-
蒸汽辅助重力泄油(SAGD)是目前加拿大油砂资源最重要的开发方式[1-3]。近年来中国部分超稠油油藏已逐渐开始应用该技术[4-8]。在实施过程中,储层物性、非均质性以及注采控制将对生产动态和开发效果产生重要影响[9-13]。王传飞利用物理模拟和数值模拟方法评价了春晖油田浅1块浅层超稠油油藏SAGD开发的适应性[14]。外国学者更多倾向于利用经济指标衡量和评价 SAGD开发效果[15-16]。目前并没有一套油藏工程方法可对SAGD生产过程和开发效果进行评价。基于SAGD开发过程的实际注采参数,建立SAGD开发效果评价指标模型,绘制标准图版,形成一套可推广的 SAGD 生产过程和开发效果评价新方法。
-
1 评价方法及评价指标模型建立
-
1.1 评价方法
-
对于多周期蒸汽吞吐和蒸汽驱,累积产油量与累积注汽量、累积产油量与累积产液量等累积注采参数在半对数坐标系中均呈现较好的线性关系,称之为累积注采特征曲线[17],其表达式为:
-
在 SAGD 开发中,一般若干水平注采井井对并排分布,在油藏中形成相对独立的开采单元,称为泄油区。为了更好地控制注采井间的液面高度,防止蒸汽窜流,注采井间的压力一般控制在 0.5 MPa 以内。因此,注入蒸汽后,受热原油主要受重力作用而非注采井间压差造成的驱动力流入生产井。通过对加拿大长湖油田 15个泄油区的统计发现(图1),其曲线形态与蒸汽吞吐和蒸汽驱的一致,可见适用于蒸汽吞吐和蒸汽驱的累积注采特征曲线同样适用于 SAGD 生产过程。以(1)式和(2)式为基础,进一步推导具有评价意义的SAGD评价指标模型。
-
图1 加拿大长湖油田泄油区累积注采特征曲线
-
Fig.1 Cumulative injection-production curves for drainage areas in Long Lake Oilfield,Canada
-
1.2 评价指标模型建立
-
1.2.1 瞬时汽油比和累积汽油比模型
-
瞬时汽油比为某一时刻注汽量与产油量的比值,即:
-
对(1)式进行时间求导,得到累积注汽量与瞬时汽油比的关系,即:
-
将(4)式代入(1)式,得到累积产油量与瞬时汽油比的关系,即:
-
采出程度为某一时刻累积产油量与石油地质储量的比值,即:
-
在 SAGD 开发过程中,当瞬时汽油比达到技术或经济极限汽油比时,对应的采出程度即为技术或经济极限采收率,即:
-
(7)式与(6)式相减可得:
-
因累积汽油比为累积注汽量与累积产油量之比,所以由(4)式与(5)式相除可得:
-
1.2.2 累积采注比和累积水汽比模型
-
对(2)式进行时间求导,得到累积产液量与含水率的关系为:
-
累积采注比为累积产液量与累积注汽量之比,由(4)式和(10)式可得:
-
累积水汽比为累积产水量与累积注汽量之比,由(4)式、(5)式和(10)式可得:
-
1.2.3 含水率和蒸汽累积滞留比模型
-
将(10)式代入(2)式可得:
-
由(5)式和(13)式可得:
-
令:
-
则:
-
蒸汽累积滞留比为累积注汽量与累积产水量的差值与累积注汽量的比值,即:
-
由(9)式、(11)式、(12)式、(16)式、(17)式不难发现,评价参数 R cSOR,R PIR,R WSR,f w 和 R s 均可用回归系数A 1,A 2,B 1,B 2和R iSOR的组合形式表达。而由(8) 式可知,对某 SAGD 泄油区,若给定极限瞬时汽油比,则任一采收率条件下,R iSOR仅随采出程度变化而变化。
-
2 模型参数确定
-
在评价指标模型中,对于已开发区块,A 1,A 2,B 1,B 2可通过对生产动态数据的回归得到。通过对长湖油田15个泄油区注采参数的回归发现,B 1与泄油区可采储量(N rE u)在双对数坐标系中呈现较好的线性关系(图2),其表达式为:
-
若采取近似处理,将-1.0298≈-1,则 N rE uB 1= 0.723 3,为常数。
-
图2 B 1与N rE u相关关系
-
Fig.2 Correlation between B 1 and N rE u
-
通过调研,结合对长湖油田泄油区生产动态分析发现,SAGD开发效果主要受储层厚度、泥岩夹层厚度、水平井有效长度(文中指利用随钻伽马测井,水平井沿程泥质含量小于30%的井段总长度)与总长度之比等参数影响(表1)。引入综合特征参数,其表达式为:
-
对表1中的 C,A 1,A 2,B 1,B 2进一步回归,得到综合特征参数与回归系数均呈较好的幂函数关系(图3),其表达式分别为:
-
利用(20)—(23)式,可对长湖油田 SAGD 未投产区累积注采特征曲线回归系数进行预测。由此,在确定任一 SAGD 泄油区地质参数和井筒参数后,即可绘制6个评价指标与采出程度理论图版。
-
图3 综合特征参数C与A 1,B 1,A 2,B 2回归关系
-
Fig.3 Regression relationships between C and A 1,B 1,A 2,B 2
-
3 应用实例
-
应用所建立的 SAGD 开发效果评价指标模型 ((8)、(9)、(11)、(12)、(16)、(17)式)对加拿大长湖油田泄油区的开发效果进行评价。以泄油区 15 为例,取极限瞬时汽油比为 10,在建立不同预测采收率标准评价图版基础上,将泄油区15的实际生产数据与理论数据进行对比(图4)。
-
在循环阶段,泄油区15的水平注采井连续注入蒸汽预热近 6 个月。因此在生产初期,井筒周围大量注入水被采出,采出液含水率大于 80%,瞬时汽油比和累积汽油比均较高。随着蒸汽腔发育,在采出程度达40%后,层间高含水层(厚度为4.3 m)和顶水层(厚度为8.0 m)的影响逐渐显现,注入蒸汽热效率降低,瞬时汽油比、累积采注比和累积水汽比均出现较大幅度上升,生产数据逐渐向采收率60%理论曲线贴近。现场通过降低注汽量、在生产井安装智能完井工具等措施,改善蒸汽腔沿程发育非均匀性,降低顶水影响,SAGD开发效果逐渐变好。截至 2018 年 4 月,采出程度为 58.3%。初始标定采收率为 73%。对比实际生产数据变化趋势与理论曲线,泄油区 15 的 SAGD 开发基本沿采收率标定线发展并逐渐趋好。后续若进行调整优化,开发效果有望进一步提高至采收率为80%的水平。
-
图4 加拿大长湖油田泄油区15 SAGD开发效果评价图版
-
Fig.4 Evaluation plates for SAGD development in drainage area15 of Long Lake Oilfield,Canada
-
所建立的评价方法和图版可对长湖油田泄油区 SAGD 动态调整结果和开发效果进行有效、快速评价。该方法可推广至不同油田,通过实际生产数据和生产特征参数的统计,建立各自的评价图版,对生产过程和开发效果进行评价。
-
4 结论
-
适用于蒸汽吞吐和蒸汽驱、用于描述累积注入和累积产出之间变化规律的注采特征曲线同样适用于SAGD生产过程。
-
基于长湖油田 SAGD 开发过程实际注采动态,推导了瞬时汽油比、累积汽油比、累积采注比、累积水汽比、含水率和蒸汽累积滞留比等 6 个开发效果评价指标模型,回归了累积注采特征曲线中回归系数与表征 SAGD 区块地质、井筒参数的综合特征参数之间的相关关系,建立了一套已开发区 SAGD 开发效果评价方法,以及未开发区累积注采特征曲线回归系数预测模型。
-
加拿大长湖油田泄油区15的实际应用表明,该区 SAGD 开发效果较好,有进一步提升空间。所建立的评价方法和图版可对SAGD动态调整结果和开发效果进行快速、有效评价,指导后续生产。
-
符号解释
-
N s——累积注汽量,104 m3;A 1,B 1,A 2,B 2——回归系数; N o—— 累积产油量,104 m3;N l —— 累积产液量,104 m3;R iSOR——瞬时汽油比,m3 /m3;Q s——某一时刻注汽量,m3 /d; Q o——某一时刻产油量,m3 /d;E——采出程度,%;N r ——石油地质储量,104 m3;E u——技术或经济极限采收率,%; R 极限iSOR——技术或经济极限汽油比,m3 /m3;R cSOR——累积汽油比,m3 /m3;Q l ——某一时刻产液量,m3 /d;f w——含水率,%; R PIR——累积采注比,m3 /m3;R WSR——累积水汽比,m3 /m3; R s——蒸汽累积滞留比;C——综合特征参数;R F——优质储层的厚度比例,文中指储层内泥质含量小于30%的储层厚度占总储层厚度的比例;H r ——储层厚度,m;ϕ——孔隙度; S o——含油饱和度;L e,L t ——SAGD 水平井有效长度、总长度,m,对于未投产区,二者相等;H b——泥岩夹层厚度,m; H hwsi——储层内部层间高含水层厚度,m;H tw——与储层相接且位于储层之上的顶水层厚度,m。
-
参考文献
-
[1] BULTER R M.Some recent developments in SAGD[J].Journal of Canadian Petroleum Technology,2001,40(1):18-22.
-
[2] AL BAHLANI A M,BABADAGLI T.A critical review of the status of SAGD:Where are we and what is next[C].Bakersfield:SPE Western Regional and Pacific Section,2008.
-
[3] FAROUQ Ali S M.Life after SAGD-20 years later[C].Anchorage:SPE Western Regional Meeting,2016.
-
[4] 赵庆辉,刘其成,于涛,等.蒸汽辅助重力泄油蒸汽腔发育特征研究[J].西南石油大学学报:自然科学版,2008,30(4):123-126.ZHAO Qinghui,LIU Qicheng,YU Tao,et al.Research on the characteristics of steam chamber development of steam-assisted gravity drainage[J].Journal of Southwest Petroleum University:Science & Technology Edition,2008,30(4):123-126.
-
[5] 石兰香,李秀峦,马德胜,等.快速均匀启动技术改善蒸汽辅助重力泄油预热效果[J].油气地质与采收率,2017,24(4):94-98.SHI Lanxiang,LI Xiuluan,MA Desheng,et al.Effect of fast and uniform start-up enhancement technology on preheating perfor⁃ mance of SAGD[J].Petroleum Geology and Recovery Efficiency,2017,24(4):94-98.
-
[6] 何万军,木合塔尔,董宏,等.风城油田重37井区SAGD开发提高采收率技术[J].新疆石油地质,2015,36(4):483-486.HE Wanjun,MUHETAER,DONG Hong,et al.EOR technologies of SAGD development in Zhong-37 wellblock,Fengcheng oil⁃ field,Junggar basin[J].Xinjiang Petroleum Geology,2015,36(4):483-486.
-
[7] 杨智,赵睿,高志谦,等.浅层超稠油双水平井SAGD立体井网开发模式研究[J].特种油气藏,2015,22(6):104-107.YANG Zhi,ZHAO Rui,GAO Zhiqian,et al.Study on SAGD ste⁃ reo well pattern development mode of dual horizontal wells for shallow extra heavy oil[J].Special Oil & Gas Reservoirs,2015,22(6):104-107.
-
[8] 王大为,吴婷婷,葛涛涛,等.强底水特稠油油藏蒸汽辅助重力泄油物理模拟[J].新疆石油天然气,2018,14(2):49-53,67.WANG Dawei,WU Tingting,GE Taotao,et al.Physical simulation of SAGD for extra heavy oil reservoir with strong bottom water[J].Xinjiang Oil & Gas,2018,14(2):49-53,67.
-
[9] YANG G,BUTLER R M.Effects of reservoir heterogeneities on heavy oil recovery by steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1992,31(8):37-43.
-
[10] POOLADI-DARVISH M,MATTAR L.SAGD operations in the presence of overlying gas cap and water layer-effect of shale layers [J].Journal of Canadian Petroleum Technology,2002,41(6):40-51.
-
[11] 谢华锋,王健,黄海平,等.储层流体非均质性对加拿大油砂热采的影响[J].油气地质与采收率,2016,23(6):94-98,104.XIE Huafeng,WANG Jian,HUANG Haiping,et al.Influence of fluid heterogeneity on SAGD in Canadian oil sands[J].Petroleum Geology and Recovery Efficiency,2016,23(6):94-98,104.
-
[12] 魏绍蕾,程林松,张辉登,等.夹层对加拿大麦凯河油砂区块双水平井蒸汽辅助重力泄油开发的影响[J].油气地质与采收率,2016,23(2):62-69.WEI Shaolei,CHENG Linsong,ZHANG Huideng,et al.Physical simulation of the interlayer effect on SAGD production by dual horizontal well in Mackay River oil sands block,Canada[J].Petro⁃ leum Geology and Recovery Efficiency,2016,23(2):62-69.
-
[13] 张洪源,李婷,解阳波,等.夹层对蒸汽辅助重力泄油的影响 [J].特种油气藏,2017,24(5):120-125.ZHANG Hongyuan,LI Ting,XIE Yangbo,et al.Impacts of inter⁃ layers on SAGD[J].Special Oil & Gas Reservoirs,2017,24(5):120-125.
-
[14] 王传飞,吴光焕,韦涛,等.薄层特超稠油油藏氮气与降粘剂联合蒸汽辅助重力泄油物理模拟实验[J].油气地质与采收率,2017,24(1):80-85.WANG Chuanfei,WU Guanghuan,WEI Tao,et al.Physical simu⁃ lation experiment of nitrogen gas sand dissolve solvent aided SAGD for thin formation and extra-super heavy oil reservoir[J].Petroleum Geology and Recovery Efficiency,2017,24(1):80-85.
-
[15] DENNEY D.Dynamic economic indicator to evaluate SAGD per⁃ formance[J].Journal of Petroleum Technology,2006,58(12):64-67.
-
[16] SHIN H.A reservoir economic indicator to evaluate a SAGD proj⁃ ect[C].Calgary:Canadian International Petroleum Conference,2008.
-
[17] 刘慧卿.热力采油原理与设计[M].北京:石油工业出版社,2013:110-111.LIU Huiqing.Principle and design of thermal recovery[M].Bei⁃ jing:Petroleum Industry Press,2013:110-111.
-
摘要
为了实现对 SAGD生产过程和开发效果的快速评价,利用油藏工程方法,结合 SAGD生产过程中的实际注采动态数据,推导了6个SAGD开发效果评价指标模型,包括瞬时汽油比、累积汽油比、累积采注比、累积水汽比、含水率和蒸汽累积滞留比。在给定极限瞬时汽油比的条件下,得到了不同预测采收率下评价指标与采出程度变化关系标准模板,形成一套可推广的SAGD生产过程和开发效果评价方法。将该方法应用于加拿大长湖油田泄油区15,结果表明:瞬时汽油比、累积采注比和累积水汽比3个评价指标模型可动态表征层间高含水层和顶水层对生产效果的影响。在初始标定采收率为73%的基础上,若后续采取调整优化,预测采收率可提升至80%。
Abstract
In order to quickly evaluate the production process and the development result of SAGD,six mathematical mod- els which can be used as indexes to evaluate SAGD performance were proposed based on the injection and production data during SAGD and by using reservoir engineering methods. These six models include instantaneous steam oil ratio,cumula- tive steam oil ratio,cumulative production injection ratio,cumulative water steam ratio,water cut and cumulative steam re- tention ratio. Under the determined extreme instantaneous steam oil ratio,the variation between the degree of recovery fac- tor and above evaluation indexes under different forecasting final-recovery factor were obtained to form standard templates. Then a promoted method used to evaluate SAGD development process and result was formed. This method was applied to the drainage area 15 of Long Lake Oilfield,Canada. The results show that the models of the instantaneous steam oil ratio, the cumulative production injection ratio and the cumulative water steam ratio can be used to dynamically characterize the effect of high water cut zone and top water zone on production. On the basis of initial recovery factor of 73%,the finally fore- casted recovery factor can be increased to 80% if further adjustment methods are conducted.