en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙林(1983—),男,四川南充人,高级工程师,从事油气田开发研究。联系电话:(022)66907730,E-mail:sunlin3@cnooc.com.cn。

中图分类号:TE357.1+4

文献标识码:A

文章编号:1009-9603(2019)04-0119-06

DOI:10.13673/j.cnki.cn37-1359/te.2019.04.018

参考文献 1
郭曦泽,张刘平.主要腐殖型凝析气藏的成熟度特征[J].大庆石油地质与开发,2017,36(2):39-44.GUO Xize,ZHANG Liuping.Maturity characteristics of the main humic type condensate gas reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(2):39-44.
参考文献 2
黄东,杨跃明,杨光,等.四川盆地侏罗系致密油勘探开发进展与对策[J].石油实验地质,2017,39(3):304-310.HUANG Dong,YANG Yueming,YANG Guang,et al.Countermea⁃ sure and progress of exploration and development of Jurassic tight oil in the Sichuan Basin[J].Petroleum Geology & Experiment,2017,39(3):304-310.
参考文献 3
肖佳林,李奎东,高东伟,等.涪陵焦石坝区块水平井组拉链压裂实践与认识[J].中国石油勘探,2018,23(2):51-58.XIAO Jialin,LI Kuidong,GAO Dongwei,et al.Practice and cogni⁃ tion on zipper fracturing of horizontal well group in Jiaoshiba block,Fuling[J].China Petroleum Exploration,2018,23(2):51-58.
参考文献 4
姜瑞忠,乔杰,孙辉,等.低渗透砂砾岩油藏储层分类方法[J].油气地质与采收率,2018,25(1):90-93.JIANG Ruizhong,QIAO Jie,SUN Hui,et al.Reservoir classifica⁃ tion method for low-permeability glutenite reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(1):90-93.
参考文献 5
杨洪志,宋振云,任雁鹏.利用高能气体压裂改造底水油藏技术研究[J].钻采工艺研究,1997,21(4):22-31.YANG Hongzhi,SONG Zhenyun,REN Yanpeng.Study on stimu⁃ lation in bottom water reservoirs by high energy gas fracturing[J].Drilling & Production Technology Study,1997,21(4):22-31.
参考文献 6
孙林,杨万有,易飞,等.筛管完井爆燃压裂技术可行性研究 [J].特种油气藏,2017,24(4):161-165.SUN Lin,YANG Wanyou,YI Fei,et al.Feasibility research on lin⁃ er-completion deflagration fracturing technique[J].Special Oil & Gas Reservoirs,2017,24(4):161-165.
参考文献 7
黄毓林.爆燃压裂工艺技术[J].油气井测试,1993,2(4):24-33.HUANG Yulin.Deflagrate fracturing technology[J].Well Testing,1993,2(4):24-33.
参考文献 8
张廷汉,秦发动.高能气体压裂在我国的研究和进展[J].石油钻采工艺,1987,9(5):1-7.ZHANG Tinghan,QIN Fadong.Research and development of high energy gas fracturing in our country[J].Oil Drilling & Production Technology,1987,9(5):1-7.
参考文献 9
李璗,薛中天,刘发喜.七里村油矿高能气体压裂效果的初步分析[J].西安石油学院学报,1988,3(2):7-14.LI Dang,XUE Zhongtian,LIU Faxi.Preliminary analysis of high energy gas fracture effect at Qili Village Oil Field[J].Journal of Xi’an Petroleum Institute,1988,3(2):7-14.
参考文献 10
秦发动.聚能效应在高能气体压裂中的应用研究[J].西安石油学院学报,1992,7(3):17-22.QIN Fadong.Research on the application of accumulated energy effect of high energy gas fracturing[J].Journal of Xi’an PetroleumInstitute,1992,7(3):17-22.
参考文献 11
刘发喜,秦发动.高能气体压裂施工工艺及其发展趋势[J].石油钻采工艺,1993,15(2):63-69,75.LIU Faxi,QING Fadong.Construction technology and develop⁃ ment tendency of high energy gas fracturing[J].Oil Drilling & Production Technology,1993,15(2):63-69,75.
参考文献 12
秦发动,吴晋军.我院高能气体压裂技术十年发展综述[J].西安石油学院学报,1997,12(3):14-17,52.QIN Fadong,WU Jinjun.Development of high energy gas fractur⁃ ing(HEGF)in the past ten years[J].Journal of Xi’an Shiyou University,1997,12(3):14-17,52.
参考文献 13
孙林,宋爱莉,易飞,等.爆压酸化技术在中国海上低渗油田适应性分析[J].钻采工艺,2016,39(1):60-62.SUN Lin,SONG Aili,YI Fei,et al.Analysis of deflagrate fractur⁃ ing technology adaptability in China offshore low permeability oil⁃ field[J].Drilling & Production Technology,2016,39(1):60-62.
参考文献 14
张强德,赵万祥,王法轩.高能气体压裂技术[J].断块油气田,1994,1(3):50-60.ZHANG Qiangde,ZHAO Wanxiang,WANG Faxuan.The high-en⁃ ergy gas fracturing technology[J].Fault-Block Oil & Gas Field,1994,1(3):50-60.
参考文献 15
王香增.多级脉冲爆燃压裂破岩机理研究[J].石油矿场机械,2007,36(4):10-12.WANG Xiangzeng.Mechanism study of multistage pulse conflagra⁃ tion compression fracture[J].Oil Field Equipment,2007,36(4):10-12.
参考文献 16
董杰,岳湘安,丁景辰.致密含水气藏产液评价模型及应用[J].特种油气藏,2018,25(1):90-94.DONG Jie,YUE Xiang’an,DING Jingchen.Evaluation model of liquid production and its application in tight water-bearing gas reservoir[J].Special Oil & Gas Reservoirs,2018,25(1):90-94.
参考文献 17
延新杰,李连崇,张潦源,等.岩石脆性对水力压裂裂缝影响的数值模拟实验[J].油气地质与采收率,2017,24(3):116-121.YAN Xinjie,LI Lianchong,ZHANG Liaoyuan,et al.Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J].Petroleum Geology and Re⁃ covery Efficiency,2017,24(3):116-121.
参考文献 18
李小刚,易良平,杨兆中,等.致密油藏水力裂缝层内爆燃压裂非线性渗流模型[J].油气地质与采收率,2017,24(1):116-121.LI Xiaogang,YI Liangping,YANG Zhaozhong,et al.Nonlinear flow model of explosive fracturing in hydraulic fractured tight oil reservoir[J].Petroleum Geology and Recovery Efficiency,2017,24(1):116-121.
参考文献 19
吴飞鹏,蒲春生,吴波.燃爆压裂中压挡液柱运动规律的动力学模型[J].爆炸与冲击,2010,30(6):633-640.WU Feipeng,PU Chunsheng,WU Bo.A dynamic model of the pressurized liquid column movement in the high energy gas frac⁃ turing process[J].Explosion and Shock Waves,2010,30(6):633-640.
参考文献 20
王国强,李勇宏,胥会祥,等.高氯酸钾复合推进剂的耐温性 [J].火炸药学报,2015,38(5):83-86.WANG guoqiang,LI Yonghong,XU Huixiang,et al.Temperature resistance of potassium perchlorate composite propellant[J].Chi⁃ nese Journal of Explosives & Propellants,2015,38(5):83-86.
参考文献 21
谭惠平,薛金根.DSC 法研究高氯酸钾的催化热分解反应[J].中南林业科技大学学报,2007,27(3):114-116.TAN Huiping,XUE Jingen.Catalyzed thermal decomposition of potassium perchlorate[J].Journal of Central South University of Forestry & Technology,2007,27(3):114-116.
参考文献 22
国防科学技术工业委员会.无壳高能气体压裂弹通用技术条件:WJ/Z9034—2002[S].北京:国防科工委军标出版发行部,2002.Commission on Science,Technology and Industry for National De⁃ fense.General requirements of caseless high energy gas fracturing bullet:WJ/Z9034-2002[S].Beijing:Military Standard Publishing Department of Commission on Science,Technology and Industry for National Defense,2002.
参考文献 23
梁燕军,庞晓萍,何国书,等.火药试验方法:GJB770B—2005 [S].北京:国防科工委军标出版发行部,2005.LIANG Yanjun,PANG Xiaoping,HE Guoshu,et al.Test method of propellant:GJB770B-2005[S].Beijing:Military Standard Pub⁃ lishing Department of Commission on Science,Technology and In⁃ dustry for National Defense,2005.
参考文献 24
陈锋,唐凯,程启文,等.StimGun 复合射孔技术在四川地区的应用研究[J].测井技术,2010,34(6):605-609.CHEN Feng,TANG Kai,CHENG Qiwen,et al.Application of StimGun compound perforating technology in Sichuan region[J].Well Logging Technology,2010,34(6):605-609.
参考文献 25
李林,陈锋,姜德义,等.StimGun复合射孔技术的应用[J].重庆大学学报,2011,34(4):36-39.LI Lin,CHEN Feng,JIANG Deyi,et al.Performance analysis of StimGun technology[J].Journal of Chongqing University,2011,34(4):36-39.
目录contents

    摘要

    为解决东海深层致密气藏改造增产难题,对该类气藏进行爆燃压裂技术优化,优选更具耐温性的高氯酸钾为固体氧化剂,耐高温环氧树脂为高分子粘合剂,再复合耐高温橡胶、敏感剂、固化剂等材料,采用淤浆浇注工艺,研制出耐高温火药,经检测,该火药可耐 200 ℃高温达 48 h。根据气井非达西流动产能公式和爆燃压裂后多裂缝模型,推导了爆燃压裂后气井产能和增产倍比模型,进行了气井产能与裂缝参数相关性分析,并优选了内置式和袖套式2种火药在不同火药参数下的方案。形成了TCP射孔-HEGF爆燃压裂-APR测试联作一体化管柱,节省50%起下管柱的作业时间,减小储层伤害,提高井下作业管柱安全性。

    Abstract

    An optimized high-energy gas fracturing technology was proposed to solve the difficulty on the stimulation of the deep tight gas reservoirs in the East China Sea. Temperature-resistant potassium perchlorate was preferred as the solid oxi- dant and temperature-resistant epoxy resin was used as the polymer binder. Addition with the use of high temperature-re- sistant rubber,sensitive agent,curing agent and other materials,the high temperature-resistant propellant was made by us- ing a slurry casting process. The propellant could withstand a high temperature about 200 ℃ for 48 hours. According to the non-Darcy gas flow productivity formula and the multi-crack model after high-energy gas fracturing,the gas well produc- tivity and production-increasing ratio model after the fracturing were derived. The correlation between the gas well produc- tivity and fracturing parameters was analyzed. Fracturing mode with both built-in and sleeve-type propellant were opti- mized for different propellant parameters. The“TCP-HEGF-APR test”integration process technology has been formed in- novatively. It greatly saves 50% working time,reduces reservoir damage and improves the safety of the downhole work with string tools.

  • 东海深层致密气藏主要包括天外天、残月、黄岩和宁波等气田群[1],具有储层埋藏深、跨度大、高温、高压、物性差和近水等特点,其高效开发属于世界级难题,并作为“十三五”国家能源发展战略中一个重要环节。目前东海海域增产措施以水力压裂、酸化压裂等技术为主[2-3],已完成 19 口井的水力压裂和 6 口井的酸化压裂,而 88% 的井因地层出水而导致措施实施效果不理想。为解决东海深层致密气藏改造增产难题,中海油下属研究机构进行爆燃压裂技术优化。

  • 1 东海深层致密气藏特点

  • 东海海域气井井况特殊,具有以下典型特点: ①埋藏深、温度高、压力大。埋深为3 800~5 000 m,地层温度为 150~180℃,压力系数为 1.1~2.0,地层压力为 40~90 MPa。②以特低渗透气藏为主,气层厚度大,非均质性强。储层渗透率为 0.1~10 mD[4],仅平黄开发区和宁波气田群天然气储量达 28 374× 108 m3,储量主要分布在渗透率为 0.1~1 mD 的特低渗透气藏中,单层厚度为100~150 m,渗透率级差达 300倍。③纵向跨度大,主力气层多,储层近水。纵向跨度达 1 000~1 200 m,存在多个主力层,储层距离水层约为3~15 m。

  • 2 爆燃压裂技术研究难点

  • 爆燃压裂技术在中国应用已经有 30 a历史,该技术特别适合于低渗透近水油藏的压裂增产[5-12],是目前海上油田重点发展的低成本气体压裂技术[13]。但针对东海深层致密气藏,该技术应用存在 3 大难点:①火药耐高温性能差。目前中国火药耐温仅为 120~150℃,对于东海 150~180℃高温地层,需要耐高温等级更高的火药。②气井爆燃压裂产能评估与裂缝相关性研究相对欠缺。目前中国爆燃压裂技术均在油水井中规模应用[5-12],并形成了较多理论[14-19],但对气井爆燃压裂产能评估与裂缝相关性研究相对欠缺,不能通过气井产能需求来反向指导设计。③探井爆燃压裂联作实施程序繁琐或低效。目前东海探井需要进行射孔和测试,单独一趟爆燃管柱施工存在程序繁琐、易造成储层伤害等问题,而且一趟管柱联作施工上采用袖套式装药存在峰值压力高、井下作业不安全等弊端。

  • 3 爆燃压裂技术优化

  • 3.1 耐高温火药研制与性能评价

  • 目前中国爆燃压裂火药大致分为发射药和固体推进剂 2 种类型,其中发射药主要应用于中浅层井,火药性能稳定,但不耐高温,应用于120℃以下、埋深小于 3 000 m 且地层压力系数大于 0.6的井况; 固体推进剂一般应用于耐温为 120~150℃[20]、埋深小于5 000 m且地层压力系数大于0.6的井况。

  • 为适应东海气藏的要求,优选更具耐温性的质量分数为35%~60%的高氯酸钾[20-21] 为固体氧化剂,质量分数为 10%~25% 的耐高温环氧树脂为高分子粘合剂,再复合耐高温的质量分数为 5%~10% 的橡胶、质量分数为 2%~15% 的敏感剂、质量分数为 1%~3% 的固化剂等材料,采用淤浆浇注工艺,工艺流程为依次将材料加入混合机,搅拌 90 min 后出料,将药剂置入模具中,固化后取出,即为新研制出的耐高温火药。

  • 按照 WJ/Z9034[22]和 GJB770B[23]测试其耐温性能和燃烧性能,经测试火药密度为 1.47 g/cm3,在环境压力为 6 MPa 条件下的燃烧速度为 4.2 mm/s,且该火药在200℃下耐温达48 h。

  • 3.2 气井爆燃压裂产能相关性研究

  • 3.2.1 气井爆燃压裂产能及增产倍比模型

  • 爆燃压裂裂缝模型[14-19] 相对成熟,但产能模型中,油水井与气井存在较大差异,按照气井非达西流动,其产能表达式为:

  • qsc=774.6Khpe2-pwf2Tμ-Z-lnrerw+S'
    (1)
  • 爆燃压裂的多裂缝可按多分支井模型考虑,产能一般通过复变函数中的复分析进行推导,爆燃压裂后产能表达式为:

  • qscf=774.6Khpe2-pwf2Tμ-Z-lnFreL+hLlnh2πrw
    (2)
  • 由于爆燃压裂所形成的裂缝高度远小于裂缝长度,因此(2)式可以简化为:

  • qscf=774.6Khpe2-pwf2Tμ-Z-lnFreL=774.6Khpe2-pwf2Tμ-Z-lnreL+ln4n
    (3)
  • 由此可知气井增产倍比公式为:

  • η=qsefqsc=lnrerw+S'lnreL+ln4n=lgrerw+S'lgelgreL+ln4nlge=lgrerw+0.4343S'lgreL+0.6020n
    (4)
  • 3.2.2 气井产能与裂缝参数相关性分析

  • 为研究气井爆燃压裂产能相关性,基于东海 A 气井固定参数(表1)进行模拟,先计算达到所需产能的裂缝形态,然后改变火药参数中的火药力、尺寸、燃烧速度和用量等变量,最终优选符合安全压力和裂缝形态下的方案。

  • 表1 东海A气井固定参数

  • Table1 Parameters for Gas Well A in East China Sea

  • 由模拟结果(图1)可知,东海A气井产气量与裂缝的长度和数量均呈正相关,由于该井需达到5.00× 104 m3 /d以上经济开发产气量,因此,当裂缝参数为 3,4和5~8条时,其裂缝长度分别需达到8,7和6 m。

  • 图1 东海A气井产气量与裂缝长度和数量的相关性

  • Fig.1 Correlation between gas production rate and fracture length of Gas Well A in East China Sea

  • 内置式火药参数优化方案 选取火药力分别为 670 和 960 kJ/kg。火药外径分别为 95 和 67 mm,内径均为 26 mm。火药燃烧速度等级分别为中、低燃烧速度,在环境压力为 150 MPa 下分别为 60.4 和 38.8 mm/s,且在0~150 MPa下均随着压力的升高而增加,在相同环境压力下中燃烧速度远大于低燃烧速度(图2)。火药量按 0.5 m 一节火药长度不断增加。

  • 由模拟结果(表2)可知,在相同火药量情况下,火药力越大、火药越细、燃烧速度越快,峰值压力越大,越易获得更多裂缝数量或更大裂缝长度。如果峰值压力处于安全范围内,即可推荐此类火药,如果需要从安全角度考虑控制峰值压力,则采用相反设计思路。

  • 根据模拟结果,形成 2 种方案。方案 1:当火药力为 960 kJ/kg,火药外径为 67 mm,中燃烧速度时,至少需火药量为 37.5 kg,峰值压力可达 91.8 MPa,裂缝数量为5条,裂缝长度为6.8 m。方案2:当火药力为 670 kJ/kg,火药外径为 95 mm,低燃烧速度时,至少需火药量为120 kg,峰值压力可达79.1 MPa,裂缝数量为8条,裂缝长度为6.4 m。根据该井套管承压情况,最大峰值压力需限制为 131.5 MPa,因此 2 种方案均可实现。

  • 图2 东海A气井中、低火药燃烧速度与环境压力的关系

  • Fig.2 Relationship between the burning rate of medium and low burning rate propellant and environment pressure of Gas Well A in East China Sea

  • 表2 东海A气井内置式火药模拟结果

  • Table2 Simulation result of Gas Well A fractured with build-in propellant in East China Sea

  • 注:火药量均从岩石起裂最小量算起。

  • 袖套式火药参数优化方案 选取火药力分别为670和960 kJ/kg;火药外径分别为124和112 mm,内径均比外径小 10 mm;火药燃烧速度等级仍分别为中燃烧速度和低燃烧速度(表3);火药量按 0.5 m一节火药长度不断增加。

  • 表3 东海A气井袖套式火药模拟结果

  • Table3 Simulation result of Gas Well A fractured with sleeve propellant in East China Sea

  • 注:火药量均从岩石起裂最小量算起。

  • 由模拟结果(表3)可知,袖套式火药模拟特征和内置式模拟特征一致,但袖套式火药的起压峰值压力普遍较高,考虑到井筒安全的限压为 131.5 MPa,因此,优选火药力为 670 kJ/ kg,火药外径为 112 mm,低燃烧速度时,至少需火药量为 65 kg,峰值压力可达 119.9 MPa,裂缝数量为 5 条,裂缝长度为6.4 m。

  • 3.3 TCP射孔-HEGF爆燃压裂-APR测试联作管柱

  • 3.3.1 联作测试管柱

  • 如图3 所示,该管柱可实现 TCP 射孔-HEGF 爆燃压裂-APR测试一体化联作。该管柱实施程序简单,节省 50% 起下管柱的作业时间;环空加压负压射孔,减少储层伤害,避免爆燃压裂井口喷液问题; 使用封隔器坐封,防止井筒喷液和瞬时高压对 APR 测试影响;采用环空加压起爆,同时还降低封隔器承压风险。

  • 图3 东海A气井TCP射孔-HEGF爆燃压裂-APR 测试联作管柱

  • Fig.3 TCP-HEGF-APR integration pipe of Gas Well A in East China Sea

  • 3.3.2 联作思路

  • 由于 A 气井为深层探井,射孔后单独采用一趟爆燃压裂管柱,存在起下钻作业繁琐,易造成储层伤害等问题,因此急需采用一趟管柱思路,目前中国类似深层气井多采用袖套式联作方法[24-25],而根据该井袖套式火药计算结果,火药量为65 kg至少需长度为25 m的压裂枪,而该井射孔段长度为5 m,存在压裂枪工具组件多、峰值压裂高、作用层段不匹配等问题。因此,该井采用射孔枪下挂式压裂枪装药的联作思路,根据内置式火药模拟结果,优选方案 1的火药量为 37.5 kg仅需长度为 7.5 m 的压裂枪即可。

  • 4 结论

  • 东海海域气井储层具有埋藏深、跨度大、高温、高压、物性差、近水等特点,存在火药耐高温差、气井爆燃压裂产能评估与裂缝相关性研究相对欠缺和探井爆燃压裂联作实施程序繁琐或低效等问题。为此,优选更具耐温性的高氯酸钾为固体氧化剂、耐高温环氧树脂为高分子粘合剂,再复合耐高温橡胶、敏感剂、固化剂等材料,采用淤浆浇注工艺,研制出耐高温火药,经检测火药可耐 200℃高温达 48 h。根据气井非达西流动产能公式和爆燃压裂后多裂缝模型,推导了爆燃压裂后气井产能和增产倍比模型,进行了气井产能与裂缝参数相关性分析,并优选了内置式和袖套式2种火药在不同火药参数下的方案。形成了TCP射孔-HEGF爆燃压裂-APR测试联作一体化管柱,节省 50% 起下管柱的作业时间,减小储层伤害,提高井下作业管柱安全性。

  • 符号解释

  • q sc——标准状况下的产气量,m3 /d;K ——渗透率,mD; h ——气层有效厚度,m;p e——地层压力,MPa;p wf——井底流压,MPa;T ——气层温度,K;μ-——平均压力下气体的平均黏度,mPa•s;Z-——平均压力下气体的平均偏差系数;r e—— 供给边界半径,m;r w——井眼半径,m;S′——视表皮系数; q scf——爆燃压裂后标准状况下的产气量,m3 /d;F ——裂缝指数,41/nL ——单条裂缝长度,m;n ——裂缝数量,条;η——增产倍比。

  • 参考文献

    • [1] 郭曦泽,张刘平.主要腐殖型凝析气藏的成熟度特征[J].大庆石油地质与开发,2017,36(2):39-44.GUO Xize,ZHANG Liuping.Maturity characteristics of the main humic type condensate gas reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(2):39-44.

    • [2] 黄东,杨跃明,杨光,等.四川盆地侏罗系致密油勘探开发进展与对策[J].石油实验地质,2017,39(3):304-310.HUANG Dong,YANG Yueming,YANG Guang,et al.Countermea⁃ sure and progress of exploration and development of Jurassic tight oil in the Sichuan Basin[J].Petroleum Geology & Experiment,2017,39(3):304-310.

    • [3] 肖佳林,李奎东,高东伟,等.涪陵焦石坝区块水平井组拉链压裂实践与认识[J].中国石油勘探,2018,23(2):51-58.XIAO Jialin,LI Kuidong,GAO Dongwei,et al.Practice and cogni⁃ tion on zipper fracturing of horizontal well group in Jiaoshiba block,Fuling[J].China Petroleum Exploration,2018,23(2):51-58.

    • [4] 姜瑞忠,乔杰,孙辉,等.低渗透砂砾岩油藏储层分类方法[J].油气地质与采收率,2018,25(1):90-93.JIANG Ruizhong,QIAO Jie,SUN Hui,et al.Reservoir classifica⁃ tion method for low-permeability glutenite reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(1):90-93.

    • [5] 杨洪志,宋振云,任雁鹏.利用高能气体压裂改造底水油藏技术研究[J].钻采工艺研究,1997,21(4):22-31.YANG Hongzhi,SONG Zhenyun,REN Yanpeng.Study on stimu⁃ lation in bottom water reservoirs by high energy gas fracturing[J].Drilling & Production Technology Study,1997,21(4):22-31.

    • [6] 孙林,杨万有,易飞,等.筛管完井爆燃压裂技术可行性研究 [J].特种油气藏,2017,24(4):161-165.SUN Lin,YANG Wanyou,YI Fei,et al.Feasibility research on lin⁃ er-completion deflagration fracturing technique[J].Special Oil & Gas Reservoirs,2017,24(4):161-165.

    • [7] 黄毓林.爆燃压裂工艺技术[J].油气井测试,1993,2(4):24-33.HUANG Yulin.Deflagrate fracturing technology[J].Well Testing,1993,2(4):24-33.

    • [8] 张廷汉,秦发动.高能气体压裂在我国的研究和进展[J].石油钻采工艺,1987,9(5):1-7.ZHANG Tinghan,QIN Fadong.Research and development of high energy gas fracturing in our country[J].Oil Drilling & Production Technology,1987,9(5):1-7.

    • [9] 李璗,薛中天,刘发喜.七里村油矿高能气体压裂效果的初步分析[J].西安石油学院学报,1988,3(2):7-14.LI Dang,XUE Zhongtian,LIU Faxi.Preliminary analysis of high energy gas fracture effect at Qili Village Oil Field[J].Journal of Xi’an Petroleum Institute,1988,3(2):7-14.

    • [10] 秦发动.聚能效应在高能气体压裂中的应用研究[J].西安石油学院学报,1992,7(3):17-22.QIN Fadong.Research on the application of accumulated energy effect of high energy gas fracturing[J].Journal of Xi’an PetroleumInstitute,1992,7(3):17-22.

    • [11] 刘发喜,秦发动.高能气体压裂施工工艺及其发展趋势[J].石油钻采工艺,1993,15(2):63-69,75.LIU Faxi,QING Fadong.Construction technology and develop⁃ ment tendency of high energy gas fracturing[J].Oil Drilling & Production Technology,1993,15(2):63-69,75.

    • [12] 秦发动,吴晋军.我院高能气体压裂技术十年发展综述[J].西安石油学院学报,1997,12(3):14-17,52.QIN Fadong,WU Jinjun.Development of high energy gas fractur⁃ ing(HEGF)in the past ten years[J].Journal of Xi’an Shiyou University,1997,12(3):14-17,52.

    • [13] 孙林,宋爱莉,易飞,等.爆压酸化技术在中国海上低渗油田适应性分析[J].钻采工艺,2016,39(1):60-62.SUN Lin,SONG Aili,YI Fei,et al.Analysis of deflagrate fractur⁃ ing technology adaptability in China offshore low permeability oil⁃ field[J].Drilling & Production Technology,2016,39(1):60-62.

    • [14] 张强德,赵万祥,王法轩.高能气体压裂技术[J].断块油气田,1994,1(3):50-60.ZHANG Qiangde,ZHAO Wanxiang,WANG Faxuan.The high-en⁃ ergy gas fracturing technology[J].Fault-Block Oil & Gas Field,1994,1(3):50-60.

    • [15] 王香增.多级脉冲爆燃压裂破岩机理研究[J].石油矿场机械,2007,36(4):10-12.WANG Xiangzeng.Mechanism study of multistage pulse conflagra⁃ tion compression fracture[J].Oil Field Equipment,2007,36(4):10-12.

    • [16] 董杰,岳湘安,丁景辰.致密含水气藏产液评价模型及应用[J].特种油气藏,2018,25(1):90-94.DONG Jie,YUE Xiang’an,DING Jingchen.Evaluation model of liquid production and its application in tight water-bearing gas reservoir[J].Special Oil & Gas Reservoirs,2018,25(1):90-94.

    • [17] 延新杰,李连崇,张潦源,等.岩石脆性对水力压裂裂缝影响的数值模拟实验[J].油气地质与采收率,2017,24(3):116-121.YAN Xinjie,LI Lianchong,ZHANG Liaoyuan,et al.Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J].Petroleum Geology and Re⁃ covery Efficiency,2017,24(3):116-121.

    • [18] 李小刚,易良平,杨兆中,等.致密油藏水力裂缝层内爆燃压裂非线性渗流模型[J].油气地质与采收率,2017,24(1):116-121.LI Xiaogang,YI Liangping,YANG Zhaozhong,et al.Nonlinear flow model of explosive fracturing in hydraulic fractured tight oil reservoir[J].Petroleum Geology and Recovery Efficiency,2017,24(1):116-121.

    • [19] 吴飞鹏,蒲春生,吴波.燃爆压裂中压挡液柱运动规律的动力学模型[J].爆炸与冲击,2010,30(6):633-640.WU Feipeng,PU Chunsheng,WU Bo.A dynamic model of the pressurized liquid column movement in the high energy gas frac⁃ turing process[J].Explosion and Shock Waves,2010,30(6):633-640.

    • [20] 王国强,李勇宏,胥会祥,等.高氯酸钾复合推进剂的耐温性 [J].火炸药学报,2015,38(5):83-86.WANG guoqiang,LI Yonghong,XU Huixiang,et al.Temperature resistance of potassium perchlorate composite propellant[J].Chi⁃ nese Journal of Explosives & Propellants,2015,38(5):83-86.

    • [21] 谭惠平,薛金根.DSC 法研究高氯酸钾的催化热分解反应[J].中南林业科技大学学报,2007,27(3):114-116.TAN Huiping,XUE Jingen.Catalyzed thermal decomposition of potassium perchlorate[J].Journal of Central South University of Forestry & Technology,2007,27(3):114-116.

    • [22] 国防科学技术工业委员会.无壳高能气体压裂弹通用技术条件:WJ/Z9034—2002[S].北京:国防科工委军标出版发行部,2002.Commission on Science,Technology and Industry for National De⁃ fense.General requirements of caseless high energy gas fracturing bullet:WJ/Z9034-2002[S].Beijing:Military Standard Publishing Department of Commission on Science,Technology and Industry for National Defense,2002.

    • [23] 梁燕军,庞晓萍,何国书,等.火药试验方法:GJB770B—2005 [S].北京:国防科工委军标出版发行部,2005.LIANG Yanjun,PANG Xiaoping,HE Guoshu,et al.Test method of propellant:GJB770B-2005[S].Beijing:Military Standard Pub⁃ lishing Department of Commission on Science,Technology and In⁃ dustry for National Defense,2005.

    • [24] 陈锋,唐凯,程启文,等.StimGun 复合射孔技术在四川地区的应用研究[J].测井技术,2010,34(6):605-609.CHEN Feng,TANG Kai,CHENG Qiwen,et al.Application of StimGun compound perforating technology in Sichuan region[J].Well Logging Technology,2010,34(6):605-609.

    • [25] 李林,陈锋,姜德义,等.StimGun复合射孔技术的应用[J].重庆大学学报,2011,34(4):36-39.LI Lin,CHEN Feng,JIANG Deyi,et al.Performance analysis of StimGun technology[J].Journal of Chongqing University,2011,34(4):36-39.

  • 参考文献

    • [1] 郭曦泽,张刘平.主要腐殖型凝析气藏的成熟度特征[J].大庆石油地质与开发,2017,36(2):39-44.GUO Xize,ZHANG Liuping.Maturity characteristics of the main humic type condensate gas reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(2):39-44.

    • [2] 黄东,杨跃明,杨光,等.四川盆地侏罗系致密油勘探开发进展与对策[J].石油实验地质,2017,39(3):304-310.HUANG Dong,YANG Yueming,YANG Guang,et al.Countermea⁃ sure and progress of exploration and development of Jurassic tight oil in the Sichuan Basin[J].Petroleum Geology & Experiment,2017,39(3):304-310.

    • [3] 肖佳林,李奎东,高东伟,等.涪陵焦石坝区块水平井组拉链压裂实践与认识[J].中国石油勘探,2018,23(2):51-58.XIAO Jialin,LI Kuidong,GAO Dongwei,et al.Practice and cogni⁃ tion on zipper fracturing of horizontal well group in Jiaoshiba block,Fuling[J].China Petroleum Exploration,2018,23(2):51-58.

    • [4] 姜瑞忠,乔杰,孙辉,等.低渗透砂砾岩油藏储层分类方法[J].油气地质与采收率,2018,25(1):90-93.JIANG Ruizhong,QIAO Jie,SUN Hui,et al.Reservoir classifica⁃ tion method for low-permeability glutenite reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(1):90-93.

    • [5] 杨洪志,宋振云,任雁鹏.利用高能气体压裂改造底水油藏技术研究[J].钻采工艺研究,1997,21(4):22-31.YANG Hongzhi,SONG Zhenyun,REN Yanpeng.Study on stimu⁃ lation in bottom water reservoirs by high energy gas fracturing[J].Drilling & Production Technology Study,1997,21(4):22-31.

    • [6] 孙林,杨万有,易飞,等.筛管完井爆燃压裂技术可行性研究 [J].特种油气藏,2017,24(4):161-165.SUN Lin,YANG Wanyou,YI Fei,et al.Feasibility research on lin⁃ er-completion deflagration fracturing technique[J].Special Oil & Gas Reservoirs,2017,24(4):161-165.

    • [7] 黄毓林.爆燃压裂工艺技术[J].油气井测试,1993,2(4):24-33.HUANG Yulin.Deflagrate fracturing technology[J].Well Testing,1993,2(4):24-33.

    • [8] 张廷汉,秦发动.高能气体压裂在我国的研究和进展[J].石油钻采工艺,1987,9(5):1-7.ZHANG Tinghan,QIN Fadong.Research and development of high energy gas fracturing in our country[J].Oil Drilling & Production Technology,1987,9(5):1-7.

    • [9] 李璗,薛中天,刘发喜.七里村油矿高能气体压裂效果的初步分析[J].西安石油学院学报,1988,3(2):7-14.LI Dang,XUE Zhongtian,LIU Faxi.Preliminary analysis of high energy gas fracture effect at Qili Village Oil Field[J].Journal of Xi’an Petroleum Institute,1988,3(2):7-14.

    • [10] 秦发动.聚能效应在高能气体压裂中的应用研究[J].西安石油学院学报,1992,7(3):17-22.QIN Fadong.Research on the application of accumulated energy effect of high energy gas fracturing[J].Journal of Xi’an PetroleumInstitute,1992,7(3):17-22.

    • [11] 刘发喜,秦发动.高能气体压裂施工工艺及其发展趋势[J].石油钻采工艺,1993,15(2):63-69,75.LIU Faxi,QING Fadong.Construction technology and develop⁃ ment tendency of high energy gas fracturing[J].Oil Drilling & Production Technology,1993,15(2):63-69,75.

    • [12] 秦发动,吴晋军.我院高能气体压裂技术十年发展综述[J].西安石油学院学报,1997,12(3):14-17,52.QIN Fadong,WU Jinjun.Development of high energy gas fractur⁃ ing(HEGF)in the past ten years[J].Journal of Xi’an Shiyou University,1997,12(3):14-17,52.

    • [13] 孙林,宋爱莉,易飞,等.爆压酸化技术在中国海上低渗油田适应性分析[J].钻采工艺,2016,39(1):60-62.SUN Lin,SONG Aili,YI Fei,et al.Analysis of deflagrate fractur⁃ ing technology adaptability in China offshore low permeability oil⁃ field[J].Drilling & Production Technology,2016,39(1):60-62.

    • [14] 张强德,赵万祥,王法轩.高能气体压裂技术[J].断块油气田,1994,1(3):50-60.ZHANG Qiangde,ZHAO Wanxiang,WANG Faxuan.The high-en⁃ ergy gas fracturing technology[J].Fault-Block Oil & Gas Field,1994,1(3):50-60.

    • [15] 王香增.多级脉冲爆燃压裂破岩机理研究[J].石油矿场机械,2007,36(4):10-12.WANG Xiangzeng.Mechanism study of multistage pulse conflagra⁃ tion compression fracture[J].Oil Field Equipment,2007,36(4):10-12.

    • [16] 董杰,岳湘安,丁景辰.致密含水气藏产液评价模型及应用[J].特种油气藏,2018,25(1):90-94.DONG Jie,YUE Xiang’an,DING Jingchen.Evaluation model of liquid production and its application in tight water-bearing gas reservoir[J].Special Oil & Gas Reservoirs,2018,25(1):90-94.

    • [17] 延新杰,李连崇,张潦源,等.岩石脆性对水力压裂裂缝影响的数值模拟实验[J].油气地质与采收率,2017,24(3):116-121.YAN Xinjie,LI Lianchong,ZHANG Liaoyuan,et al.Numerical simulation experiment of the effect of rock brittleness on fracture propagation of hydraulic fracturing[J].Petroleum Geology and Re⁃ covery Efficiency,2017,24(3):116-121.

    • [18] 李小刚,易良平,杨兆中,等.致密油藏水力裂缝层内爆燃压裂非线性渗流模型[J].油气地质与采收率,2017,24(1):116-121.LI Xiaogang,YI Liangping,YANG Zhaozhong,et al.Nonlinear flow model of explosive fracturing in hydraulic fractured tight oil reservoir[J].Petroleum Geology and Recovery Efficiency,2017,24(1):116-121.

    • [19] 吴飞鹏,蒲春生,吴波.燃爆压裂中压挡液柱运动规律的动力学模型[J].爆炸与冲击,2010,30(6):633-640.WU Feipeng,PU Chunsheng,WU Bo.A dynamic model of the pressurized liquid column movement in the high energy gas frac⁃ turing process[J].Explosion and Shock Waves,2010,30(6):633-640.

    • [20] 王国强,李勇宏,胥会祥,等.高氯酸钾复合推进剂的耐温性 [J].火炸药学报,2015,38(5):83-86.WANG guoqiang,LI Yonghong,XU Huixiang,et al.Temperature resistance of potassium perchlorate composite propellant[J].Chi⁃ nese Journal of Explosives & Propellants,2015,38(5):83-86.

    • [21] 谭惠平,薛金根.DSC 法研究高氯酸钾的催化热分解反应[J].中南林业科技大学学报,2007,27(3):114-116.TAN Huiping,XUE Jingen.Catalyzed thermal decomposition of potassium perchlorate[J].Journal of Central South University of Forestry & Technology,2007,27(3):114-116.

    • [22] 国防科学技术工业委员会.无壳高能气体压裂弹通用技术条件:WJ/Z9034—2002[S].北京:国防科工委军标出版发行部,2002.Commission on Science,Technology and Industry for National De⁃ fense.General requirements of caseless high energy gas fracturing bullet:WJ/Z9034-2002[S].Beijing:Military Standard Publishing Department of Commission on Science,Technology and Industry for National Defense,2002.

    • [23] 梁燕军,庞晓萍,何国书,等.火药试验方法:GJB770B—2005 [S].北京:国防科工委军标出版发行部,2005.LIANG Yanjun,PANG Xiaoping,HE Guoshu,et al.Test method of propellant:GJB770B-2005[S].Beijing:Military Standard Pub⁃ lishing Department of Commission on Science,Technology and In⁃ dustry for National Defense,2005.

    • [24] 陈锋,唐凯,程启文,等.StimGun 复合射孔技术在四川地区的应用研究[J].测井技术,2010,34(6):605-609.CHEN Feng,TANG Kai,CHENG Qiwen,et al.Application of StimGun compound perforating technology in Sichuan region[J].Well Logging Technology,2010,34(6):605-609.

    • [25] 李林,陈锋,姜德义,等.StimGun复合射孔技术的应用[J].重庆大学学报,2011,34(4):36-39.LI Lin,CHEN Feng,JIANG Deyi,et al.Performance analysis of StimGun technology[J].Journal of Chongqing University,2011,34(4):36-39.