正粒序,呈现为层状、透镜状 (上、下界面均呈起伏状)、条带状及分枝状(图2c)。
-
图2 桌子山地区克里摩里组下段等深流沉积特征
-
Fig.2 Sedimentary characteristics of contour currents in Lower Kelimoli Formation,Zhuozishan area
-
平行层-均匀层-平行层沉积序列发育相对较少,在同一石灰岩层中,平行层的晶粒相对较细,而均匀层的晶粒相对较粗。在图2d 中底部为模糊的平行层,上部为较清晰的平行层,中间无粒序层存在,但整个岩层可分为上、下两部分,下部较粗,上部较细。有时会出现均匀层和平行层的叠置,在图2e 中二者之间呈渐变关系。野外观察中也发现整个薄层石灰岩呈平行层、断续平行层和局部为波状层的沉积构造,在单层中(薄层或中层叠置层)发现从下到上呈现出薄层-厚层-薄层沉积序列的并不多见,其观察要借助于良好的风化作用,图2f 显示下部薄层石灰岩为细粒层-粗粒层-细粒层沉积序列,上部中层石灰岩整个显示为模糊的平行层,但其叠置现象非常明显,上、下的较薄层与中间的较厚层被厚度约为1~2 mm的泥岩分隔。
-
等深流是由地球自转而引起的大洋温盐环流,不仅单个等深流事件具有由弱到强再到弱的演化过程(即低流速期与高流速期的交替),而且在一定的天文周期内也具有由弱到强再到弱的演化过程。例如在岁差周期内(约2万年)具有完整的弱-强-弱演化过程,在高频离心率周期内(约10万年)也具有完整的弱-强-弱演化过程[16]。流体流动由弱变强再变弱的演化过程表现在沉积上就是沉积物(岩) 的细粒层-粗粒层-细粒层沉积序列[3]。
-
桌子山地区克里摩里组下段薄层状石灰岩中发育的细粒层-粗粒层-细粒层沉积序列反映出沉积时海底沉积流体流动的弱-强-弱变化趋势[17],粗粒层(粗粉晶)部分不同的形态(如条带状、分枝状等)可能由海洋深水区沉积物供应不足所引起[18]。平行层-均匀层-平行层沉积序列的形成主要由于沉积流体对不同大小颗粒的不同作用效果,在较细的细粉晶中形成平行层,而在较粗的粗粉晶中形成均匀层,因此,这种沉积序列也反映沉积流体流动的弱-强-弱变化,不完整的均匀层-平行层沉积序列则可能是由于沉积流体的不完全改造形成的(底部流体未对沉积物形成簸选作用)。中层叠置层中的薄层-厚层-薄层沉积序列则可能与不同底流速度下碳酸盐的沉积速率相关:如果底流为暖流,在强底流时期,海水温度较高,碳酸盐深度补偿界面变深,沉积速率相对较大,形成较厚层的沉积;相反,弱底流时期,海水温度较低,碳酸盐深度补偿界面变浅,沉积速率相对较小,形成较薄层的沉积,因此薄层-厚层-薄层沉积序列也反映出沉积时海底沉积流体流动的弱-强-弱变化规律。
-
综上所述,桌子山地区克里摩里组下段薄层石灰岩具有双向递变特征的沉积构造。即在单一石灰岩层中从下到上的细粒层-粗粒层-细粒层沉积序列、平行层-均匀层-平行层沉积序列和由极薄层 (毫米级)泥质隔开的薄层-厚层-薄层沉积序列均显示出等深流的沉积特征,故研究区克里摩里组下段由薄层石灰岩及其所夹的极薄层泥岩组成的石灰岩-泥岩对应视为等深流沉积(改造)形成。
-
3 碳、氧同位素测温结果
-
本次研究共采集桌子山地区克里摩里组下段薄层状石灰岩地球化学样品19件,取新鲜部位研磨至 200 目,用磷酸法制成 CO2气体,在 MAT253 气体质谱计上分析其碳、氧同位素值,分析检测依据为同位素地质样品分析方法[19],检测环境温度为 22℃,湿度为 40%。为判断样品的碳、氧同位素组成是否遭受过成岩作用的影响,对每件样品采用 ICP-MS(XSERIES2)仪器进行锰和锶含量的测定,共获得有效数据19组(表1)。
-
3.1 测试数据检验
-
利用氧同位素法测试古水温的基本依据是:在海水中的氧和生成的含氧化合物(主要是碳酸盐类)的氧之间,18O 的平衡分布取决于含氧化合物生成时的海水温度,且这种原始的氧同位素成分可以在含氧化合物中完整地保存下来。因此,应用氧同位素法测试古水温,首先要保证沉积物与水体(海水)之间的氧同位素交换达到平衡,其次要保证氧同位素组成不受其他因素影响[20-22],这些因素主要有成岩期的重结晶与离子再交换,以及形成时期海水盐度的变化。为了保证氧同位素法温度计算的可靠性,本次研究分别从相同样品的碳氧同位素关系、锰锶比值、氧同位素测试值及盐度等4个方面对所获得的氧、碳同位素数据进行检验。
-
石灰岩与海水之间的氧同位素交换是否达到平衡,可根据石灰岩中氧同位素与碳同位素之间是否具有线性关系来判断。二者具有明显的线性关系,说明沉积时氧同位素交换未达到平衡;不具有线性关系,则说明沉积时氧同位素交换达到平衡[23-24]。对研究区克里摩里组下段薄层状石灰岩的氧、碳同位素数据以 δ13C值为横坐标、δ18O值为纵坐标绘制散点图(图3),结果表明二者不具有线性关系,说明在沉积时石灰岩与海水之间的氧同位素交换达到平衡。
-
图3 桌子山地区克里摩里组石灰岩δ13C-δ18O散点图
-
Fig.3 Plots of δ13C-δ18O in limestone of Kelimoli Formation,Zhuozishan area
-
对于海相碳酸盐岩,如受后期成岩或成岩期后流体的影响,特别是大气水循环的影响,岩石将发生锶的丢失和锰的加入,即锰锶比值变大,一般认为锰锶比值小于10(更严格的标准是锰锶比值小于 2~3)的碳酸盐岩通常可以保留其原始的同位素组成[25]。在研究区克里摩里组下段 19 件薄层石灰岩样品中,锰锶比值最大为 0.48,最小为 0.06,平均为 0.14,远小于2,显示该薄层状石灰岩碳、氧同位素不受成岩作用影响。
-
碳酸盐岩中的氧同位素组成对后期蚀变更为灵敏,一般认为 δ18O 值为-5‰~-10‰,氧同位素较原始组成可能稍有变化,但碳同位素组成变化不大,其碳、氧同位素数据可以使用;当 δ18O 值小于-10‰(或-11‰)时,碳同位素的原始组成可能发生明显改变,其碳、氧同位素数据不宜使用[25]。在研究区 19件样品中,氧同位素最大值为-4.28‰,最小值为-8.32‰,平均为-7.3‰,略大于-7.5‰,其中氧同位素值大于-5‰ 的样品 1 件,为-7.5‰~-5‰ 的样品 8 件,为-10‰~-7.5‰ 的样品 10 件。从氧同位素的数值分布来看,研究区克里摩里组下段薄层状石灰岩略受成岩作用影响,但数据仍可使用。
-
盐度变化同样可以影响温度的测定,目前使用的氧同位素温度计算经验公式仅在正常的海相沉积环境中才成立。已广泛应用于前侏罗系的古盐度计算公式为:
-
桌子山地区克里摩里组下段薄层状石灰岩的Z 值计算结果(表1)显示,其最大值为 127.38,最小值为 122.68,平均值为 124;除样品 28-16 的 Z 值为 127.38,其他样品的 Z 值为 122.68~124.45,差值仅为 1.77。这些数据表明,研究区克里摩里组下段薄层状石灰岩为正常的海相沉积环境,且盐度变化很小,为沉积时的水温测量提供了良好的条件。
-
3.2 古水温计算
-
KEITH 等对 δ18O 与地质年代关系的统计结果[26] 表明,地质历史时期 δ18O 同位素的变化具有一定的规律性,反映成岩作用对 δ18O 变化的影响,即 δ18O 的年代效应[27]。随着地质年代的不断变老,岩石所经受的成岩作用也逐渐增强,其 δ18O 值越来越低,会出现较小的负值。故在利用 δ18O 研究新生代以前地层的古水温时,应对 δ18O 检测值进行地质年代校正。中奥陶统达瑞威尔阶全球腕足类化石的 δ18O平均值接近-6.3‰[28],第四系海相石灰岩的δ18O 平均值约为-1.2‰[27],二者的差值为-5.1‰,目前关于古生界石灰岩的校正值多采用-5.1‰[22,27],因此本文也采用该值进行校正(表1)。
-
利用氧同位素测定古水温是由美国学者UREY 等提出的[29],经过多位学者深入研究,提出一个反映氧同位素与古水温之间相互关系的经验公式[30]。基于前人研究成果,GASSE 对该公式进行修改,并将不同地质历史时期大洋水的δ18O值与现代大洋水的 δ18O值进行类比,从而假定二者的差值为 0,即得到目前广泛应用于古水温的计算公式[31]:
-
笔者利用(2)式分别根据校正前和校正后的数据计算古水温,结果(表1)表明,桌子山地区克里摩里组下段沉积时期的古水温一般为 22.2~30.7℃,平均为 26.4℃;且在垂向上高值与低值相间出现,呈波状起伏。其中,样品 28-16 校正后的古水温为 12.2℃,相对较低,该样品的锰锶比值和Z值分别为 0.48 和 127.38,均为研究区 19 件样品中的最大值,其δ18O值可能受成岩期和海水盐度影响要大于其他样品,但 12.2℃的水体并非冷水,因此研究区克里摩里组下段薄层状石灰岩沉积于温暖的水体之中。
-
桌子山地区 19件样品中有 17件样品的碳同位素为正值,占 89.5%;这其中最大值为 1.08‰,最小值为0.01‰,平均值为0.21‰;远大于鄂尔多斯盆地西缘马家沟组的碳同位素平均值(-0.05‰),接近于平凉组碳同位素平均值(0.27‰),说明研究区克里摩里组和平凉组沉积时期的水动力条件可能类似。此外,样品28-4和28-22为2个异常样品,其碳同位素值分别为-0.2‰和-0.35‰,均出现负漂移。
-
4 等深暖流沉积的提出
-
参照现今的“大洋传送带”假说[32],大洋深部的等深流(底层环流)为冷流,只有密度高于上覆水体的流体才能在地球自转的作用下沿斜坡稳定流动。本文的氧同位素测温结果显示,其温度平均值为 26.4℃,最低的 1 个几乎可以归为异常点的温度为 12.2℃,均属于暖流。依据国家海洋局“向阳红”和 “实践”号调查船 1978 年 12 月—1979 年 7 月在太平洋西部赤道区域的调查结果[33],该地区表层(水深为 0~75 m)可形成温度大于 29.3℃的高温低盐流体,在深度为 250 m 的赤道潜流的温度仍可达 13~14℃[33]。结合现今海洋的温度分布,可推测中、晚奥陶世鄂尔多斯盆地西缘形成等深流沉积可能是海洋表面的风海流在深水区作用的结果。此外,相关研究结果表明,在中寒武世至早泥盆世(距今513~386 Ma),华北古板块从南纬 20.2°向北移至南纬 12.9° [34],这一推断与达瑞威尔期华北古板块所处的热带位置相符合,中奥陶世鄂尔多斯盆地西缘为炎热的气候条件[35]。
-
在缺少陆生植物的早古生代,海水中的重碳富集源于有机体的快速埋藏或海生生物的繁盛。前人研究结果[36] 表明,乌海地区克里摩里组总有机碳含量(TOC)较高,平均为 0.31%,页岩夹层的 TOC值则高达 1.25%。因此,克里摩里组沉积时期的重碳富集除了水体较深、有机质快速埋藏之外,还可能与在温暖的风海流水体中浮游和底栖等生物繁盛,大量消耗海水中的轻碳(12C)有关。
-
结合目前墨西哥湾流和大西洋暖流的发育情况,推测在中奥陶世达瑞威尔期鄂尔多斯盆地西缘可能存在大规模的风海流(表层大洋环流),其厚度至少大于 200 m,深水区底流速度足以搬运粗粉晶碳酸盐颗粒。
-
5 油气地质意义
-
依据鄂尔多斯盆地西北部奥陶系已发现气藏 (余探 1 和余探 2 井克里摩里组气藏)的气源分析[37-38],以及靖边气田气源分析结果[39],发现奥陶系天然气主要为来自石炭系和二叠系煤系烃源岩生成的煤成气,但不排除有奥陶系海相气源的少量混入[37-40],也表明鄂尔多斯盆地西缘奥陶系海相地层中具备生成油气资源的潜力[41]。鄂尔多斯盆地西缘奥陶系烃源岩主要发育于克里摩里组和乌拉力克组,为一套分布广、厚度大的深海相泥页岩和泥质碳酸盐岩沉积[42],其中克里摩里组泥岩的TOC值平均为 0.52%[37],最高达 1.25%[36],均大于海相泥页岩烃源岩生烃的TOC下限值(0.5%)[42];克里摩里组石灰岩的 TOC 值平均为 0.31%[37],而前人综合海相碳酸盐岩烃源岩生烃的 TOC 下限值及鄂尔多斯盆地下古生界多项无机与有机参数分析结果,认为烃源岩TOC值为0.2%是重要的界限,碳酸盐岩生烃的 TOC下限值一般为0.2%~0.4%。因此,桌子山地区克里摩里组下段由等深暖流形成的薄层状石灰岩为重要的烃源岩[36,42]。
-
等深流对油气系统中的储层形态特征及烃源岩的分布均可以产生重要的影响[43]。研究区克里摩里组由等深暖流形成的薄层状石灰岩的纹层发育良好,且纹层往往有利于排烃,也有利于孔隙和裂缝的发育,进而间接改善储层物性[44-47],特别是克里摩里组下段薄层石灰岩形成叠置层,单层石灰岩之间为极薄层泥岩,甚至缺失泥岩,因此,有可能成为良好的油气储层。前期对桌子山地区克里摩里组等深流沉积的研究表明,其在垂向上形成一个完整的等深流水下水道-天然堤沉积体系[10]。在鄂尔多斯盆地西北部,除已发现的上古生界天然气“倒灌”运移形成的气田(分布于偏东部的克里摩里组顶部)[37],在偏西部地区的克里摩里组下段也具有形成较大规模的自生自储式油气田及页岩气[48-49] 的潜力。
-
如果鄂尔多斯盆地西缘克里摩里组等深暖流沉积是由海洋表面的风海流在深水区作用的结果,那么这种风海流属于大洋表层环流的一部分,应具有规模大且稳定的特征,这将预示着整个鄂尔多斯盆地西缘克里摩里组可能会普遍发育等深暖流沉积或受等深暖流作用,从而具有较大的油气勘探潜力。中国目前尚未发现深水牵引流沉积型油气田,而鄂尔多斯盆地西缘克里摩里组则最有望在该领域取得油气突破。因此,桌子山地区克里摩里组下段等深暖流沉积的发现,具有重要的理论和实际意义。
-
6 结论
-
桌子山地区中奥陶统克里摩里组沉积环境为深水斜坡,其下段的薄层状石灰岩受等深流改造明显,普遍发育具有双向递变特征的沉积构造,形成深水碳酸盐岩等深流沉积。依据氧同位素测温结果,计算研究区克里摩里组下段薄层状石灰岩等深流的古水温一般为22.2~30.7℃,平均为26.4℃,为等深暖流,推测可能属于风海流引起的大洋表层环流。桌子山地区中奥陶统克里摩里组等深暖流沉积的发现,预示着鄂尔多斯盆地西北部奥陶系特别是克里摩里组可能存在自生自储式油气藏,对于鄂尔多斯盆地西缘下古生界油气勘探及中国在深水牵引流沉积领域取得油气突破均具有重要的意义。
-
致谢:昆明理工大学国土资源工程学院地球科学系硕士研究生阙易参与了野外地质工作和室内资料整理工作,硕士研究生张东阳、廖勇军参加了野外地质工作,在此一并致谢!
-
符号解释
-
Z ——古盐度,当 Z 大于 120 时,为海相石灰岩,Z 小于 120时,为淡水(陆相)石灰岩;δ13C——碳同位素值,‰,采用 PDB标准;δ18O——氧同位素值,‰,采用 PDB标准;T ——古水温,℃。
-
参考文献
-
[1] FAUGÈRES J C,STOW D A V.Bottom-current-controlled sedi⁃ mentation:a synthesis of the contourite problem[J].Sedimentary Geology,1993,82(1/4):287-297.
-
[2] 何幼斌,高振中,罗顺社,等.等深流沉积的特征及其鉴别标志 [J].江汉石油学院学报,1998,20(4):1-6.HE Youbin,GAO Zhenzhong,LUO Shunshe,et al.Features of contourites and their discrimination[J].Journal of Jianghan Petro⁃ leum Institute,1998,20(4):1-6.
-
[3] NELSON C H,BARAZA J,MALDONADO A.Mediterranean un⁃ dercurrent sandy contourites,Guff of Cadiz,Spain[J].Sedimenta⁃ ry Geology,1993,82(1/4):103-131.
-
[4] 李日辉.桌子山中奥陶统公乌素组等积岩的确认及沉积环境 [J].石油与天然气地质,1994,15(3):235-240.LI Rihui.Identification of contourites in Middle Ordovician Gong⁃ wushu Formation,Zhuozishan,and depositional environment[J].Oil & Gas Geology,1994,15(3):235-240.
-
[5] 高振中,罗顺社,何幼斌,等.鄂尔多斯地区西缘中奥陶世等深流沉积[J].沉积学报,1995,13(4):16-26.GAO Zhenzhong,LUO Shunshe,HE Youbin,et al.The middle Or⁃ dovician contourite on the west margin of Ordos[J].Acta Sedimen⁃ tologica Sinica,1995,13(4):16-26.
-
[6] 丁海军,孟祥化,葛铭,等.从桌子山剖面看贺兰坳拉谷北段奥陶系等深流沉积[J].安徽地质,2008,18(1):8-15.DING Haijun,MENG Xianghua,GE Ming,et al.Ordovician con⁃ tourite deposition on the northern segment of the Helan aulacogen seen from the Bench MT section[J].Geology of Anhui,2008,18(1):8-15.
-
[7] 李向东,郇雅棋.鄂尔多斯盆地西缘桌子山地区奥陶系深水条纹条带状泥岩等深流成因分析[J].古地理学报,2017,19(6):987-997.LI Xiangdong,HUAN Yaqi.Origin of deep-water stripped-andbanded mudstones related to contour currents in the Ordovician,Zhuozishan area,western margin of Ordos Basin[J].Journal of Pa⁃ laeogeography,2017,19(6):987-997.
-
[8] 李向东,阙易,郇雅棋.桌子山中奥陶统克里摩里组下段薄层状石灰岩垂向序列分析[J].地球科学进展,2017,32(3):276-291. LI Xiangdong,QUE Yi,HUAN Yaqi.Analysis of vertical sedimen⁃ tary successions in the lower part of Kelimoli Formation,Middle Ordovician,Zhuozishan area[J].Advances in Earth Science,2017,32(3):276-291.
-
[9] 李向东,郇雅棋,阙易.桌子山中奥陶统克里摩里组下段稀土元素特征与沉积介质分析[J].地质科学,2018,53(2):547-565.LI Xiangdong,HUAN Yaqi,QUE Yi.REE geochemistry and anal⁃ ysis of sedimentary aqueous media in lower part of Kelimoli For⁃ mation,Middle Ordovician,Zhuozishan area[J].Chinese Journal of Geology,2018,53(2):547-565.
-
[10] 李向东,阙易,郇雅棋.桌子山地区中奥陶统克里摩里组深水等深流沉积模式[J].高校地质学报,2018,24(2):285-296.LI Xiangdong,QUE Yi,HUAN Yaqi.Depositional model for con⁃ tourites the Kelimoli Formation,middle Ordovician,Zhuozishan area[J].Geological Journal of China Universities,2018,24(2):285-296.
-
[11] 郭彦如,赵振宇,付金华,等.鄂尔多斯盆地奥陶纪层序岩相古地理[J].石油学报,2012,33(增刊2):95-109.GUO Yanru,ZHAO Zhenyu,FU Jinhua,et al.Sequence lithofa⁃ cies paleogeography of the Ordovician in Ordos Basin,China[J].Acta Petrolei Sinica,2012,33(Supplement2):95-109.
-
[12] 晋慧娟,孙明良,李育慈.内蒙古桌子山中奥陶统的“特殊”浊积岩系[J].沉积学报,2005,23(1):34-40.JIN Huijuan,SUN Mingliang,LI Yuci.The“special”turbidite measure of the Middle Ordovician Series in Zhuozishan area,In⁃ ner Mongolia[J].Acta Sedimentologica Sinica,2005,23(1):34-40.
-
[13] 肖彬,何幼斌,罗进雄,等.内蒙古桌子山中奥陶统拉什仲组深水水道沉积[J].地质论评,2014,60(2):321-331.XIAO Bin,HE Youbin,LUO Jinxiong,et al.Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia[J].Geological Review,2014,60(2):321-331.
-
[14] 费安玮.鄂尔多斯盆地拉什仲组遗迹化石组合与古环境[J].高校地质学报,2001,7(3):278-287.FEI Anwei.Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation,Ordos Basin[J].Geo⁃ logical Journal of China Universities,2001,7(3):278-287.
-
[15] 费安玮.桌子山中奥陶世公乌素组遗迹化石组合与古地理环境[J].现代地质,2000,14(3):366-372.FEI Anwei.Trace fossil assemblages and palaeoenvironment of Middle Ordovician Gongwusu Formation,Zhuozishan,Inner Mon⁃ golia[J].Geoscience,2000,14(3):366-372.
-
[16] KIETZMANN D A,PALMA R M,LLANOS M P I.Cyclostratigra⁃ phy of an orbitally-driven Tithonian-Valanginian carbonate ramp succession,Southern Mendoza,Argentina:Implications for the Ju⁃ rassic-Cretaceous boundary in the Neuquén Basin[J].Sedimenta⁃ ry Geology,2015,315:29-46.
-
[17] STOW D A V,FAUGÈRES J-C,VIANA A,et al.Fossil contou⁃ rites:a critical review[J].Sedimentary Geology,1998,115(1/4):3-31.
-
[18] TUIJNDER A P,RIBBERINK J S,HULSCHER S J M H.An ex⁃ perimental study into the geometry of supply-limited dunes[J].Sedimentology,2009,56(6):1 713-1 727.
-
[19] 张自超.同位素地质样品分析方法:DZ/T0184.1~0184.22— 1997[S].北京:中国标准出版社,1997.ZHANG Zichao.Isotopic geological sample analysis method:DZ/T0184.1~0184.22-1997[S].Beijing:Standards Press of China,1997.
-
[20] 王兆荣,支霞臣,周德昌,等.同位素古温度与海平面变化的关系初探[J].地层学杂志,1997,21(4):289-292.WANG Zhaorong,ZHI Xiachen,ZHOU Dechang,et al.A prelimi⁃ nary study of the relationship between palaeotemperature of iso⁃ tope and sea level changes[J].Journal of Stratigraphy,1997,21(4):289-292.
-
[21] 王传尚,汪啸风,陈孝红,等.海水表面温度变化及其对笔石动物群分布的控制作用——以湖北宜昌奥陶系大湾组为例[J].地质学报,2009,83(6):751-758.WANG Chuanshang,WANG Xiaofeng,CHEN Xiaohong,et al.The SST change and its influence on the distribution of graptolite fauna-An example from the Ordovician Dawan Formation in Yichang,Hubei Province[J].Acta Geologica Sinica,2009,83(6):751-758.
-
[22] 陈强,张慧元,李文厚,等.鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义[J].古地理学报,2012,14(1):117-124.CHEN Qiang,ZHANG Huiyuan,LI Wenhou,et al.Characteristics of carbon and oxygen isotopes of the Ordovician carbonate rocks in Ordos and their implication[J].Journal of Palaeogeography,2012,14(1):117-124.
-
[23] 王大锐,冯晓杰.渤海湾地区下古生界碳、氧同位素地球化学研究[J].地质学报,2002,76(3):400-408.WANG Darui,FENG Xiaojie.Research on carbon and oxygen geo⁃ chemistry of lower Paleozoic in north China[J].Acta Geologica Si⁃ nica,2002,76(3):400-408.
-
[24] 孔为伦,李双应,万秋,等.镇安西口地区二叠纪碳氧同位素特征及意义[J].合肥工业大学学报:自然科学版,2011,34(7):1 058-1 065.KONG Weilun,LI Shuangying,WAN Qiu,et al.C,O isotope com⁃ position from Permian in Xikou region,Zhen’an County and its implications[J].Journal of Hefei University of Technology:Natu⁃ ral Science Edition,2011,34(7):1 058-1 065.
-
[25] 刘策,曹颖辉,周波,等.古城地区中下奥陶统白云岩碳氧同位素特征及成因[J].特种油气藏,2017,24(2):30-34.LIU Ce,CAO Yinghui,ZHOU Bo,et al.Carbon and oxygen iso⁃ tope characteristics and genesis of Middle and Lower Ordovician dolomite in Gucheng area[J].Special Oil & Gas Reservoirs,2017,24(2):30-34.
-
[26] KEITH M H,WEBER J N.Carbon and oxygen isotopic composi⁃ tion of selected limestones and fossils[J].Geochimica et Cosmo⁃ chimica Acta,1964,28(10/11):1 787-1 816.
-
[27] 邵龙义.碳酸盐岩氧、碳同位素与古温度等的关系[J].中国矿业大学学报,1994,23(1):39-45.SHAO Longyi.The radition of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc.[J].Journal of China University of Mining and Technology,1994,23(1):39-45.
-
[28] LOHMANN K C,WALKER J C G.The δ18O record of phanerozoic abiotic marine calcite cements[J].Geophysical Research Letters,1989,16(4):319-322.
-
[29] UREY H C,EPSTEIN S,MCKINNEYC,et al.Method for measure⁃ ment of paleotemperatures[J].Bulletin of the Geological Society of America:Abstract,1948,59(11):1 359-1 360.
-
[30] SHACKLETON N.Oxygen isotope analyses and Pleistocene tem⁃ peratures reassessed[J].Nature,1967,215:15-17.
-
[31] GASSE F.Diatoms for reconstructing palaeoenvironments and pal⁃ aeohydrology in tropical semi-arid zones[J].Hydrobiologia,1987,154(1):127-163.
-
[32] STOMMEL H,ARONS A B.On the abyssal circulation of the world ocean-II.An idealized model of the circulation pattern and amplitude in oceanic basins[J].Deep Sea Research,1960,6(2):217-233.
-
[33] 马继瑞,林春发,李斌.太平洋西部赤道区域海流、温度、盐度的分布和变化[J].海洋学报,1985,7(2):131-142.MA Jirui,LIN Chunfa,LI Bin.The distribution and changes of ocean currents,temperatures and salinities in equatorial regions of western Pacific Ocean[J].Acta Oceanologica Sinica,1985,7(2):131-142.
-
[34] 巫建华,刘帅.大地构造学概论与中国大地构造学纲要[M].北京:地质出版社,2008:231-242.WU Jianhua,LIU Shuai.Conspectus of tectonics and tectonic of China[M].Beijing:Geological Publishing House,2008:231-242.
-
[35] 薛时雨,付斯一,侯明才,等.鄂尔多斯盆地天环坳陷北段桌子山组白云岩碳氧同位素特征及意义[J].石油实验地质,2017,39(6):842-848,857.XUE Shiyu,FU Siyi,HOU Mingcai,et al.Characteristics and im⁃ plications of carbon and oxygen isotopes in dolomites of the Ordo⁃ vician Zhuozishan Formation in northern Tianhuan Depression,Ordos Basin[J].Petroleum Geology & Experiment,2017,39(6):842-848,857.
-
[36] 腾格尔,刘文汇,徐永昌,等.海相沉积有机质的碳同位素记录及其环境意义——以鄂尔多斯盆地为例[J].石油勘探与开发,2004,31(5):11-16.TENGGER,LIU Wenhui,XU Yongchang,et al.Organic carbon isotope record in marine sediment and its environmental signifi⁃ cance-An example from Ordos Basin,NW China[J].Petroleum Exploration and Development,2004,31(5):11-16.
-
[37] 赵靖舟,王大兴,孙六一,等.鄂尔多斯盆地西北部奥陶系气源及其成藏规律[J].石油与天然气地质,2015,36(5):711-720.ZHAO Jingzhou,WANG Daxing,SUN Liuyi,et al.Origin of the Ordovician gas and its accumulation patterns in Northwestern Or⁃ dos Basin[J].Oil & Gas Geology,2015,36(5):711-720.
-
[38] 吴伟涛,赵靖舟,孙六一,等.鄂尔多斯盆地西部奥陶系克里摩里组天然气成藏特征[J].天然气地球科学,2015,26(10):1 862-1 872.WU Weitao,ZHAO Jingzhou,SUN Liuyi,et al.Accumulation characteristics of natural gas from the Ordovician Kelimoli Forma⁃ tion,western Ordos Basin[J].Natural Gas Geoscience,2015,26(10):1 862-1 872.
-
[39] 张春林,庞雄奇,田世澄,等.鄂尔多斯盆地西部奥陶系古油藏油源对比与靖边气田气源[J].天然气地球科学,2014,25(8):1 242-1 251.ZHANG Chunlin,PANG Xiongqi,TIAN Shicheng,et al.Oilsource correlation of paleo-reservoir in Ordovician and the gas source of Jingbian Gasfield,west Ordos Basin[J].Natural Gas Geoscience,2014,25(8):1 242-1 251.
-
[40] 倪春华,刘光祥,朱建辉,等.鄂尔多斯盆地杭锦旗地区上古生界天然气成因及来源[J].石油实验地质,2018,40(2):193-199.NI Chunhua,LIU Guangxiang,ZHU Jianhui,et al.Origin and source of natural gas in the Upper Paleozoic in Hangjinqi area,Ordos Basin[J].Petroleum Geology & Experiment,2018,40(2):193-199.
-
[41] 伊硕,黄文辉,王一刚,等.延安以南地区奥陶系碳酸盐岩储层中流体包裹体及烃类物质的油气指示意义[J].油气地质与采收率,2018,25(6):38-44.YI Shuo,HUANG Wenhui,WANG Yigang,et al.Fluid inclusions and hydrocarbons in Ordovician carbonate reservoirs in the South of Yan’an and its implication for oil and gas[J].Petroleum Geolo⁃ gy and Recovery Efficiency,2018,25(6):38-44.
-
[42] 武春英,贾亚妮,韩会平,等.鄂尔多斯盆地西缘探区奥陶系烃源岩评价[J].新疆石油地质,2015,36(2):180-185.WU Chunying,JIA Yani,HAN Huiping,et al.Evaluation of Ordo⁃ vician source rocks in western margin of Ordos Basin[J].Xinjiang Petroleum Geology,2015,36(2):180-185.
-
[43] REBESCO M,HERNÁNDEZ-MOLINA F J,ROOIJ D V,et al.Contourites and associated sediments controlled by deep-water circulation processes:State-of-the-art and future considerations [J].Marine Geology,2014,352:111-154.
-
[44] 师良,王香增,范柏江,等.鄂尔多斯盆地延长组砂质纹层发育特征与油气成藏[J].石油与天然气地质,2018,39(3):522-530.SHI Liang,WANG Xiangzeng,FAN Bojiang,et al.Characteristics of sandy lamination and its hydrocarbon accumulation,Yangchang Formation,Ordos Basin[J].Oil & Gas Geology,2018,39(3):522-530.
-
[45] 刘惠民,孙善勇,操应长,等.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J].油气地质与采收率,2017,24(1):1-10.LIU Huimin,SUN Shanyong,CAO Yingchang,et al.Lithofacies characteristics and distribution model of fine-grained sedimenta⁃ ry rock in the lower Es3 member,Dongying sag[J].Petroleum Ge⁃ ology and Recovery Efficiency,2017,24(1):1-10.
-
[46] 孙兵,刘立峰,丁江辉.鄂尔多斯盆地镇北地区延长组长7致密油储层特征及其综合评价[J].大庆石油地质与开发,2017,36(4):147-152.SUN Bing,LIU Lifeng,DING Jianghui.Characteristics and com⁃ prehensive evaluation of Chang-7 tight oil reservoirs in Zhenbei Yanchang Formation of Ordos Basin[J].Petroleum Geology & Oil⁃ field Development in Daqing,2017,36(4):147-152.
-
[47] 刘冉,霍飞,王鑫,等.普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析[J].中国石油勘探,2017,22(6):34-46.LIU Ran,HUO Fei,WANG Xin,et al.Characteristics and main controlling factors of Lower Triassic Feixianguan Formation car⁃ bonate reservoir in Puguang gas field[J].China Petroleum Explo⁃ ration,2017,22(6):34-46.
-
[48] 黎茂稳,马晓潇,蒋启贵,等.北美海相页岩油形成条件、富集特征与启示[J].油气地质与采收率,2019,26(1):13-28.LI Maowen,MA Xiaoxiao,JIANG Qigui,et al.Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J].Petroleum Geology and Recovery Efficiency,2019,26(1):13-28.
-
[49] 张奥博,汤达祯,陶树,等.中美典型含油气页岩地质特征及开发现状[J].油气地质与采收率,2019,26(1):37-45.ZHANG Aobo,TANG Dazhen,TAO Shu,et al.Analysis of geologi⁃ cal background and development situation of typical oil/gas-bear⁃ ing shales in China and America[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(1):37-45.
-
摘要
鄂尔多斯盆地西缘中、晚奥陶世为深水等深流极为发育时期,而等深流对于油气系统中储层的形态特征及烃源岩的分布均具有重要影响。以内蒙古桌子山地区中奥陶统克里摩里组下段为研究对象,在前期等深流沉积研究的基础上,结合薄层石灰岩碳、氧同位素测试结果,对克里摩里组下段沉积时期的等深流特征进行研究。结果显示,研究区克里摩里组薄层石灰岩沉积时期的海水盐度正常,石灰岩与海水之间的氧同位素交换达到平衡,成岩作用对氧同位素的影响甚微。氧同位素测试数据计算古水温为22.2~30.7 ℃,平均为26.4 ℃。根据沉积时期深部水体温度较高和盐度正常的特点,推测研究区克里摩里组下段可能为风海流引起的等深暖流沉积,属于海洋表层环流沉积体系。等深暖流沉积的发现预示着鄂尔多斯盆地西缘下古生界可能发育自生自储式等深流沉积型油气藏,并具有广阔的油气勘探前景。
Abstract
The Middle to Late Ordovician is an important period with abounding deep-water contour current activities in the western margin of Ordos Basin,and contour currents have significant impact on the morphological characteristics of res- ervoir and the distribution of hydrocarbon source rock in oil and gas systems. The Lower Kelimoli Formation in Zhuozisan area of Inner Mongolia was taken as an example in this paper,and the characteristics of contour current was analysed ac- cording to the previous studies and the oxygen and carbon isotopic test data of thin-bedded limestone. The results show that the thin-bedded limestone of Kelimoli Formation is deposited in a normal salinity seawater,where an oxygen isotope ex- change balance exits between seawater and limestone during the limestone deposition,and the effect of limestone diagene- sis on oxygen isotope is negligible. The paleo-water temperature measured according to the oxygen isotope data is in the range of 22.2 ℃ to 30.7 ℃ with an average as 26.4 ℃. According to the characteristics of high temperature and normal sa- linity of deep water during the sedimentary period,it is inferred that the Lower Kelimoli Formation in the study area may be isothermal current deposits caused by wind-sea currents,which belong to the surface ocean circulation. This discovery sug-gests that the Lower Paleozoic in western margin of Ordos Basin may develops self-generation self-storage contour current oil and gas reservoirs with a broad prospect of hydrocarbon exploration.