en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王镜惠(1984—),男,陕西榆林人,讲师,硕士,从事油气地质勘探及油气田开发研究。联系电话:13383291561,E-mail:wangjinghui2219@sohu.com。

中图分类号:TE33

文献标识码:A

文章编号:1009-9603(2019)04-0105-06

DOI:10.13673/j.cnki.cn37-1359/te.2019.04.016

参考文献 1
赵贤正,朱庆忠,孙粉锦,等.沁水盆地高阶煤层气勘探开发实践与思考[J].煤炭学报,2015,40(9):2 131-2 136. ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al.Practice and thought of coalbed methane exploration and development in Qinshui Basin[J].Journal of China Coal Society,2015,40(9):2 131-2 136.
参考文献 2
朱庆忠,杨延辉,左银卿,等.中国煤层气开发存在的问题及破解思路[J].天然气工业,2018,38(4):96-100.ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al.CBM devel⁃ opment in China:Challenges and solutions[J].Natural Gas Indus⁃ try,2018,38(4):96-100.
参考文献 3
王红岩,张建博,李景明,等.中国煤层气富集成藏规律[J].天然气工业,2004,24(5):11-13.WANG Hongyan,ZHANG Jianbo,LI Jingming,et al.Enrichment and reservoiring laws of the coalbed methane in China[J].Natural Gas Industry,2004,24(5):11-13.
参考文献 4
杨显成,蒋有录,杨昕睿,等.煤层气含量的主控因素——以卡拉哈里盆地XX区块为例[J].油气地质与采收率,2018,25(1):56-60.YANG Xiancheng,JIANG Youlu,YANG Xinrui,et al.Study on main controlling factors of the coalbed methane content:A case study of Block XX in Kgalahari Basin[J].Petroleum Geology and Recovery Efficiency,2018,25(1):56-60.
参考文献 5
王红岩,万天丰,李景明,等.区域构造热事件对高煤阶煤层气富集的控制[J].地学前缘,2008,15(5):364-369.WANG Hongyan,WAN Tianfeng,LI Jingming,et al.The control of tectonic thermal events on the concentration of high coal-rank coalbed methane[J].Earth Science Frontiers,2008,15(5):364-369.
参考文献 6
曹新款,朱炎铭,王道华,等.郑庄区块煤层气赋存特征及控气地质因素[J].煤田地质与勘探,2011,39(1):16-19,23.CAO Xinkuan,ZHU Yanming,WANG Daohua,et al.Analysis of the coal bed methane occurrence characteristics and gas-control⁃ ling geologic factors in Zhenzhuang block[J].Coal Geology & Ex⁃ ploration,2011,39(1):16-19,23.
参考文献 7
赵庆波,陈刚,李贵中.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,2009,29(9):13-19.ZHAO Qingbo,CHEN Gang,LI Guizhong.The regular patterns of highly produced CBM,its production performance and the prog⁃ ress of prospecting technologies in China[J].Natural Gas Indus⁃ try,2009,29(9):13-19.
参考文献 8
宋岩,柳少波,马行陟,等.中高煤阶煤层气富集高产区形成模式与地质评价方法[J].地学前缘,2016,23(3):1-9.SONG Yan,LIU Shaobo,MA Xingzhi,et al.Research on forma⁃ tion model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J].Earth Science Frontiers,2016,23(3):1-9.
参考文献 9
孙粉锦,王勃,李梦溪,等.沁水盆地南部煤层气富集高产主控地质因素[J].石油学报,2014,35(6):1 070-1 079.SUN Fenjin,WANG Bo,LI Mengxi,et al.Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J].Acta Petrolei Sinica,2014,35(6):1 070-1 079.
参考文献 10
DOU Fengke,KANG Yongshang,QIN Shaofeng,et al.The coalbed methane production potential method for optimization of wells lo⁃ cation selection[J].Journal of Coal Science Engineering,2013,19(2):210-218.
参考文献 11
原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.
参考文献 12
王勃,姚红星,王红娜,等.沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J].石油与天然气地质,2018,39(2):366-372.WANG Bo,YAO Hongxing,WANG Hongna,et al.Favorable and major geological controlling factors for coalbed methane accumu⁃ lation and high production in the Chengzhuang Block,Qinshui Baisn[J].Oil & Gas Geology,2018,39(2):366-372.
参考文献 13
李喆,康永尚,姜杉钰,等.沁水盆地高煤阶煤吸附时间主要影响因素分析[J].煤炭科学技术,2017,45(2):115-121.LI Zhe,KANG Yongshang,JIANG Shanyu,et al.Analysis on ma⁃ jor factors affected to adsorption time of high rank coal in Qinshui Basin[J].Coal Science and Technology,2017,45(2):115-121.
参考文献 14
娄剑青.影响煤层气井产量的因素分析[J].天然气工业,2004,24(4):62-64.LOU Jianqing.Factors of influencing production of coal-bed gas wells[J].Natural Gas Industry,2004,24(4):62-64.
参考文献 15
左银卿,孟庆春,任严,等.沁水盆地南部高煤阶煤层气富集高产控制因素[J].天然气工业,2011,31(11):11-13.ZUO Yinqing,MENG Qingchun,REN Yan,et al.Controlling fac⁃ tors of enrichment and high deliverability of CBM gas from highrank coal beds in the southern Qinshui Basin[J].Natural Gas In⁃ dustry,2011,31(11):11-13.
参考文献 16
宋岩,柳少波,赵孟军,等.煤层气与常规天然气成藏机理的差异性[J].天然气工业,2011,31(12):47-53.SONG Yan,LIU Shaobo,ZHAO Mengjun,et al.Difference of gas pooling mechanism between coalbed methane gas and convention⁃ al natural gas[J].Natural Gas Industry,2011,31(12):47-53.
参考文献 17
胡秋嘉,贾慧敏,祁空军,等.高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J].天然气工业,2018,38(9):76-81.HU Qiujia,JIA Huimin,QI Kongjun,et al.A fine control method offlowing pressure in single-phaseflow section of high-rank CBM gas development wells:A case study from the Fanzhuang-Zheng⁃ zhuang Block in the Qinshui Basin[J].Natural Gas Industry,2018,38(9):76-81.
参考文献 18
李叶朋,申建,陶俊杰.基于支持向量机的煤层气井排采层位水源判识[J].大庆石油地质与开发,2018,37(2):171-174.LI Yepeng,SHEN Jian,TAO Junjie.Water source identification of the drained-produced horizons for the coalbed methane well based on support vector machine[J].Petroleum Geology & Oil⁃ field Development in Daqing,2018,37(2):171-174.
参考文献 19
王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.
目录contents

    摘要

    煤层气高产区有效预测对提高煤层气单井产量和开发效益具有重要意义,为了实现煤层气储层产气能力的定量评价,基于沁水盆地南部煤层气开发数据,通过理论和统计分析,定义了储层含气性指数、煤层甲烷解吸效率指数、气水产出效率指数和产气能力指数4个参数对煤层气储层产气能力进行评价。结果表明:煤层气井日产气量随储层含气性指数、煤层甲烷解吸效率指数、气水产出效率指数的增加而增加,但相关性相对较差;当储层含气性指数大于100 m·m3 /t时,或煤层甲烷解吸效率指数大于0.04(MPa·d)-1 时,或气水产出效率指数大于1 mD·MPa时,单井日产气量能够达到800 m3 /d以上。产气能力指数为储层含气性指数、煤层甲烷解吸效率指数和气水产出效率指数的乘积,能够有效表征储层产气能力强弱,产气能力指数越大,煤层气井产量越高。当产气能力指数大于 0.3 和10 mD·m·m3 (/ t·d)时,对应的单井日产气量分别大于800和1500 m3 /d。

    Abstract

    The effective prediction of the high production zone of the coalbed methane(CBM)is important to improve the single well production and the development benefits. In order to quantitatively evaluate the production capacity of the CBM reservoir,the gas-bearing index,desorption efficiency index of CBM,gas-water production efficiency index and production capacity index were defined through theoretical and statistical analysis of the CBM development data in southern Qinshui Basin. Results show that the daily gas production rate increases with the increase of gas-bearing index,desorption efficien- cy index of CBM and gas-water production efficiency index,however the correlations is not obvious. The daily gas produc- tion rate can be higher than 800 m3 /d when the gas-bearing index is higher than 100 m·m3 /t,the desorption efficiency in- dex of CBM is higher than 0.04(MPa·d)-1 ,or the gas-water production efficiency index is higher than 1 mD·MPa. The gas-production capacity index is the product of the gas-bearing index,desorption efficiency index of CBM and the gas-wa- ter production efficiency index,and it can effectively characterize the production capacity of CBM reservoir. A higher gasproduction capacity index results in a higher daily gas production rate. When the gas-production capacity indexes are high- er than 0.3 and 10 mD·m·m3 (/ t·d),the daily gas production rates are higher than 800 and 1500 m3 /d,respectively.

  • 目前,中国煤层气产业取得了长足的发展,但仍存在单井产量偏低、井间产量差异大、开发效益差等问题[1],其根本原因是现有的工程技术与多样的储层地质条件不适应[2]。在现有工程技术条件下,提高单井产量和开发效益的主要方法是通过有效的储层评价方法精确定位高产区。许多专家学者对煤层气井高产区评价进行了研究:王红岩等研究了中国煤层气富集成藏规律[3],杨显成等研究了卡拉哈里盆地煤层气含量主控因素[4],王红岩等重点研究了水动力条件和区域构造热事件对煤层气富集的影响[5],曹新款等认为沁水盆地南部郑庄区块煤层气富集主控因素包括水文地质条件、构造及岩浆活动[6]。开发实践表明,煤层气富集主控因素与高产主控因素不同,逐渐提出了富集高产区的概念:赵庆波等认为构造高点、封闭较好的浅层储层及次生裂隙发育区是煤层气富集高产的主要区域[7];宋岩等认为沁水盆地南部煤层气富集高产的主控因素是煤层含气量与渗透率的耦合作用[8];孙粉锦等认为渗透率和煤层气储层构造控制煤层气井高产,在富集区构造高部位渗透率较高,为高产有利区[9];DOU等认为煤层渗透率、煤层厚度以及含气量共同决定煤层气产气潜力[10];原俊红等认为煤层厚度、渗透率、含气量及煤体结构等参数决定煤层气富集高产区划分[11];王勃等认为构造热事件提高生气能力,封盖与水动力条件利于煤层气富集,张性水平应力分布区及煤矿卸压应力释放区的煤储层渗透率高[12];李喆等认为吸附时间会直接关系到煤层气储层的开发潜力,并对沁水盆地寿阳和柿庄区块吸附时间进行了研究[13];娄剑青利用产气潜能与产气能力2个指标定量评价了煤层气富集高产区[14]。这些研究偏重于对煤层气储层含气性和气水产出效率的评价,忽视了煤层气解吸效率对煤层气井产量的影响;偏重对于富集高产区的定性评价研究,忽视定量指标评价。为更加有效地实现对煤层气储层产气能力定量评价,以沁水盆地南部煤层气储层及开发数据为基础,通过理论分析和相关性统计,定义了储层含气性指数、煤层甲烷解吸效率指数、气水产出效率指数和产气能力指数 4 个参数对煤层气储层产气能力进行评价,以期为高煤阶煤层气储层高产区精确定位提供借鉴。

  • 1 储层含气性评价

  • 1.1 含气量的影响

  • 储层含气量是煤层气井产气的物质基础。左银卿等对樊庄东部进行研究发现,含气量小于 17 m3 /t 时,日产气量一般小于 500 m3 /d,开发效果较差[15]。对沁水盆地南部煤层气井含气量及日产气量进行统计(图1)可知,日产气量随含气量增加而增加,当含气量大于 15 m3 /t 时,日产气量高于 800 m3 /d。因此,含气量是评价煤储层产气能力的关键指标。

  • 图1 含气量对煤层气井产量的影响

  • Fig.1 Effect of gas content on daily CBM production rate

  • 1.2 煤层厚度的影响

  • 宋岩等认为,煤层厚度是煤层气富集区优选的重要参数,高煤阶煤层气富集区煤层厚度应大于 2.3 m,中煤阶煤层气富集区煤层厚度应大于 3.5 m[16]。对沁水盆地南部煤层气井3# 煤煤层厚度及日产气量进行统计,结果(图2)表明,日产气量随着煤层厚度的增加整体呈增加趋势,表明煤层厚度是煤层气井产量的重要影响因素。

  • 图2 煤层厚度对煤层气井产量的影响

  • Fig.2 Effect of coal seam thickness on daily CBM production rate

  • 1.3 储层含气性指数

  • 含气量和厚度是表征煤层气储层含气性的关键参数,为了进一步定量评价煤层气储层含气性,定义了煤层气储层含气性指数,其表达式为:

  • Ig=Cghc
    (1)
  • 根据(1)式,利用沁水盆地南部煤层气井含气量及煤层厚度计算煤层气储层含气性指数。结果 (图3)表明,研究区煤层气储层含气性指数主要为 21.7~197.5 m·m3 /t,平均为 112.7 m·m3 /t。煤层气井日产气量随着含气性指数的增加而增加,当储层含气性指数大于 100 m·m3 /t时,日产气量总体上大于 800 m3 /d。

  • 图3 储层含气性指数对煤层气井产量的影响

  • Fig.3 Effect of gas-bearing index on daily CBM production rate

  • 2 解吸效率定量评价

  • 煤层甲烷主要以吸附态赋存于基质孔隙表面,而储层含气性指数未考虑甲烷解吸效率的影响,为此提出了地解压差和吸附时间作为解吸效率的评价指标。

  • 2.1 地解压差的影响

  • 煤层气开发需要通过持续排水降压,将储层压力降至解吸压力以下,使甲烷解吸产出井筒[17-18],因此煤层气井地解压差直接影响解吸效率,是从宏观角度对煤层甲烷解吸效率的评价。地解压差越大,煤层气井解吸前需要降压幅度就越大,排水期越长,解吸效率越低,因此煤层气井解吸效率与地解压差成反比。

  • 沁水盆地南部煤层气井地解压差与日产气量关系(图4)表明,随着地解压差增大,日产气量明显降低,这主要是因为,地解压差增大,煤层气井解吸降压效率降低,解吸面积减小,进而导致产量降低。

  • 2.2 吸附时间的影响

  • 吸附时间是指通过取心测试含气量时,解吸气体体积达到总吸附气量的 63.2% 时所用的时间[13],是从微观角度对煤层甲烷解吸效率的评价。吸附时间越长,煤层气井解吸效率越低。沁水盆地南部煤层气井吸附时间与日产气量统计分析结果(图5) 表明,日产气量随吸附时间的增加而降低,当吸附时间大于10 d时,日产气量均小于900 m3 /d。

  • 图4 地解压差对煤层气井日产气量的影响

  • Fig.4 Effect of desorption-formation pressure difference on daily CBM production rate

  • 图5 吸附时间对煤层气井日产气量的影响

  • Fig.5 Effect of adsorption time on daily CBM production rate

  • 2.3 煤层甲烷解吸效率指数

  • 定义煤层甲烷解吸效率指数为:

  • Id=1pr-pdtd
    (2)
  • 根据(2)式,利用沁水盆地南部煤层气地层压力、解吸压力及吸附时间计算煤层甲烷解吸效率指数。结果(图6)表明,研究区煤层甲烷解吸效率指数为 0.01~0.28(MPa·d)-1,平均为 0.06(MPa·d)-1。煤层气井日产气量随着解吸效率指数的增加而增加,但二者相关性较差,总体上,当解吸效率指数大于0.04(MPa·d)-1 时,日产气量能达800 m3 /d以上。

  • 图6 甲烷解吸效率指数对煤层气井日产气量的影响

  • Fig.6 Effect of desorption efficiency index on daily CBM production rate

  • 3 产出效率定量评价

  • 3.1 渗透率的影响

  • 煤层气储层渗透率对煤层气井排水降压及煤层甲烷解吸产出具有重要影响。渗透率越高排水降压效率越高,煤层气产出效率越高[819],是决定煤层气产出效率的主要因素。沁水盆地南部煤层气储层渗透率与日产气量的关系(图7)表明,日产气量随着渗透率的增加而增加。当渗透率低于 0.03 mD 时,日产气量一般低于 800 m3 /d;当渗透率高于 0.03 mD时,大部分井日产气量能够达到800 m3 /d以上。这表明渗透率是煤层气井产量的主控因素之一,并非单一决定因素。

  • 图7 沁水盆地南部煤层气储层渗透率对煤层气井日产气量的影响

  • Fig.7 Effect of permeability on daily CBM production rate in CBM reservoirs in the southern Qinshui Basin

  • 3.2 储层压力的影响

  • 储层压力是煤层气水产出的动力,储层压力越大,气水产出能力越强,因此将储层压力作为衡量煤层产出效率的指标。沁水盆地南部煤层气井储层压力与日产气量的关系(图8)表明,总体上看,单井日产气量随着储层压力的增加而增加,但是相关性很差,表明储层压力对煤层气产出具有影响,但并非决定性因素。

  • 图8 储层压力对煤层气井日产气量的影响

  • Fig.8 Effect of reservoir pressure on daily CBM production rate

  • 3.3 气水产出效率指数

  • 煤层气水产出效率与甲烷解吸效率不同,产出效率是从宏观渗流角度对储层渗流能力的评价,可以用储层渗透率和地层压力来综合表征,定义煤层气水产出效率指数为:

  • Ip=Kpr
    (3)
  • 利用沁水盆地南部煤层气井渗透率和储层压力计算产出效率指数,其与日产气量的关系(图9) 表明,单井日产气量随气水产出效率指数的增加而增加,当气水产出效率指数低于1 mD·MPa时,日产气量一般低于 800 m3 /d,当气水产出效率指数高于 1 mD·MPa 时,单井日产气量能够达到 800 m3 /d 以上。单井日产气量与气水产出效率指数之间的相关性高于其与渗透率和储层压力单一因素间的相关性,表明气水产出效率指数更能综合反映煤层气的产出能力。

  • 图9 气水产出效率指数对煤层气井日产气量的影响

  • Fig.9 Effect of production efficiency index on daily CBM production rate

  • 4 储层产气能力定量评价

  • 对煤层气高产区域进行有效预测是目前煤层气储层评价的重点和难点,煤层气井产量与含气性、解吸效率和产出效率密切相关,可以通过储层含气性指数、煤层甲烷解吸效率指数和气水产出效率指数3个参数进行综合定量表征。通过煤层气储层产气能力指数来定量表征煤层气储层的产气能力,其表达式为:

  • Cp=IpIdIg=KprCghcpr-pdtd
    (4)
  • 利用储层含气性指数、煤层甲烷解吸效率指数和气水产出效率指数计算研究区储层产气能力指数,其与日产气量的关系(图10)表明:单井日产气量随着产气能力指数的增加而增加。当产气能力指数大于0.3 mD·m·m3 (/ t·d)时,日产气量总体上大于 800 m3 /d;产气能力指数大于 10 mD·m·m3 (/ t·d) 时,日产气量大于1 500 m3 /d。单井日产气量与产气能力指数间的相关性高达 85%,远高于各单一指标与日产气量间的相关性,表明产气能力指数能够有效表征储层产气能力,是进行煤层气储层高产区预测的有效指标。

  • 图10 产气能力指数对煤层气井日产气量的影响

  • Fig.10 Effect of gas-production capacity index on daily CBM production rate

  • 5 结论

  • 煤层气储层含气性指数为含气量与煤层厚度的乘积,煤层气井日产气量随含气性指数增加而增加,当含气性指数大于100 m·m3 /t时,日产气量总体上大于800 m3 /d。

  • 地解压差越大,煤层气井解吸前需要降压幅度就越大,煤层气储层宏观解吸效率越低;吸附时间越长,煤层甲烷微观解吸效率越低;煤层甲烷解吸效率指数为地解压差与吸附时间的乘积,当煤层甲烷解吸效率指数大于 0.04(MPa·d)-1 时,单井日产气量能达800 m3 /d以上。

  • 煤层气储层渗透率和储层压力越高,煤层气水产出效率越高,煤层气水产出效率指数为储层渗透率与储层压力的乘积,当产出效率指数高于 1 mD· MPa时,单井日产气量能够达到800 m3 /d以上。

  • 产气能力指数为储层含气性指数、煤层甲烷解吸效率指数和气水产出效率指数的乘积,能够有效地表征储层产气能力强弱,煤层气储层产气能力指数越大,煤层气井产量越高。当产气能力指数分别大于 0.3 和 10 mD·m·m3 (/ t·d)时,单井日产气量分别大于800和1 500 m3 /d。

  • 符号解释

  • I g——储层含气性指数,m·m3 /t;C g——储层含气量,m3 / t;h c——煤层厚度,m;I d——煤层甲烷解吸效率指数,(MPa·d)-1p r ——储层压力,MPa;p d——解吸压力,MPa;t d——吸附时间,d;I p——气水产出效率指数,mD·MPa;K ——煤层气储层渗透率,mD;C p——煤层气储层产气能力指数,mD·m· m3 (/ t·d)。

  • 参考文献

    • [1] 赵贤正,朱庆忠,孙粉锦,等.沁水盆地高阶煤层气勘探开发实践与思考[J].煤炭学报,2015,40(9):2 131-2 136. ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al.Practice and thought of coalbed methane exploration and development in Qinshui Basin[J].Journal of China Coal Society,2015,40(9):2 131-2 136.

    • [2] 朱庆忠,杨延辉,左银卿,等.中国煤层气开发存在的问题及破解思路[J].天然气工业,2018,38(4):96-100.ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al.CBM devel⁃ opment in China:Challenges and solutions[J].Natural Gas Indus⁃ try,2018,38(4):96-100.

    • [3] 王红岩,张建博,李景明,等.中国煤层气富集成藏规律[J].天然气工业,2004,24(5):11-13.WANG Hongyan,ZHANG Jianbo,LI Jingming,et al.Enrichment and reservoiring laws of the coalbed methane in China[J].Natural Gas Industry,2004,24(5):11-13.

    • [4] 杨显成,蒋有录,杨昕睿,等.煤层气含量的主控因素——以卡拉哈里盆地XX区块为例[J].油气地质与采收率,2018,25(1):56-60.YANG Xiancheng,JIANG Youlu,YANG Xinrui,et al.Study on main controlling factors of the coalbed methane content:A case study of Block XX in Kgalahari Basin[J].Petroleum Geology and Recovery Efficiency,2018,25(1):56-60.

    • [5] 王红岩,万天丰,李景明,等.区域构造热事件对高煤阶煤层气富集的控制[J].地学前缘,2008,15(5):364-369.WANG Hongyan,WAN Tianfeng,LI Jingming,et al.The control of tectonic thermal events on the concentration of high coal-rank coalbed methane[J].Earth Science Frontiers,2008,15(5):364-369.

    • [6] 曹新款,朱炎铭,王道华,等.郑庄区块煤层气赋存特征及控气地质因素[J].煤田地质与勘探,2011,39(1):16-19,23.CAO Xinkuan,ZHU Yanming,WANG Daohua,et al.Analysis of the coal bed methane occurrence characteristics and gas-control⁃ ling geologic factors in Zhenzhuang block[J].Coal Geology & Ex⁃ ploration,2011,39(1):16-19,23.

    • [7] 赵庆波,陈刚,李贵中.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,2009,29(9):13-19.ZHAO Qingbo,CHEN Gang,LI Guizhong.The regular patterns of highly produced CBM,its production performance and the prog⁃ ress of prospecting technologies in China[J].Natural Gas Indus⁃ try,2009,29(9):13-19.

    • [8] 宋岩,柳少波,马行陟,等.中高煤阶煤层气富集高产区形成模式与地质评价方法[J].地学前缘,2016,23(3):1-9.SONG Yan,LIU Shaobo,MA Xingzhi,et al.Research on forma⁃ tion model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J].Earth Science Frontiers,2016,23(3):1-9.

    • [9] 孙粉锦,王勃,李梦溪,等.沁水盆地南部煤层气富集高产主控地质因素[J].石油学报,2014,35(6):1 070-1 079.SUN Fenjin,WANG Bo,LI Mengxi,et al.Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J].Acta Petrolei Sinica,2014,35(6):1 070-1 079.

    • [10] DOU Fengke,KANG Yongshang,QIN Shaofeng,et al.The coalbed methane production potential method for optimization of wells lo⁃ cation selection[J].Journal of Coal Science Engineering,2013,19(2):210-218.

    • [11] 原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    • [12] 王勃,姚红星,王红娜,等.沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J].石油与天然气地质,2018,39(2):366-372.WANG Bo,YAO Hongxing,WANG Hongna,et al.Favorable and major geological controlling factors for coalbed methane accumu⁃ lation and high production in the Chengzhuang Block,Qinshui Baisn[J].Oil & Gas Geology,2018,39(2):366-372.

    • [13] 李喆,康永尚,姜杉钰,等.沁水盆地高煤阶煤吸附时间主要影响因素分析[J].煤炭科学技术,2017,45(2):115-121.LI Zhe,KANG Yongshang,JIANG Shanyu,et al.Analysis on ma⁃ jor factors affected to adsorption time of high rank coal in Qinshui Basin[J].Coal Science and Technology,2017,45(2):115-121.

    • [14] 娄剑青.影响煤层气井产量的因素分析[J].天然气工业,2004,24(4):62-64.LOU Jianqing.Factors of influencing production of coal-bed gas wells[J].Natural Gas Industry,2004,24(4):62-64.

    • [15] 左银卿,孟庆春,任严,等.沁水盆地南部高煤阶煤层气富集高产控制因素[J].天然气工业,2011,31(11):11-13.ZUO Yinqing,MENG Qingchun,REN Yan,et al.Controlling fac⁃ tors of enrichment and high deliverability of CBM gas from highrank coal beds in the southern Qinshui Basin[J].Natural Gas In⁃ dustry,2011,31(11):11-13.

    • [16] 宋岩,柳少波,赵孟军,等.煤层气与常规天然气成藏机理的差异性[J].天然气工业,2011,31(12):47-53.SONG Yan,LIU Shaobo,ZHAO Mengjun,et al.Difference of gas pooling mechanism between coalbed methane gas and convention⁃ al natural gas[J].Natural Gas Industry,2011,31(12):47-53.

    • [17] 胡秋嘉,贾慧敏,祁空军,等.高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J].天然气工业,2018,38(9):76-81.HU Qiujia,JIA Huimin,QI Kongjun,et al.A fine control method offlowing pressure in single-phaseflow section of high-rank CBM gas development wells:A case study from the Fanzhuang-Zheng⁃ zhuang Block in the Qinshui Basin[J].Natural Gas Industry,2018,38(9):76-81.

    • [18] 李叶朋,申建,陶俊杰.基于支持向量机的煤层气井排采层位水源判识[J].大庆石油地质与开发,2018,37(2):171-174.LI Yepeng,SHEN Jian,TAO Junjie.Water source identification of the drained-produced horizons for the coalbed methane well based on support vector machine[J].Petroleum Geology & Oil⁃ field Development in Daqing,2018,37(2):171-174.

    • [19] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

  • 参考文献

    • [1] 赵贤正,朱庆忠,孙粉锦,等.沁水盆地高阶煤层气勘探开发实践与思考[J].煤炭学报,2015,40(9):2 131-2 136. ZHAO Xianzheng,ZHU Qingzhong,SUN Fenjin,et al.Practice and thought of coalbed methane exploration and development in Qinshui Basin[J].Journal of China Coal Society,2015,40(9):2 131-2 136.

    • [2] 朱庆忠,杨延辉,左银卿,等.中国煤层气开发存在的问题及破解思路[J].天然气工业,2018,38(4):96-100.ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al.CBM devel⁃ opment in China:Challenges and solutions[J].Natural Gas Indus⁃ try,2018,38(4):96-100.

    • [3] 王红岩,张建博,李景明,等.中国煤层气富集成藏规律[J].天然气工业,2004,24(5):11-13.WANG Hongyan,ZHANG Jianbo,LI Jingming,et al.Enrichment and reservoiring laws of the coalbed methane in China[J].Natural Gas Industry,2004,24(5):11-13.

    • [4] 杨显成,蒋有录,杨昕睿,等.煤层气含量的主控因素——以卡拉哈里盆地XX区块为例[J].油气地质与采收率,2018,25(1):56-60.YANG Xiancheng,JIANG Youlu,YANG Xinrui,et al.Study on main controlling factors of the coalbed methane content:A case study of Block XX in Kgalahari Basin[J].Petroleum Geology and Recovery Efficiency,2018,25(1):56-60.

    • [5] 王红岩,万天丰,李景明,等.区域构造热事件对高煤阶煤层气富集的控制[J].地学前缘,2008,15(5):364-369.WANG Hongyan,WAN Tianfeng,LI Jingming,et al.The control of tectonic thermal events on the concentration of high coal-rank coalbed methane[J].Earth Science Frontiers,2008,15(5):364-369.

    • [6] 曹新款,朱炎铭,王道华,等.郑庄区块煤层气赋存特征及控气地质因素[J].煤田地质与勘探,2011,39(1):16-19,23.CAO Xinkuan,ZHU Yanming,WANG Daohua,et al.Analysis of the coal bed methane occurrence characteristics and gas-control⁃ ling geologic factors in Zhenzhuang block[J].Coal Geology & Ex⁃ ploration,2011,39(1):16-19,23.

    • [7] 赵庆波,陈刚,李贵中.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,2009,29(9):13-19.ZHAO Qingbo,CHEN Gang,LI Guizhong.The regular patterns of highly produced CBM,its production performance and the prog⁃ ress of prospecting technologies in China[J].Natural Gas Indus⁃ try,2009,29(9):13-19.

    • [8] 宋岩,柳少波,马行陟,等.中高煤阶煤层气富集高产区形成模式与地质评价方法[J].地学前缘,2016,23(3):1-9.SONG Yan,LIU Shaobo,MA Xingzhi,et al.Research on forma⁃ tion model and geological evaluation method of the middle to high coal rank coalbed methane enrichment and high production area[J].Earth Science Frontiers,2016,23(3):1-9.

    • [9] 孙粉锦,王勃,李梦溪,等.沁水盆地南部煤层气富集高产主控地质因素[J].石油学报,2014,35(6):1 070-1 079.SUN Fenjin,WANG Bo,LI Mengxi,et al.Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J].Acta Petrolei Sinica,2014,35(6):1 070-1 079.

    • [10] DOU Fengke,KANG Yongshang,QIN Shaofeng,et al.The coalbed methane production potential method for optimization of wells lo⁃ cation selection[J].Journal of Coal Science Engineering,2013,19(2):210-218.

    • [11] 原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    • [12] 王勃,姚红星,王红娜,等.沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J].石油与天然气地质,2018,39(2):366-372.WANG Bo,YAO Hongxing,WANG Hongna,et al.Favorable and major geological controlling factors for coalbed methane accumu⁃ lation and high production in the Chengzhuang Block,Qinshui Baisn[J].Oil & Gas Geology,2018,39(2):366-372.

    • [13] 李喆,康永尚,姜杉钰,等.沁水盆地高煤阶煤吸附时间主要影响因素分析[J].煤炭科学技术,2017,45(2):115-121.LI Zhe,KANG Yongshang,JIANG Shanyu,et al.Analysis on ma⁃ jor factors affected to adsorption time of high rank coal in Qinshui Basin[J].Coal Science and Technology,2017,45(2):115-121.

    • [14] 娄剑青.影响煤层气井产量的因素分析[J].天然气工业,2004,24(4):62-64.LOU Jianqing.Factors of influencing production of coal-bed gas wells[J].Natural Gas Industry,2004,24(4):62-64.

    • [15] 左银卿,孟庆春,任严,等.沁水盆地南部高煤阶煤层气富集高产控制因素[J].天然气工业,2011,31(11):11-13.ZUO Yinqing,MENG Qingchun,REN Yan,et al.Controlling fac⁃ tors of enrichment and high deliverability of CBM gas from highrank coal beds in the southern Qinshui Basin[J].Natural Gas In⁃ dustry,2011,31(11):11-13.

    • [16] 宋岩,柳少波,赵孟军,等.煤层气与常规天然气成藏机理的差异性[J].天然气工业,2011,31(12):47-53.SONG Yan,LIU Shaobo,ZHAO Mengjun,et al.Difference of gas pooling mechanism between coalbed methane gas and convention⁃ al natural gas[J].Natural Gas Industry,2011,31(12):47-53.

    • [17] 胡秋嘉,贾慧敏,祁空军,等.高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J].天然气工业,2018,38(9):76-81.HU Qiujia,JIA Huimin,QI Kongjun,et al.A fine control method offlowing pressure in single-phaseflow section of high-rank CBM gas development wells:A case study from the Fanzhuang-Zheng⁃ zhuang Block in the Qinshui Basin[J].Natural Gas Industry,2018,38(9):76-81.

    • [18] 李叶朋,申建,陶俊杰.基于支持向量机的煤层气井排采层位水源判识[J].大庆石油地质与开发,2018,37(2):171-174.LI Yepeng,SHEN Jian,TAO Junjie.Water source identification of the drained-produced horizons for the coalbed methane well based on support vector machine[J].Petroleum Geology & Oil⁃ field Development in Daqing,2018,37(2):171-174.

    • [19] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.