en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

卢聪(1983—),男,湖北江陵人,副教授,从事油气藏增产改造理论与技术的教学与研究工作。联系电话:13880960896,E-mail:lucong@swpu.edu.cn。

中图分类号:TE357.1

文献标识码:A

文章编号:1009-9603(2019)04-0111-08

DOI:10.13673/j.cnki.cn37-1359/te.2019.04.017

参考文献 1
GILLARD M R,MEDVEDEV O O,HOSEIN P R,et al.A new ap⁃ proach to generating fracture conductivity[C].SPE 135034,2010.
参考文献 2
YUDIN Alexey,ENKABABIAN Philippe,LYAPUNOV K,et al.First steps of channel fracturing in Russia set new directions for production increase of the oil fields[C].SPE 16742,2013.
参考文献 3
GUO Jianchun,MA Jian,ZHAO Zhihong,et al.Effect of fiber on the rheological property of fracturing fluid[J].Journal of Natural Gas Science & Engineering,2015,23(21):356-362.
参考文献 4
MEDVEDEV A V,KRAEMER C C,PENA A A,et al.On the mechanisms of channel fracturing[C].SPE 163836,2013.
参考文献 5
郭建春,马健,张涛,等.通道压裂中流动通道形态影响因素实验研究[J].油气地质与采收率,2017,24(5):115-119,126.GUO Jianchun,MA Jian,ZHANG Tao,et al.Experimental study of influencial factors on flow channel morphology in channel frac⁃ turing[J].Petroleum Geology and Recovery Efficiency,2017,24(5):115-119,126.
参考文献 6
卢聪,陈滔,毕曼,等.通道压裂中顶液脉冲时间优化模型研究 [J].油气地质与采收率,2018,25(2):115-120.LU Cong,CHEN Tao,BI Man,et al.Study on optimization model of pulse time for clean fluid in channel fracturing[J].Petroleum Geology and Recovery Efficiency,2018,25(2):115-120.
参考文献 7
HOU Tengfei,ZHANG Shicheng,YU Baihui,et al.Theoretical analysis and experimental research of channel fracturing in uncon⁃ ventional reservoir[C].SPE 180105,2016.
参考文献 8
黄雨,郝亮,金晨,等.土体大变形单剪试验的SPH数值模拟 [J].工程力学,2011,28(1):199-204.HUANG Yu,HAO Liang,JIN Chen,et al.SPH-based numerical simulation of soil simple shear tests with large deformation[J].En⁃ gineering Mechanics,2011,28(1):199-204.
参考文献 9
周小平,赵毅,钱七虎.单轴压缩条件下岩石破坏的光滑粒子流体动力学数值模拟[J].岩石力学与工程学报,2015,34(S1):2 647-2 658.ZHOU Xiaoping,ZHAO Yi,QIAN Qihu,et al.Numerical simula⁃ tion of rock failure process in uniaxial compression using smoothed particle hydrodynamics[J].Chinese Journal of Rock Me⁃ chanics and Engineering,2015,34(S1):2 647-2 658.
参考文献 10
I'TI'BAR M D,ÜNAL N E,AKYILDIZ H.Numerical simulation of sloshing with SPH[C].Rhodes:The Twenty-second Internation⁃ al Offshore and Polar Engineering Conference,17-22 June,2012.
参考文献 11
林旺,范洪富,刘立峰,等.工程参数对致密油藏压裂水平井产能的影响[J].油气地质与采收率,2017,24(6):120-126.LIN Wang,FAN Hongfu,LIU Lifeng,et al.Effect of engineering parameters on fractured horizontal well productivity in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2017,24(6):120-126.
参考文献 12
延新杰,李连崇,张潦源,等.岩石脆性对水力压裂裂缝影响的数值模拟实验[J].油气地质与采收率,2017,24(3):116-121.YAN Xinjie,LI Lianchong,ZHANG Liaoyuan,et al.Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J].Petroleum Geology and Re⁃ covery Efficiency,2017,24(3):116-121.
参考文献 13
牛贯非,李连崇,李明,等.基于数值模拟的储层岩石力学参数预测模型分析及应用[J].油气地质与采收率,2017,24(2):73-79.NIU Guanfei,LI Lianchong,LI Ming,et al.Analysis and applica⁃ tion on prediction model of reservoir rock mechanical parameters based on numerical simulation[J].Petroleum Geology and Recov⁃ ery Efficiency,2017,24(2):73-79.
参考文献 14
王琼仙,宋晓波,王东,等.川西龙门山前雷口坡组四段储层特征及形成机理[J].石油实验地质,2017,39(4):491-497.WANG Qiongxian,SONG Xiaobo,WANG Dong,et al.Reservoir characteristics and formation mechanism of the 4th member of the Leikoupo Formation in Longmen Mountain front[J].Petroleum Ge⁃ ology & Experiment,2017,39(4):491-497.
参考文献 15
胡烨,陈迎宾,王彦青,等.川西坳陷回龙构造雷口坡组天然气成藏条件[J].特种油气藏,2018,25(1):46-51.HU Ye,CHEN Yingbin,WANG Yanqing,et al.Natural gas accu⁃ mulation conditions in Leikoupo Formation of Huilong structure,western Sichuan Depression[J].Special Oil & Gas Reservoirs,2018,25(1):46-51.
参考文献 16
何治亮,金晓辉,沃玉进,等.中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J].中国石油勘探,2016,21(1):3-14.HE Zhiliang,JIN Xiaohui,WO Yujin,et al.Hydrocarbon accumu⁃ lation characteristics and exploration domains of ultra-deep ma⁃ rine carbonates in China[J].China Petroleum Exploration,2016,21(1):3-14.
目录contents

    摘要

    通道压裂通过脉冲交替泵入含支撑剂的携砂液和不含支撑剂的中顶液,在人工裂缝中形成非均匀柱状支撑结构的不连续铺置,从而在裂缝中形成流体流动的高速通道。目前对于支撑剂团在地层闭合压力作用下的变形规律尚认识不清,导致对支撑裂缝宽度的变化规律认识不明,从而难以准确计算支撑裂缝导流能力。根据大型可视化平板支撑剂运移铺置实验结果,统计分析支撑剂团铺置形态及尺寸,将支撑剂团分为3类。通过实验模拟支撑剂团柱的压缩变形过程,得到不同闭合压力下支撑剂团柱高度变化规律和支撑剂团杨氏模量。采用光滑粒子法,将支撑剂团柱离散成具有实际质量与体积的颗粒;采用有限元法将地层进行离散;通过两者耦合接触算法,对支撑剂团柱与地层的接触进行耦合计算;根据平板实验抽提的支撑剂团柱尺寸,建立3种类型的支撑剂团柱与地层接触模型;继而获取不同地层闭合压力与岩石杨氏模量下的支撑剂团柱压后形态、法向应力以及支撑剂团柱高度等参数,研究支撑剂团柱变形规律。采用计算流体动力学方法,建立支撑剂团柱-裂缝的缝内流动模型,计算得到不同施工参数下的压力场和速度场。

    Abstract

    Proppant slurry and the clean fluid are alternately pumped through pulses during channel fracturing to form a discontinuous placement of non-uniform support structures in the artificial fractures,and high-speed channels of fluid flow- ing could be formed in the fractures. However,the understanding of the deformation law of the proppant pillar under the for- mation closure pressure is unclear,resulting in an indefinite understanding of the variation rule of the fracture width,and therefore it is difficult to accurately calculate the flow conductivity of the fracture with proppant. According to the results of large-scale visualized plate proppant migration and placement experiment,placement pattern and size of the proppant pil- lar were analyzed,and the proppant pillars were divided into three types. The compression deformation process of the prop- pant pillars was simulated,and the thickness variation law and Young’s modulus of the proppant pillars under different clo- sure pressure were obtained. The proppant pillar was dispersed into particles with actual mass and volume by the smoothed-particle hydrodynamics(SPH). The formations are dispersed by finite element method,and their contact with the proppant pillar was calculated based on the coupling contact algorithm. Based on the size of proppant pillar extracted by plate experiment,three types of formation fracture-proppant pillar contact models were proposed. Deformed state,normal stress and height of the proppant pillar under different formation closure pressure and Young’s modulus were obtained to study the deformation law of proppant pillar. Finally,the fracture-proppant pillar flow model was proposed to study the pressure and velocity field under different construction parameters by CFD.

  • 通道压裂是通过脉冲交替泵入含支撑剂的携砂液和不含支撑剂的中顶液,在人工裂缝中形成不连续支撑剂团状铺置结构的新型压裂技术[1]。YU⁃ DIN等在携砂液中加入纤维使支撑剂颗粒形成支撑剂团并保持稳定[2]。GUO等通过电子显微镜观测纤维支撑剂的微观结构,发现纤维对支撑剂有良好的缠绕性能,并在高剪切条件下仍保持一定缠绕能力[3]。MEDVEDEV 等采用脉冲加砂工艺和纤维技术,在可视化平板中得到非均匀支撑剂团状铺置结构,证明了形成流动通道的可行性[4]。郭建春等通过大型平板裂缝可视装置,将流动通道分为3类,发现流动通道形态主要受泵注排量和脉冲时间乘积的控制[5]。目前中外主要采用可视化平板装置进行支撑剂运移铺置实验,但对实验结果只进行了定性分析,缺少对支撑剂团微观形态的分析。

  • 卢聪等基于弹性力学理论,建立了支撑剂团与地层接触有限元模型,研究了不同厚度和直径的支撑剂团在地层闭合压力下的最优铺置间距[6]。HOU 等基于赫兹接触理论,将支撑剂团视作圆柱形刚体,将地层视作弹性体,裂缝仅发生弹性变形,探究了不同脉冲时间下相邻支撑剂团间裂缝宽度,得出了裂缝最小宽度存在与相邻支撑剂团中点位置,当垂直支撑剂团间距等于水平支撑剂团间距时裂缝宽度最大[7]。目前对于支撑剂团的研究均将其视作弹性或刚性连续介质,忽略了支撑剂团是由单颗粒支撑剂堆积而成,在地层闭合压力下会发生大变形的物理过程。

  • 黄雨等根据光滑粒子法(SPH法)对弹塑性力学控制方程进行离散,得到了应力-应变的SPH格式,采用 Jaumann 应力率对土体应力-应变与内部颗粒进行转换,开展了弹性体大变形单剪实验数值模拟实验,结果与解析解具有较高拟合度[8]。周小平等利用 SPH 法,采用弹脆性固体本构方程,将岩石颗粒进行离散,建立了离散岩石颗粒单轴压缩模型,采用摩尔库伦强度准则进行岩石破坏判定,对比发现岩石颗粒单轴压缩实验结果与模拟结果高度吻合[9]。SPH 法在固体力学中运用广泛,主要用来解决物体大变形问题[10]。为此,笔者通过大型可视化平板脉冲铺砂实验,分析获取简化后的支撑剂团铺置结构;开展支撑剂团压缩变形实验,获取支撑剂团力学性能参数[11-13];引入 SPH 法对支撑剂团进行离散,模拟地层闭合压力作用下不同支撑剂团受力以及变形情况;建立通道裂缝流动模型,揭示支撑剂团支撑条件下裂缝内压力和流速分布规律。

  • 1 模型基础参数

  • 1.1 支撑剂团柱形态参数

  • 根据泵注排量与脉冲时间乘积的大小,通道压裂可视化平板实验结果中流动通道结构可分为 3 类[5]。笔者以此 3 类流动通道结构为依据,将支撑剂团柱铺置结构分为3类:Ⅰ型,脉冲单元注入参数小于 2.5,支撑剂团柱极为分散,支撑剂团柱间的流动通道狭窄但连通性较好;Ⅱ型,脉冲单元注入参数为2.5~5,支撑剂团柱整体较分散,支撑剂团柱间的流动通道与Ⅰ型类似;Ⅲ型,脉冲单元注入参数大于5,支撑剂团柱分布不规则,支撑剂团柱间的流动通道连通性较差。3类支撑剂团柱的微观参数提取如表1所示。

  • 表1 3种类型支撑剂团柱微观参数

  • Table1 Microparameters of three types of proppant pillar

  • 1.2 支撑剂团柱力学参数

  • 将支撑剂、纤维以及胶凝剂混合均匀,制作成半径为5 mm、高度为10 mm的支撑剂团柱。

  • 利用压力加载装置,在初始施加 1 MPa 闭合压力后,支撑剂团柱被压实,支撑剂团柱内孔隙被充填,高度急剧降低。压实支撑剂团柱后,在闭合压力为 6.9~41.4 MPa、压力加载梯度为 6.9 MPa 的条件下,进行支撑剂团柱压缩实验。实验结果表明:随着闭合压力的增大,支撑剂团柱高度先急剧降低,当闭合压力大于 6.9 MPa后,支撑剂团柱高度呈线性缓慢降低趋势;支撑剂团柱杨氏模量随闭合压力的增大呈现阶梯型增加(图1)。

  • 图1 闭合压力与支撑剂团柱高度和杨氏模量的关系

  • Fig.1 Relationship between closure pressure and proppant pillar’s thickness and Young’s modulus

  • 2 柱状支撑模型建立

  • 2.1 支撑剂团柱与地层接触模型

  • 假设携砂液与中顶液均匀混合,支撑剂团柱均匀分布在中央;初始支撑剂团柱与裂缝接触,裂缝表面光滑;相邻支撑剂团柱间距相同;忽略支撑剂团柱内部孔隙压力和流体压力。

  • 支撑剂团柱的直径由注入参数的大小确定,单元模型长度由携砂液与中顶液的总体积确定。

  • 以支撑剂团柱铺置模型(图2)为基础,在地层中施加垂向闭合压力,地层厚度远大于支撑剂团柱高度,由于支撑剂团柱形状对支撑剂团柱杨氏模量影响不大[14-16],使用 9 mm 支撑剂团柱杨氏模量,将支撑剂团柱与地层接触模型分为 5 mm 圆柱体、10 mm圆柱体和椭圆体3类(图3)。

  • 图2 支撑剂团柱铺置模型示意

  • Fig.2 Schematic of proppant pillars location model

  • 图3 支撑剂团柱与地层接触模型

  • Fig.3 Contact model of proppant pillar and formation

  • 2.2 支撑剂团柱-裂缝的缝内流动模型

  • 将地层视作弹性体,将地层在xy面上进行节点划分,施加不同闭合压力后,提取每一节点处地层变形(图4),取整个裂缝面对应坐标差的平均值为该闭合压力下裂缝的平均宽度;提取变形稳定后支撑剂团柱有效区域与裂缝宽度,假设地层裂缝表面光滑,支撑剂团柱为封闭边界,忽略流体在支撑剂团柱内部的渗流,流体为不可压缩牛顿流体;使用密度为1 g/cm3、黏度为0.9 mPa·s的清水作为流动介质,流动方式为层流流动,建立Ⅰ,Ⅱ和Ⅲ型 3 类支撑剂团柱-裂缝的缝内流动模型。

  • 图4 地层节点划分及放大50倍变形示意

  • Fig.4 Stratigraphic nodal division and 50-fold enlargement

  • 当支撑剂团柱变形后,支撑剂团柱边缘的弱胶结区由于与支撑剂团柱整体发生分离,在流体流动过程中,弱胶结区将不能有效支撑裂缝,因此,支撑剂团柱稳定支撑地层裂缝的区域为有效支撑区域。通过提取裂缝有效支撑区域(图5),计算出该支撑剂团柱有效支撑区域面积,支撑剂团柱-裂缝的缝内流动模型中裂缝宽度为裂缝的平均宽度。

  • 图5 有效支撑区域提取

  • Fig.5 Extraction of effective support region

  • 模型长度与宽度相同,其值为单次脉冲中顶液与携砂液体积之和,裂缝中有效流动区域为支撑剂团柱之间的裂缝未闭合区域,称为裂缝流场(图6),流体入口为定流速边界,流体出口为定压边界,除流体入口与出口外,其余为封闭边界。

  • 图6 裂缝流场结构示意

  • Fig.6 Schematic of flow field in fractures

  • 3 支撑剂团柱受压变形规律

  • 3.1 支撑剂团柱类型的影响

  • 对比3类支撑剂团柱与地层接触模型变形模拟结果(图7,图8)发现:闭合压力越大,支撑剂团柱铺置面积越大。Ⅰ型和Ⅲ型支撑剂团柱边缘出现脱落,Ⅱ型支撑剂团柱整体结构保持完整,其中Ⅰ型和Ⅱ型支撑剂团柱被压成圆饼状,Ⅲ型支撑剂团柱为带状。当闭合压力由14 MPa增至41 MPa时,3类支撑剂团柱所受法向应力均从 73.59 MPa 增至 110.7 MPa,其中Ⅰ型支撑剂团柱与地层接触模型支撑裂缝宽度从1.97 mm降至1.22 mm,下降幅度随着闭合压力增大而增大;Ⅱ型支撑剂团柱与地层接触模型支撑裂缝宽度从2.52 mm降至1.72 mm,当闭合压力小于 35 MPa 时,裂缝宽度基本呈缓慢下降趋势,当闭合压力大于35 MPa时,裂缝宽度迅速下降,但整体裂缝宽度均大于Ⅰ型支撑剂团柱裂缝宽度; Ⅲ型支撑剂团柱与地层接触模型支撑裂缝宽度从 2.36 mm 降至 1.34 mm,当闭合压力小于 35 MPa 时,裂缝宽度下降趋势较为缓慢,当闭合压力大于 35 MPa 时,裂缝宽度迅速下降。Ⅱ型支撑剂团柱对裂缝支撑能力最强,Ⅰ型支撑剂团柱对地层裂缝支撑能力最弱,当闭合压力大于 35 MPa 时,裂缝宽度均出现明显下降,模拟结果与前述半径为5 mm支撑剂团柱压缩实验测试结果中不同闭合压力下的支撑剂团柱高度在误差范围内(图1)。

  • 图7 3类支撑剂团柱不同闭合压力下变形模拟结果

  • Fig.7 Simulated deformation of 3 types of proppant pillars at different closure pressures

  • 图8 不同闭合压力下3类支撑剂团柱与地层接触模型的裂缝宽度

  • Fig.8 Fracture width of contact model between three proppant pillars and formation at different closure pressures

  • 3.2 支撑剂团柱高度的影响

  • 以Ⅰ型支撑剂团柱铺置结构为例,假设裂缝宽度等于支撑剂团柱高度。不同高度支撑剂团柱下边缘支撑剂团柱颗粒所受法向应力基本一致,中间部分支撑剂颗粒受力大于边缘支撑剂颗粒受力,且随着支撑剂团柱高度的增加,支撑剂团柱中央部分受力变大,支撑剂团柱高度越低,支撑剂团柱完整性越好,当支撑剂团柱高度大于 9 mm 时,支撑剂颗粒从边缘发生脱落(图9);当支撑剂团柱高度从 6 mm增至 10 mm时,支撑剂团柱变形不大,裂缝宽度从0.9 mm增至1.22 mm,支撑剂团柱高度变化较小,因此,高度较大的支撑剂团柱对裂缝的支撑效果与高度较小的支撑剂团柱对裂缝的支撑效果基本保持一致(图10)。

  • 3.3 岩石杨氏模量的影响

  • 以Ⅰ型支撑剂团柱铺置结构为例,当岩石杨氏模量由 15 GPa 增至 35 GPa 时,裂缝宽度由 1.14 mm 增至1.26 mm(图11),裂缝宽度增加微小,岩石杨氏模量对支撑剂团柱变形影响不大;不同岩石杨氏模量下支撑剂团柱所受法向应力基本一致,中间部分支撑剂颗粒所受法向应力大于边缘支撑剂颗粒所受法向应力,且随着岩石杨氏模量增加,支撑剂团柱中央部分受力变大(图12)。

  • 图9 闭合压力为41 MPa时不同高度Ⅰ型支撑剂团柱变形对比

  • Fig.9 Deformation of typeⅠproppant pillars with different height at closure pressure of 41 MPa

  • 图10 不同支撑剂团柱高度下裂缝宽度

  • Fig.10 Fracture width under different proppant pillar height

  • 图11 不同岩石杨氏模量下裂缝宽度

  • Fig.11 Fracture width with different Young’s modulus

  • 图12 闭合压力为41 MPa时不同岩石杨氏模量下Ⅰ型支撑剂团柱变形对比

  • Fig.12 Deformation of typeⅠproppant pillars with different Young’s modulus at closure pressure of 41 MPa

  • 4 裂缝内流动规律

  • 对比 3 类支撑剂团柱-裂缝的缝内流动模型中压力与流速分布模拟结果(图13)发现:当闭合压力由 14 MPa 增至 41 MPa 时,由于支撑剂团柱变形巨大,支撑剂团柱变形后挤占Ⅰ型支撑剂团柱-裂缝的缝内流动模型中流体流动空间,使得该缝内流动模型中流体流动空间大幅减小,流体速度合量从 0.878 m/s 增至 11.11 m/s,进出口压差由 0.22 kPa 增至16 kPa,流体速度合量及进出口压差变化巨大,获取的流动空间并不理想;Ⅱ型支撑剂团柱-裂缝的缝内流动模型中,支撑剂团柱受压后变形不大,对裂缝形成了有效支撑,同时提供了较大的流体流动空间,流体速度合量及进出口压差变化较为稳定,流体速度合量从0.643 m/s增至1.583 m/s,进出口压差从0.004 kPa增至0.56 kPa;Ⅲ型支撑剂团柱-裂缝的缝内流动模型中,与Ⅱ型支撑剂团柱-裂缝的缝内流动模型中支撑剂团柱受压变形类似,支撑剂团柱受压后变形不大,依然能对裂缝形成有效支撑,受压后流体流动空间没有收缩变窄,流体流动空间保持良好,流体速度合量从 0.605 m/s 增至 1.090 m/ s,进出口压差从0.18 kPa增至0.62 kPa,流体速度合量及进出口压差无明显突变,因此同样能够获取良好的流体流动通道。

  • 图13 3类支撑剂团柱-裂缝的缝内流动模型中压力与速度合量分布

  • Fig.13 Pressure and velocity distributions in flow model of three proppant pillars-fracture types

  • 5 结论

  • 不同支撑剂团柱类型对裂缝支撑能力不同,其中Ⅱ型支撑剂团柱支撑能力最强;支撑剂团柱高度和杨氏模量对支撑剂团柱支撑能力影响不大。

  • 相同闭合压力下,Ⅱ型支撑剂团柱能提供的支撑裂缝宽度最大,Ⅲ型支撑剂团柱次之,Ⅰ型支撑剂团柱最小,支撑剂颗粒受力呈现中间大四周小的趋势。

  • 支撑剂团柱-裂缝的缝内流动模型中,采用Ⅱ 型、Ⅲ型支撑剂团柱支撑裂缝能提供良好的流体流动空间。

  • 参考文献

    • [1] GILLARD M R,MEDVEDEV O O,HOSEIN P R,et al.A new ap⁃ proach to generating fracture conductivity[C].SPE 135034,2010.

    • [2] YUDIN Alexey,ENKABABIAN Philippe,LYAPUNOV K,et al.First steps of channel fracturing in Russia set new directions for production increase of the oil fields[C].SPE 16742,2013.

    • [3] GUO Jianchun,MA Jian,ZHAO Zhihong,et al.Effect of fiber on the rheological property of fracturing fluid[J].Journal of Natural Gas Science & Engineering,2015,23(21):356-362.

    • [4] MEDVEDEV A V,KRAEMER C C,PENA A A,et al.On the mechanisms of channel fracturing[C].SPE 163836,2013.

    • [5] 郭建春,马健,张涛,等.通道压裂中流动通道形态影响因素实验研究[J].油气地质与采收率,2017,24(5):115-119,126.GUO Jianchun,MA Jian,ZHANG Tao,et al.Experimental study of influencial factors on flow channel morphology in channel frac⁃ turing[J].Petroleum Geology and Recovery Efficiency,2017,24(5):115-119,126.

    • [6] 卢聪,陈滔,毕曼,等.通道压裂中顶液脉冲时间优化模型研究 [J].油气地质与采收率,2018,25(2):115-120.LU Cong,CHEN Tao,BI Man,et al.Study on optimization model of pulse time for clean fluid in channel fracturing[J].Petroleum Geology and Recovery Efficiency,2018,25(2):115-120.

    • [7] HOU Tengfei,ZHANG Shicheng,YU Baihui,et al.Theoretical analysis and experimental research of channel fracturing in uncon⁃ ventional reservoir[C].SPE 180105,2016.

    • [8] 黄雨,郝亮,金晨,等.土体大变形单剪试验的SPH数值模拟 [J].工程力学,2011,28(1):199-204.HUANG Yu,HAO Liang,JIN Chen,et al.SPH-based numerical simulation of soil simple shear tests with large deformation[J].En⁃ gineering Mechanics,2011,28(1):199-204.

    • [9] 周小平,赵毅,钱七虎.单轴压缩条件下岩石破坏的光滑粒子流体动力学数值模拟[J].岩石力学与工程学报,2015,34(S1):2 647-2 658.ZHOU Xiaoping,ZHAO Yi,QIAN Qihu,et al.Numerical simula⁃ tion of rock failure process in uniaxial compression using smoothed particle hydrodynamics[J].Chinese Journal of Rock Me⁃ chanics and Engineering,2015,34(S1):2 647-2 658.

    • [10] I'TI'BAR M D,ÜNAL N E,AKYILDIZ H.Numerical simulation of sloshing with SPH[C].Rhodes:The Twenty-second Internation⁃ al Offshore and Polar Engineering Conference,17-22 June,2012.

    • [11] 林旺,范洪富,刘立峰,等.工程参数对致密油藏压裂水平井产能的影响[J].油气地质与采收率,2017,24(6):120-126.LIN Wang,FAN Hongfu,LIU Lifeng,et al.Effect of engineering parameters on fractured horizontal well productivity in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2017,24(6):120-126.

    • [12] 延新杰,李连崇,张潦源,等.岩石脆性对水力压裂裂缝影响的数值模拟实验[J].油气地质与采收率,2017,24(3):116-121.YAN Xinjie,LI Lianchong,ZHANG Liaoyuan,et al.Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J].Petroleum Geology and Re⁃ covery Efficiency,2017,24(3):116-121.

    • [13] 牛贯非,李连崇,李明,等.基于数值模拟的储层岩石力学参数预测模型分析及应用[J].油气地质与采收率,2017,24(2):73-79.NIU Guanfei,LI Lianchong,LI Ming,et al.Analysis and applica⁃ tion on prediction model of reservoir rock mechanical parameters based on numerical simulation[J].Petroleum Geology and Recov⁃ ery Efficiency,2017,24(2):73-79.

    • [14] 王琼仙,宋晓波,王东,等.川西龙门山前雷口坡组四段储层特征及形成机理[J].石油实验地质,2017,39(4):491-497.WANG Qiongxian,SONG Xiaobo,WANG Dong,et al.Reservoir characteristics and formation mechanism of the 4th member of the Leikoupo Formation in Longmen Mountain front[J].Petroleum Ge⁃ ology & Experiment,2017,39(4):491-497.

    • [15] 胡烨,陈迎宾,王彦青,等.川西坳陷回龙构造雷口坡组天然气成藏条件[J].特种油气藏,2018,25(1):46-51.HU Ye,CHEN Yingbin,WANG Yanqing,et al.Natural gas accu⁃ mulation conditions in Leikoupo Formation of Huilong structure,western Sichuan Depression[J].Special Oil & Gas Reservoirs,2018,25(1):46-51.

    • [16] 何治亮,金晓辉,沃玉进,等.中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J].中国石油勘探,2016,21(1):3-14.HE Zhiliang,JIN Xiaohui,WO Yujin,et al.Hydrocarbon accumu⁃ lation characteristics and exploration domains of ultra-deep ma⁃ rine carbonates in China[J].China Petroleum Exploration,2016,21(1):3-14.

  • 参考文献

    • [1] GILLARD M R,MEDVEDEV O O,HOSEIN P R,et al.A new ap⁃ proach to generating fracture conductivity[C].SPE 135034,2010.

    • [2] YUDIN Alexey,ENKABABIAN Philippe,LYAPUNOV K,et al.First steps of channel fracturing in Russia set new directions for production increase of the oil fields[C].SPE 16742,2013.

    • [3] GUO Jianchun,MA Jian,ZHAO Zhihong,et al.Effect of fiber on the rheological property of fracturing fluid[J].Journal of Natural Gas Science & Engineering,2015,23(21):356-362.

    • [4] MEDVEDEV A V,KRAEMER C C,PENA A A,et al.On the mechanisms of channel fracturing[C].SPE 163836,2013.

    • [5] 郭建春,马健,张涛,等.通道压裂中流动通道形态影响因素实验研究[J].油气地质与采收率,2017,24(5):115-119,126.GUO Jianchun,MA Jian,ZHANG Tao,et al.Experimental study of influencial factors on flow channel morphology in channel frac⁃ turing[J].Petroleum Geology and Recovery Efficiency,2017,24(5):115-119,126.

    • [6] 卢聪,陈滔,毕曼,等.通道压裂中顶液脉冲时间优化模型研究 [J].油气地质与采收率,2018,25(2):115-120.LU Cong,CHEN Tao,BI Man,et al.Study on optimization model of pulse time for clean fluid in channel fracturing[J].Petroleum Geology and Recovery Efficiency,2018,25(2):115-120.

    • [7] HOU Tengfei,ZHANG Shicheng,YU Baihui,et al.Theoretical analysis and experimental research of channel fracturing in uncon⁃ ventional reservoir[C].SPE 180105,2016.

    • [8] 黄雨,郝亮,金晨,等.土体大变形单剪试验的SPH数值模拟 [J].工程力学,2011,28(1):199-204.HUANG Yu,HAO Liang,JIN Chen,et al.SPH-based numerical simulation of soil simple shear tests with large deformation[J].En⁃ gineering Mechanics,2011,28(1):199-204.

    • [9] 周小平,赵毅,钱七虎.单轴压缩条件下岩石破坏的光滑粒子流体动力学数值模拟[J].岩石力学与工程学报,2015,34(S1):2 647-2 658.ZHOU Xiaoping,ZHAO Yi,QIAN Qihu,et al.Numerical simula⁃ tion of rock failure process in uniaxial compression using smoothed particle hydrodynamics[J].Chinese Journal of Rock Me⁃ chanics and Engineering,2015,34(S1):2 647-2 658.

    • [10] I'TI'BAR M D,ÜNAL N E,AKYILDIZ H.Numerical simulation of sloshing with SPH[C].Rhodes:The Twenty-second Internation⁃ al Offshore and Polar Engineering Conference,17-22 June,2012.

    • [11] 林旺,范洪富,刘立峰,等.工程参数对致密油藏压裂水平井产能的影响[J].油气地质与采收率,2017,24(6):120-126.LIN Wang,FAN Hongfu,LIU Lifeng,et al.Effect of engineering parameters on fractured horizontal well productivity in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2017,24(6):120-126.

    • [12] 延新杰,李连崇,张潦源,等.岩石脆性对水力压裂裂缝影响的数值模拟实验[J].油气地质与采收率,2017,24(3):116-121.YAN Xinjie,LI Lianchong,ZHANG Liaoyuan,et al.Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J].Petroleum Geology and Re⁃ covery Efficiency,2017,24(3):116-121.

    • [13] 牛贯非,李连崇,李明,等.基于数值模拟的储层岩石力学参数预测模型分析及应用[J].油气地质与采收率,2017,24(2):73-79.NIU Guanfei,LI Lianchong,LI Ming,et al.Analysis and applica⁃ tion on prediction model of reservoir rock mechanical parameters based on numerical simulation[J].Petroleum Geology and Recov⁃ ery Efficiency,2017,24(2):73-79.

    • [14] 王琼仙,宋晓波,王东,等.川西龙门山前雷口坡组四段储层特征及形成机理[J].石油实验地质,2017,39(4):491-497.WANG Qiongxian,SONG Xiaobo,WANG Dong,et al.Reservoir characteristics and formation mechanism of the 4th member of the Leikoupo Formation in Longmen Mountain front[J].Petroleum Ge⁃ ology & Experiment,2017,39(4):491-497.

    • [15] 胡烨,陈迎宾,王彦青,等.川西坳陷回龙构造雷口坡组天然气成藏条件[J].特种油气藏,2018,25(1):46-51.HU Ye,CHEN Yingbin,WANG Yanqing,et al.Natural gas accu⁃ mulation conditions in Leikoupo Formation of Huilong structure,western Sichuan Depression[J].Special Oil & Gas Reservoirs,2018,25(1):46-51.

    • [16] 何治亮,金晓辉,沃玉进,等.中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J].中国石油勘探,2016,21(1):3-14.HE Zhiliang,JIN Xiaohui,WO Yujin,et al.Hydrocarbon accumu⁃ lation characteristics and exploration domains of ultra-deep ma⁃ rine carbonates in China[J].China Petroleum Exploration,2016,21(1):3-14.