en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘雅利(1970—),男,吉林榆树人,研究员,博士,从事石油地质勘探研究。联系电话:15166292697,E-mail:liuyali036.slyt@sino-pec.com。

通讯作者:

刘鹏(1986—),男,河南濮阳人,副研究员,博士。联系电话:(0546)8715325,E-mail:liupeng119.slyt@sinopec.com。

中图分类号:TE122

文献标识码:A

文章编号:1009-9603(2019)05-0001-09

DOI:10.13673/j.cnki.cn37-1359/te.2019.05.001

参考文献 1
刘文卿,汤达祯,潘伟义,等.北美典型页岩油地质特征对比及分类[J].科技通报,2016,32(11):13-18.LIU Wenqing,TANG Dazhen,PAN Weiyi,et al.Comparison of geological characteristics and types of typical shale oil in North America[J].Bulletin of Science and Technology,2016,32(11):13-18.
参考文献 2
边瑞康,武晓玲,包书景,等.美国页岩油分布规律及成藏特点 [J].西安石油大学学报:自然科学版,2014,29(1):1-9,14.BIAN Ruikang,WU Xiaoling,BAO Shujing,et al.Distribution law and reservoir forming characteristics of shale oil in America[J].Journal of Xi’an Shiyou University:Natural Science Edition,2014,29(1):1-9,14.
参考文献 3
黎茂稳,马晓潇,蒋启贵,等.北美海相页岩油形成条件、富集特征与启示[J].油气地质与采收率,2019,26(1):13-28.LI Maowen,MA Xiaoxiao,JIANG Qigui,et al.Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J].Petroleum Geology and Recovery Efficiency,2019,26(1):13-28.
参考文献 4
王宏语,杨润泽,张峰,等.富含有机质泥页岩岩相表征的研究现状与趋势[J].地质科技情报,2018,37(2):141-148.WANG Hongyu,YANG Runze,ZHANG Feng,et al.Research progress and trend of organic-rich shale lithofacies characteriza⁃ tion[J].Geological Science and Technology Information,2018,37(2):141-148.
参考文献 5
孙焕泉.济阳坳陷页岩油勘探实践与认识[J].中国石油勘探,2017,22(4):1-14.SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J].China Petroleum Exploration,2017,22(4):1-14.
参考文献 6
方正伟,张守鹏,刘惠民,等.济阳坳陷沙四段上亚段—沙三段下亚段泥页岩层理结构特征及储集性控制因素[J].油气地质与采收率,2019,26(1):101-108.FANG Zhengwei,ZHANG Shoupeng,LIU Huimin,et al.Bedding structure characteristics and the storage controlling factors of mud-shale in Upper Es4 to Lower Es3 Members in Jiyang Depres⁃ sion[J].Petroleum Geology and Recovery Efficiency,2019,26(1):101-108.
参考文献 7
蒋启贵,黎茂稳,马媛媛,等.页岩油可动性分子地球化学评价方法——以济阳坳陷页岩油为例[J].石油实验地质,2018,40(6):849-854.JIANG Qigui,LI Maowen,MA Yuanyuan,et al.Molecular geo⁃ chemical evaluation of shale oil mobility:a case study of shale oil in Jiyang Depression[J].Petroleum Geology & Experiment,2018,40(6):849-854.
参考文献 8
侯中帅,陈世悦.东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J].油气地质与采收率,2019,26(1):119-128.HOU Zhongshuai,CHEN Shiyue.Diagenesis evolution characteris⁃ tics of shale in Upper Es4 to Lower Es3 Members in Dongying Sag and its influence on the formation of reservoir[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2019,26(1):119-128.
参考文献 9
何晋译,蔡进功,雷天柱,等.东营凹陷古近系泥页岩中可溶有机质特征与页岩油“甜点”预测[J].油气地质与采收率,2019,26(1):174-182.HE Jinyi,CAI Jingong,LEI Tianzhu,et al.Characteristics of solu⁃ ble organic matter of Paleogene shale in Dongying Sag and predic⁃ tion of shale oil“sweet spots”[J].Petroleum Geology and Recov⁃ ery Efficiency,2019,26(1):174-182.
参考文献 10
邵新荷,庞雄奇,胡涛,等.渤海湾盆地东濮凹陷沙三段泥页岩储层孔隙微观特征及其对油气滞留的意义[J].石油与天然气地质,2019,40(1):67-77.SHAO Xinhe,PANG Xiongqi,HU Tao,et al.Microscopic charac⁃ teristics of pores in Es3 shales and its significances for hydrocar⁃ bon retention in Dongpu Sag,Bohai Bay Basin[J].Oil & Gas Geol⁃ ogy,2019,40(1):67-77.
参考文献 11
赵贤正,周立宏,蒲秀刚,等.陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J].石油勘探与开发,2018,45(3):361-372.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin:A case study from the Paleogene1st sub-mem⁃ ber of Kong2 Member in Cangdong sag,Bohai Bay Basin,China [J].Petroleum Exploration and Development,2018,45(3):361-372.
参考文献 12
朱日房,张林晔,李政,等.陆相断陷盆地页岩油资源潜力评价——以东营凹陷沙三段下亚段为例[J].油气地质与采收率,2019,26(1):129-136.ZHU Rifang,ZHANG Linye,LI Zheng,et al.Evaluation of shale oil resource potential in continental rift basin:A case study of Lower Es3 Member in Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(1):129-136.
参考文献 13
高秋菊,谭明友,张营革,等.陆相页岩油“甜点”井震联合定量评价技术——以济阳坳陷罗家地区沙三段下亚段为例[J].油气地质与采收率,2019,26(1):165-173.GAO Qiuju,TAN Mingyou,ZHANG Yingge,et al.Well-seismic joint technology for quantitative evaluation of“sweet spot”in con⁃tinental shale oil:A case study of Lower Es3 Member of Luojia ar⁃ ea in Jiyang Depression[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(1):165-173.
参考文献 14
王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.
参考文献 15
朱德顺.渤海湾盆地东营凹陷和沾化凹陷页岩油富集规律[J].新疆石油地质,2016,37(3):270-274.ZHU Deshun.Accumulation pattern of shale oil in Dongying Sag and Zhanhua Sag,Bohai Bay Basin[J].Xinjiang Petroleum Geolo⁃ gy,2016,37(3):270-274.
参考文献 16
秦长文,秦璇.美国鹰滩和尼奥泊拉拉页岩油富集主控因素 [J].特种油气藏,2015,22(3):34-37.QIN Changwen,QIN Xuan.Major controlling factors for shale oil enrichment in Eagle Ford and Niobrara Plays[J].Special Oil & Gas Reservoirs,2015,22(3):34-37.
参考文献 17
李志明,芮晓庆,黎茂稳,等.北美典型混合页岩油系统特征及其启示[J].吉林大学学报:地球科学版,2015,45(4):1 060-1 072.LI Zhiming,RUI Xiaoqing,LI Maowen,et al.Characteristics of typical hybrid shale-oil system in North America and its implica⁃ tions[J].Journal of Jilin Unviersity:Earth Science Edition,2015,45(4):1 060-1 072.
参考文献 18
高辉,何梦卿,赵鹏云,等.鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J].石油实验地质,2018,40(2):133-140.GAO Hui,HE Mengqing,ZHAO Pengyun,et al.Comparison of geological characteristics of Chang7 shale oil in Ordos Basin and typical shale oil in North America[J].Petroleum Geology & Ex⁃ periment,2018,40(2):133-140.
参考文献 19
MURPHY T,BRANNSTROM C,FRY M,et al.Economic-devel⁃ opment stakeholder perspectives on boomtown dynamics in the Eagle Ford Shale,Texas[J].Geographical Review,2016,108(1):24-44.
参考文献 20
VAISHALI S,ANIRBID S,ANAND G.Hydraulic fracturing de⁃ sign and 3D modeling:a case study from Cambay Shale and Eagle⁃ ford Shale[J].Multiscale and Multidisciplinary Modeling,Experi⁃ ments and Design,2019,2(1):1-13.
参考文献 21
王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.WANG Min,SHI Lei,WANG Wenguang,et al.Comparative study on geochemical characteristics of shale oil between China and U.S.A[J].Lithologic Reservoirs,2014,26(3):67-73.
参考文献 22
胡莹,卢双舫,李文浩,等.威利斯顿盆地巴肯组泥页岩排烃效率地质研究[J].中国矿业,2016,25(10):163-167.HU Ying,LU Shuangfang,LI Wenhao,et al.Geological research on hydrocarbon expulsion efficiency of shale in Bakken Forma⁃ tion in the Williston Basin[J].China Mining Magazine,2016,25(10):163-167.
参考文献 23
LI Maowen,JIANG Chunqing.Bakken/Madison petroleum systems in the Canadian Williston Basin.Part1:C21—C26 20-n-alkylpreg⁃ nanes and their triaromatic analogs as indicators for Upper Devo⁃ nian-Mississippian epicontinental black shale derived oils?[J].Organic Geochemistry,2001,32(5):667-675.
参考文献 24
JIANG Chunqing,LI Maowen,OSADETZ K G,et al.Bakken/Madi⁃ son petroleum systems in the Canadian Williston Basin.Part2:mo⁃ lecular markers diagnostic of Bakken and Lodgepole source rocks [J].Organic Geochemistry,2001,32(9):1 037-1 054.
参考文献 25
JONES L E A,WANG H F.Ultrasonic velocities in Cretaceous shales from the Williston basin[J].Geophysics,1981,46(3):288-297.
参考文献 26
RITTER S M,BAESEMANN J F.Early Permian conodont assem⁃ blages from the Wolfcamp Shale,Midland Basin,West Texas[J].Journal of Paleontology,1991,65(4):670-677.
参考文献 27
HUANG Siyuan,JIA Hu,SHENG J J.Research on oxidation kinet⁃ ics of tight oil from Wolfcamp field[J].Petroleum Science and Technology,2016,34(10):903-910.
参考文献 28
刘鹏.不同体系域碎屑岩储集体成岩演化差异——以渤南洼陷沙三段为例[J].油气地质与采收率,2019,26(2):60-67,93.LIU Peng.Diagenetic evolution difference of clastic reservoirs in different system tract:A case study of 3rd member of Shahejie Formation in Bonan Sag,Jiyang Depression[J].Petroleum Geolo⁃ gy and Recovery Efficiency,2019,26(2):60-67,93.
参考文献 29
钟高润,张小莉,杜江民,等.致密砂岩储层应力敏感性实验研究[J].地球物理学进展,2016,31(3):1 300-1 306.ZHONG Gaorun,ZHANG Xiaoli,DU Jiangmin,et al.Experiment of the stress sensitivity of tight sandstone reservoirs[J].Progress in Geophysics,2016,31(3):1 300-1 306.
参考文献 30
周立宏,蒲秀刚,肖敦清,等.渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J].天然气地球科学,2018,29(9):1 323-1 332.ZHOU Lihong,PU Xiugang,XIAO Dunqing,et al.Geological con⁃ ditions for shale oil formation and the main controlling factors for the enrichment of the 2nd member of Kongdian Formation in the Cangdong Sag,Bohai Bay Basin[J].Natural Gas Geoscience,2018,29(9):1 323-1 332.
目录contents

    摘要

    陆相富有机质泥页岩中普遍发育贫有机质夹层,但夹层在页岩油评价中的作用不清。针对这一问题,以济阳坳陷系统取心井为研究对象,通过大量地层、地球化学等方面的分析测试,开展富有机质泥页岩中贫有机质夹层特征探讨,并明确其在页岩油勘探中的作用。结果表明:富有机质泥页岩中的夹层需有别于常规储层并可通过常规测井方法识别,将其单层厚度界定为0.5~3 m;济阳坳陷存在砂岩、灰岩与白云岩3种夹层类型,各类夹层的储集空间主要由粒间/晶间孔隙、粒间/晶间微缝及粒内/晶内孔隙组成,白云岩夹层微米孔隙最为发育,孔喉结构最好,砂岩夹层次之,灰岩夹层相对较差;夹层物性较好,且普遍含油,是油气的有效储集体;泥页岩基质渗透率随上覆压力升高而迅速降低,而夹层渗透性则对压力敏感性较弱,地层条件下夹层渗透率远高于泥页岩基质,夹层是页岩油产出的有效通道;夹层中脆性矿物富集,利于大型压裂改造;夹层页岩油应是济阳坳陷页岩油勘探突破的首选类型。

    Abstract

    Interlayer with poor organic matter is widely developed in continental organic-rich shale,but the role of interlay- er in shale oil evaluation is unclear. Aiming at this problem,the characteristics of organic-poor interlayer in organic-rich shale are discussed and their roles in shale oil exploration are clarified on base of cored wells in Jiyang Depression and nu- merous stratigraphic and geochemical analysis and testing. The results show that the interlayers in organic-rich shale are different from those in conventional reservoirs and can be identified by conventional logging methods with a single layer thickness defined as 0.5-3 m. There are three types of interlayers including sandstone,limestone and dolomite interlayers in Jiyang Depression. The reservoir space of these interlayers is mainly composed of intergranular/intercrystalline pore,in- tergranular/intercrystalline microfracture and intragranular pore. The micropores in dolomite interlayer are the most devel- oped and the pore-throat structure is the most favorable. Pores in sandstone interlayers are moderately developed,and pores in limestone interlayer are seldom developed. Interlayer is an effective reservoir for hydrocarbon storage because of its good physical properties and oil-bearing characteristics. The permeability of shale matrix decreases rapidly with the in- crease of overlying pressure,while the permeability of interlayer is less sensitive to pressure. The permeability of interlayer is much higher than that of shale matrix under formation conditions. Interlayer is an effective pathway for shale oil produc-tion. The enrichment of brittle minerals in interlayer is conducive to large-scale fracturing. And interlayer shale oil should be the first choice for shale oil exploration breakthrough in Jiyang Depression.

  • 近年来,北美海相页岩油的勘探开发取得了巨大成功[1-3],对世界能源格局产生重大影响。由此,中国针对陆相页岩油也开展了系统攻关,其中在地质评价方面取得的成果与认识主要涵盖泥页岩岩相、含油性、储集性、可动性等几个方面[4-7],但以往的研究主要关注于泥页岩基质[8-10],即细粒沉积部分,而对于泥页岩中夹杂的砂质、灰质、白云质这类中、粗粒夹层关注较少。页岩油首选的钻探类型应是富含有机质的泥页岩基质[11-13],但济阳坳陷在以往常规油气勘探过程中偶遇的泥页岩高产油气流段大都有中、粗粒夹层存在[14-16]。为此,笔者以济阳坳陷为例,以夹层储集性特征分析为基础,探讨夹层在页岩油勘探中的作用,建议陆相页岩油首选的钻探类型,以期为中国陆相页岩油勘探取得全面突破提供理论支撑。

  • 1 夹层概念及分类

  • 1.1 概念

  • 目前,北美是全球页岩油勘探开发最为成熟的地区之一,其海相泥页岩中普遍夹杂砂质、灰质、白云质等夹层[1-317-18]。事实上,北美将其发育的页岩油类型已划分为致密型、裂缝型及夹层型3类,并将多个页岩油的高产区定义为“夹层型”页岩油发育区[19-20],其通常将富有机质泥页岩层段所夹杂的贫有机质条带称为夹层,陆相页岩油亦是如此,但鉴于陆相与海相沉积及成岩环境的巨大差异,陆相页岩油夹层厚度界限与海相页岩油有所区别。

  • 1.2 厚度界限

  • 北美海相页岩油对于夹层厚度界限没有明确标准[21-27],但从其夹层型页岩油的实际结构组成来看,单层厚度高至30m、低至0.1m的贫有机质条带均可称为夹层。如北美威利斯顿盆地巴肯页岩即是一套分布稳定的厚夹层型页岩油,被富有机质页岩夹持的中部夹层厚度为10~30m,分布非常稳定[22-25];而对于北美二叠纪盆地Wolfcamp统薄夹层型页岩油而言,其夹层厚度多为0.1~0.5m,厚度较薄[26-27]

  • 济阳坳陷是常规油与页岩油都较富集的陆相盆地,在其常规油气探明储量上报过程中储集体单层有效厚度多大于3m,而在获油气流的泥页岩试油段中夹层厚度多小于3m,因此将夹层厚度上限界定为3m较符合济阳坳陷陆相常规油与页岩油的勘探实际,同时单层厚度为3m的储集体在常规油气勘探中往往不受重视,因此将3m及以下的夹层纳入到页岩油评价范畴,利于油气勘探目标的全面性。此外,对于夹层厚度下限则较难以确定,这是因为从指导油气勘探角度出发,认为对于页岩油富集、产出具有积极作用的贫有机质条带均可称为夹层,但所起积极作用与否与夹层厚度并无必然关系,如薄至0.1mm的碳酸盐岩条带可能晶间孔隙较为发育,对页岩油富集、产出都具有积极作用,但此类夹层只有借助显微镜等特殊工具才可识别,在油气勘探过程中不易操作,因此从可操作性角度出发,暂将夹层厚度下限界定为常规测井方法在理论上可识别的最小厚度,约为0.5m。

  • 1.3 分类

  • 目前,根据北美海相页岩油层段与济阳坳陷陆相页岩油层段钻井取心情况,发现的夹层类型依据矿物成分差异主要划分为砂岩夹层、灰岩夹层与白云岩夹层3类。其中砂岩夹层在济阳坳陷各个烃源岩沉积时期都较为发育,多是与近源扇体同步沉积或经二次搬运后在深水区形成的重力流砂体,砂体厚度不一,在济阳坳陷泥页岩系统取心井——济页参1井中可见大量砂体,多为录井、测井无法识别的薄层砂体(图1a),单砂体厚度多为1~100cm,厚度大于0.5m的砂岩夹层数量不多,且与泥岩夹杂,质不纯,单砂岩夹层自下向上粒度变细,呈明显的正韵律性(图2a,2b),砂岩与泥页岩频繁互层,局部层段砂地比可达30%以上;灰岩夹层与白云岩夹层是咸化水体环境下的产物,在济阳坳陷主要集中发育在沙四段上亚段沉积时期及沙三段下亚段沉积初期,这一时期水体为半咸水或微咸水[28],沉积成因的碳酸盐岩夹层厚度大小不均,存在录井、测井可识别的0.5~3m灰岩或白云岩夹层(图1b),岩心中碳酸盐岩夹层多呈白色或灰白色,多夹杂暗色泥岩,质不纯,且呈现出一定纹层状层理构造(图2c,2d)。

  • 2 夹层特征

  • 2.1 储集空间类型

  • 济阳坳陷发育的砂岩夹层多以细砂岩、粉砂岩以及泥质粉砂岩为主,砂岩与泥岩分界面清晰可见 (图3a—3d),砂岩中矿物颗粒较小,偏光显微镜下主要可见粒间溶蚀孔隙,且普遍被黑色有机质所充填(图3a—3d);碳酸盐岩夹层中的储集空间多为晶间溶蚀孔隙(图3e,3f)及碳酸盐岩重结晶收缩孔(图3g,3h),孔隙中普遍可见黑色有机质充填,同时在扫描电镜下还可见方解石、白云石溶蚀形成的晶间溶蚀微孔(图3i,3j)。

  • 图1 济阳坳陷泥页岩系统取心井柱状图

  • Fig.1 Column diagram of shale cored wells in Jiyang Depression

  • 图2 济阳坳陷泥页岩系统取心井岩心照片

  • Fig.2 Photographs of cores from shale cored wells in Jiyang Depression

  • 在济阳坳陷97块样品的氩离子剖光基础上,利用场发射扫描电镜对其储集空间构成进行分析,结果表明,砂岩夹层、灰岩夹层与白云岩夹层的面孔率分别约为7.88%,3.61%和11.50%(图4),各类夹层的主要储集空间由粒间/晶间孔隙、粒间/晶间微缝以及粒内/晶内孔隙组成,其中砂岩夹层与灰岩夹层中3种储集空间类型占比基本相当,而白云岩夹层中晶间孔隙占比相对较高,可达5.66%(图4)。

  • 2.2 物性特征

  • 济阳坳陷5口泥页岩系统取心井中,济页参1井开展过较多的泥页岩和砂岩夹层样品点物性测试,而其余系统取心井的常规物性测试主要关注于泥页岩。因此,主要以济页参1井为例,探讨砂岩夹层物性特征。济页参1井共计开展过地面条件下70块样品的物性分析测试,其中16块为砂岩夹层样品,其渗透率峰值为0.1~1mD(图5a),存在少量1~10mD样品点;而孔隙度峰值则为5%~7%,同时存在相当数量的孔隙度为3%~5%与大于7%的样品(图5b)。相比之下,泥岩基质渗透率的峰值与砂岩夹层类似,都集中在0.1~1mD,但除此之外,其小于0.1mD的样品占比较砂岩夹层多,大于1mD的样品占比较砂岩夹层少(图5c),同时其孔隙度峰值为3%~5%(图5d)。总体上反映出在地面条件下,泥岩基质物性略差于砂岩夹层的特征。

  • 图3 济阳坳陷泥页岩夹层储集空间类型及填隙物特征

  • Fig.3 Reservoir space types and interstitial matter characteristics of shale interlayers in Jiyang Depression

  • 图4 济阳坳陷各类型夹层储集空间类型面孔率直方图

  • Fig.4 Histogram of plane porosity of different interlayer reservoir space types in Jiyang Depression

  • 2.3 孔喉结构特征

  • 基于扫描电镜对夹层储集空间类型及其所占比例的分析,结合氮气比表面吸附、高压压汞以及核磁共振等技术开展了夹层孔喉结构特征研究。对于砂岩夹层,其数量占比最多的孔隙孔径集中于100~300nm,占总孔隙数量的34.69%;而孔径大于1 000nm的微米孔隙占比相对较少,为5.33%左右,微米孔隙数量虽少,但对面孔率的贡献率却较大,可高达70.63%(图6a)。灰岩夹层的孔隙孔径分布呈现出“双峰”特征,孔径小于60nm以及孔径为100~300nm的孔隙数量占比较多,分别占总孔隙数量的39.73%和30.22%,孔径大于1 000nm的微米孔隙数量较少,仅占总孔隙数量的1.49%,但此类孔隙对面孔率的贡献却可达51.4%(图6b),表明为数不多的微米孔隙是面孔率的主要贡献者。白云岩夹层中数量最多的孔隙孔径也主要为100~300nm,此外在1 000~2 000nm又出现了局部峰值,表明白云岩夹层中微米孔隙发育数量较多,孔喉结构相对较好,孔径大于1 000nm的微米孔隙数量占比可达12.72%,微米孔隙对面孔率的贡献高达90.08%(图6c)。总体上,济阳坳陷泥页岩系统取心井段97块样品的分析测试表明,白云岩夹层微米孔隙最发育,孔喉结构最好,其次为砂岩夹层,灰岩夹层孔喉结构相对较差。

  • 图5 济页参1井砂岩夹层与泥岩基质物性直方图

  • Fig.5 Histograms of physical properties of sandstone interlayer and shale matrix in Well Jiyecan1

  • 3 夹层作用

  • 3.1 油气的有效储集体

  • 据夹层储集性特征分析可知,济阳坳陷各类夹层普遍具有多类型的储集空间,且微米级孔喉发育,具有一定的储集性和渗透性,其与富有机质页岩共生,可以成为油气初次运移的指向区,含油性应较好,实际镜下观察也表明夹层中普遍含油(图3a—3h)。此外,通过对济阳坳陷12口泥页岩段试油并投产的井统计发现,页岩油初期日产油量超过20t/d的泥页岩投产段普遍含有夹层,而3口不含夹层泥页岩段投产井初期日产油量相对较低,约为10t/d(图7a)。分析认为含夹层的泥页岩段试油初产较高是因为夹层自身具有一定的储集油气能力,得益于夹层较好的渗透性,试油初期首先产出的是夹层中的油气;而不含夹层的泥页岩段在试油初期产出的是泥页岩基质中的油气,受限于泥页岩基质相对较差的渗透性,日产油量相对较低。因此,夹层是油气的有效储集体,且被富有机质页岩所夹持的夹层含油性普遍较好。

  • 3.2 页岩油产出的有效通道

  • 含夹层的泥页岩段投产井,夹层中的油气在高效产出之后,邻近泥页岩基质中的油气会逐渐向夹层中运移,并通过夹层进行产出,使得夹层成为页岩油产出的有效通道。事实上,济阳坳陷含夹层的泥页岩段投产井基本上都呈现初期高产、高递减,初期低产、低递减的特征(图7a),半年递减率有高有低(图7b),而不含夹层的泥页岩段投产井基本都呈现初期低产、高递减的特征(图7a),半年递减率普遍超过45%。勘探实践表明,含夹层的泥页岩段油气产出递减率总体上小于不含夹层的泥页岩段,因此夹层可沟通邻近泥页岩基质中的油气,使油气充分产出,是页岩油产出的有效通道。

  • 此外,在理论上虽然地面条件下夹层与泥页岩基质渗透率相差无几(图5),但泥页岩基质的渗透率对压力变化更为敏感,在地层条件下,压力升高,泥页岩基质渗透率迅速降低,而砂岩、碳酸盐岩渗透性降低有限[29],夹层与泥页岩基质渗透率相差几十倍乃至近百倍,因此地层条件下夹层是页岩油的主要产出通道。泥页岩基质渗透率之所以会对压力敏感性强,是因为基质中的喉道多呈片状、弯片状,喉道填隙物主要是伊利石、高岭石、伊/蒙混层等这类抗压能力非常差的黏土矿物(图3k),喉道对压力增大十分敏感,当上覆应力增加时,细小的喉道就极易受压闭合,造成孔喉尺寸大幅减小,渗透率迅速降低,而砂岩夹层的喉道填隙物主要是长石、石英、方解石这类抗压能力相对强的矿物(图3l),喉道对压力敏感性相对较低,因此在恢复到地层条件下时,基质的渗透率递减非常快,而夹层的渗透率递减较慢,地层条件下夹层的渗透率远远高于基质的渗透率。实际上,对济阳坳陷系统取心井——利页1井泥页岩基质样品在不同压力下的渗透率测试结果也表明,在上覆压力为2.1MPa时渗透率峰值为1~10mD(图8),但在上覆压力增大到30MPa时,渗透率峰值降低到0.01~0.1mD(图8),降低了接近百倍。因此,地层条件下夹层的渗透率明显高于泥页岩基质的渗透率,使得夹层成为页岩油产出的有效通道。

  • 图6 济阳坳陷不同类型夹层孔隙孔径占比

  • Fig.6 Histograms of pore diameter proportion about different interlayer types in Jiyang Depression

  • 图7 济阳坳陷泥页岩段投产井产能、递减率与夹层关系

  • Fig.7 Relationship of productivity and decline rate of production wells with interlayer of shale section in Jiyang Depression

  • 图8 不同压力环境下泥页岩基质渗透率分布区间

  • Fig.8 Distribution intervals of shale matrix permeability at different pressures

  • 3.3 发育段利于大型压裂改造

  • 中外页岩油的勘探实践证明,页岩油的效益开发需要借助大型压裂手段,因此岩石的可压性是决定页岩油能否有效采出的因素之一。济阳坳陷夹层中的矿物类型决定了其具有较好的可压性,夹层发育段利于大型压裂改造,这是因为砂岩夹层多含石英,而碳酸盐岩夹层的矿物类型多为方解石与白云石。一般而言,石英含量与泊松比成负相关,与杨氏模量成正相关,因此石英含量较高代表着脆性系数较高,岩石破裂压力相对较小,利于人工压裂改造,因此砂岩夹层发育段往往脆性较好,在进行大型压裂改造时易形成裂缝;此外,方解石与白云石是典型的脆性矿物,二者的富集代表着灰质含量较高,在济阳坳陷页岩油勘探实践中也正是选取灰质含量高值段开展大型压裂,近期针对页岩层段试油的老井——义176、樊159井等也正是在碳酸盐岩夹层发育的灰质含量高值段开展大型压裂,事实证明压裂液和支撑剂能顺利压入地层,返排也较好,取得了不错的试油效果。因此夹层发育段脆性好、能压开,易造缝且裂缝延伸远,总体上利于大型压裂改造。

  • 4 夹层型页岩油勘探地位探讨

  • 北美海相页岩油的勘探实践以及济阳坳陷陆相页岩油研究进展都已证实夹层型、裂缝型、基质型是组成页岩油的3种主要类型,其中夹层型、裂缝型页岩油得益于夹层、裂缝自身的储集和产出能力,产能相对较高、开发效果较好,是北美主要的页岩油勘探开发类型,但目前泥页岩中的裂缝预测技术还不成熟,裂缝可遇不可求,使裂缝型页岩油钻探具有偶然性。因此,夹层型页岩油应是济阳坳陷页岩油勘探突破的首选类型,原因有三。

  • 其一,夹层型页岩油作为页岩油类型之一在北美页岩油勘探实践中早已得到重视,其页岩油富集高产的地区和层段大都存在各类型夹层[1-3]。例如威利斯顿盆地巴肯页岩,主力产油层段纵向上由富有机质页岩、碳酸盐岩或砂岩及富有机质页岩构成三层结构,被富有机质页岩夹持的夹层厚度为10~30m,分布稳定;又如德州奥斯汀白垩纪Eagle Ford页岩主力产油层段为顶底大套碳酸盐岩夹中间大套泥页岩,泥页岩中又夹薄层碳酸盐岩,碳酸盐岩单层厚度为0.1~0.5m;此外,北美页岩油主要产区之一的二叠系盆地Wolfcamp,Bonespring,Spraberry和Delaware页岩油都有夹层存在。因此,夹层发育是北美页岩油取得高产、稳产的关键要素之一。

  • 其二,夹层型页岩油是中国众多凹陷近期积极评价的方向,并在部分凹陷实现了勘探突破。沧东凹陷在孔二段页岩油勘探中取得一定成果,多口探井获得工业油流,实际上其评价过程中考虑的首要地质因素即是夹层存在与否及夹层厚度[1130],其获得高产的2口页岩油水平井 ——GD1701H和GD1702H井都钻遇了大量白云岩夹层;吉木萨尔凹陷芦草沟组、三塘湖盆地芦草沟组、玛湖凹陷下二叠统风城组页岩油“甜点”段都对应于富有机质页岩中碳酸盐岩夹层发育段;此外,鄂尔多斯和松辽盆地页岩油勘探也是针对被富有机质页岩夹杂的砂岩夹层发育段。

  • 其三,夹层型页岩油已在济阳坳陷泥页岩段试油井中证实在初期产能和递减率两个方面都比不含夹层页岩油具有明显优势。据济阳坳陷66口泥页岩段试油井统计,不含夹层泥页岩段初期产能都较低,日产油量普遍在10t/d以下,而产能较高的高产井段基本都含夹层(图9)。

  • 综上所述,中外勘探实践已表明夹层型页岩油具有较高产能,同时据初步估算,夹层型页岩油约占总页岩油资源量的1/3,具有可观的资源规模。因此,夹层型页岩油是济阳坳陷页岩油取得勘探突破的现实选择,勘探地位突出。

  • 图9 济阳坳陷不同类型泥页岩段试油井产能

  • Fig.9 Histograms of well testing productivity in different shale sections in Jiyang Depression

  • 5 结论

  • 陆相富有机质泥页岩层段所夹杂的贫有机质条带称为夹层,夹层单层厚度一般为0.5~3m,包括砂岩、灰岩和白云岩3种类型夹层;各类夹层的储集空间主要由粒间/晶间孔隙、粒间/晶间微缝以及粒内/晶内孔隙组成,白云岩夹层中微米孔隙最为发育,孔喉结构最好,砂岩夹层次之,灰岩夹层孔喉结构相对较差。地层条件下,各类夹层具有远高于泥页岩基质的物性条件,是油气的有效储集体与产出通道,同时夹层中普遍富集脆性矿物,利于大型压裂改造。夹层型页岩油勘探开发在中外已取得较好效果,也应是济阳坳陷页岩油突破的首选类型。

  • 参考文献

    • [1] 刘文卿,汤达祯,潘伟义,等.北美典型页岩油地质特征对比及分类[J].科技通报,2016,32(11):13-18.LIU Wenqing,TANG Dazhen,PAN Weiyi,et al.Comparison of geological characteristics and types of typical shale oil in North America[J].Bulletin of Science and Technology,2016,32(11):13-18.

    • [2] 边瑞康,武晓玲,包书景,等.美国页岩油分布规律及成藏特点 [J].西安石油大学学报:自然科学版,2014,29(1):1-9,14.BIAN Ruikang,WU Xiaoling,BAO Shujing,et al.Distribution law and reservoir forming characteristics of shale oil in America[J].Journal of Xi’an Shiyou University:Natural Science Edition,2014,29(1):1-9,14.

    • [3] 黎茂稳,马晓潇,蒋启贵,等.北美海相页岩油形成条件、富集特征与启示[J].油气地质与采收率,2019,26(1):13-28.LI Maowen,MA Xiaoxiao,JIANG Qigui,et al.Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J].Petroleum Geology and Recovery Efficiency,2019,26(1):13-28.

    • [4] 王宏语,杨润泽,张峰,等.富含有机质泥页岩岩相表征的研究现状与趋势[J].地质科技情报,2018,37(2):141-148.WANG Hongyu,YANG Runze,ZHANG Feng,et al.Research progress and trend of organic-rich shale lithofacies characteriza⁃ tion[J].Geological Science and Technology Information,2018,37(2):141-148.

    • [5] 孙焕泉.济阳坳陷页岩油勘探实践与认识[J].中国石油勘探,2017,22(4):1-14.SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J].China Petroleum Exploration,2017,22(4):1-14.

    • [6] 方正伟,张守鹏,刘惠民,等.济阳坳陷沙四段上亚段—沙三段下亚段泥页岩层理结构特征及储集性控制因素[J].油气地质与采收率,2019,26(1):101-108.FANG Zhengwei,ZHANG Shoupeng,LIU Huimin,et al.Bedding structure characteristics and the storage controlling factors of mud-shale in Upper Es4 to Lower Es3 Members in Jiyang Depres⁃ sion[J].Petroleum Geology and Recovery Efficiency,2019,26(1):101-108.

    • [7] 蒋启贵,黎茂稳,马媛媛,等.页岩油可动性分子地球化学评价方法——以济阳坳陷页岩油为例[J].石油实验地质,2018,40(6):849-854.JIANG Qigui,LI Maowen,MA Yuanyuan,et al.Molecular geo⁃ chemical evaluation of shale oil mobility:a case study of shale oil in Jiyang Depression[J].Petroleum Geology & Experiment,2018,40(6):849-854.

    • [8] 侯中帅,陈世悦.东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J].油气地质与采收率,2019,26(1):119-128.HOU Zhongshuai,CHEN Shiyue.Diagenesis evolution characteris⁃ tics of shale in Upper Es4 to Lower Es3 Members in Dongying Sag and its influence on the formation of reservoir[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2019,26(1):119-128.

    • [9] 何晋译,蔡进功,雷天柱,等.东营凹陷古近系泥页岩中可溶有机质特征与页岩油“甜点”预测[J].油气地质与采收率,2019,26(1):174-182.HE Jinyi,CAI Jingong,LEI Tianzhu,et al.Characteristics of solu⁃ ble organic matter of Paleogene shale in Dongying Sag and predic⁃ tion of shale oil“sweet spots”[J].Petroleum Geology and Recov⁃ ery Efficiency,2019,26(1):174-182.

    • [10] 邵新荷,庞雄奇,胡涛,等.渤海湾盆地东濮凹陷沙三段泥页岩储层孔隙微观特征及其对油气滞留的意义[J].石油与天然气地质,2019,40(1):67-77.SHAO Xinhe,PANG Xiongqi,HU Tao,et al.Microscopic charac⁃ teristics of pores in Es3 shales and its significances for hydrocar⁃ bon retention in Dongpu Sag,Bohai Bay Basin[J].Oil & Gas Geol⁃ ogy,2019,40(1):67-77.

    • [11] 赵贤正,周立宏,蒲秀刚,等.陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J].石油勘探与开发,2018,45(3):361-372.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin:A case study from the Paleogene1st sub-mem⁃ ber of Kong2 Member in Cangdong sag,Bohai Bay Basin,China [J].Petroleum Exploration and Development,2018,45(3):361-372.

    • [12] 朱日房,张林晔,李政,等.陆相断陷盆地页岩油资源潜力评价——以东营凹陷沙三段下亚段为例[J].油气地质与采收率,2019,26(1):129-136.ZHU Rifang,ZHANG Linye,LI Zheng,et al.Evaluation of shale oil resource potential in continental rift basin:A case study of Lower Es3 Member in Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(1):129-136.

    • [13] 高秋菊,谭明友,张营革,等.陆相页岩油“甜点”井震联合定量评价技术——以济阳坳陷罗家地区沙三段下亚段为例[J].油气地质与采收率,2019,26(1):165-173.GAO Qiuju,TAN Mingyou,ZHANG Yingge,et al.Well-seismic joint technology for quantitative evaluation of“sweet spot”in con⁃tinental shale oil:A case study of Lower Es3 Member of Luojia ar⁃ ea in Jiyang Depression[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(1):165-173.

    • [14] 王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.

    • [15] 朱德顺.渤海湾盆地东营凹陷和沾化凹陷页岩油富集规律[J].新疆石油地质,2016,37(3):270-274.ZHU Deshun.Accumulation pattern of shale oil in Dongying Sag and Zhanhua Sag,Bohai Bay Basin[J].Xinjiang Petroleum Geolo⁃ gy,2016,37(3):270-274.

    • [16] 秦长文,秦璇.美国鹰滩和尼奥泊拉拉页岩油富集主控因素 [J].特种油气藏,2015,22(3):34-37.QIN Changwen,QIN Xuan.Major controlling factors for shale oil enrichment in Eagle Ford and Niobrara Plays[J].Special Oil & Gas Reservoirs,2015,22(3):34-37.

    • [17] 李志明,芮晓庆,黎茂稳,等.北美典型混合页岩油系统特征及其启示[J].吉林大学学报:地球科学版,2015,45(4):1 060-1 072.LI Zhiming,RUI Xiaoqing,LI Maowen,et al.Characteristics of typical hybrid shale-oil system in North America and its implica⁃ tions[J].Journal of Jilin Unviersity:Earth Science Edition,2015,45(4):1 060-1 072.

    • [18] 高辉,何梦卿,赵鹏云,等.鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J].石油实验地质,2018,40(2):133-140.GAO Hui,HE Mengqing,ZHAO Pengyun,et al.Comparison of geological characteristics of Chang7 shale oil in Ordos Basin and typical shale oil in North America[J].Petroleum Geology & Ex⁃ periment,2018,40(2):133-140.

    • [19] MURPHY T,BRANNSTROM C,FRY M,et al.Economic-devel⁃ opment stakeholder perspectives on boomtown dynamics in the Eagle Ford Shale,Texas[J].Geographical Review,2016,108(1):24-44.

    • [20] VAISHALI S,ANIRBID S,ANAND G.Hydraulic fracturing de⁃ sign and 3D modeling:a case study from Cambay Shale and Eagle⁃ ford Shale[J].Multiscale and Multidisciplinary Modeling,Experi⁃ ments and Design,2019,2(1):1-13.

    • [21] 王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.WANG Min,SHI Lei,WANG Wenguang,et al.Comparative study on geochemical characteristics of shale oil between China and U.S.A[J].Lithologic Reservoirs,2014,26(3):67-73.

    • [22] 胡莹,卢双舫,李文浩,等.威利斯顿盆地巴肯组泥页岩排烃效率地质研究[J].中国矿业,2016,25(10):163-167.HU Ying,LU Shuangfang,LI Wenhao,et al.Geological research on hydrocarbon expulsion efficiency of shale in Bakken Forma⁃ tion in the Williston Basin[J].China Mining Magazine,2016,25(10):163-167.

    • [23] LI Maowen,JIANG Chunqing.Bakken/Madison petroleum systems in the Canadian Williston Basin.Part1:C21—C26 20-n-alkylpreg⁃ nanes and their triaromatic analogs as indicators for Upper Devo⁃ nian-Mississippian epicontinental black shale derived oils?[J].Organic Geochemistry,2001,32(5):667-675.

    • [24] JIANG Chunqing,LI Maowen,OSADETZ K G,et al.Bakken/Madi⁃ son petroleum systems in the Canadian Williston Basin.Part2:mo⁃ lecular markers diagnostic of Bakken and Lodgepole source rocks [J].Organic Geochemistry,2001,32(9):1 037-1 054.

    • [25] JONES L E A,WANG H F.Ultrasonic velocities in Cretaceous shales from the Williston basin[J].Geophysics,1981,46(3):288-297.

    • [26] RITTER S M,BAESEMANN J F.Early Permian conodont assem⁃ blages from the Wolfcamp Shale,Midland Basin,West Texas[J].Journal of Paleontology,1991,65(4):670-677.

    • [27] HUANG Siyuan,JIA Hu,SHENG J J.Research on oxidation kinet⁃ ics of tight oil from Wolfcamp field[J].Petroleum Science and Technology,2016,34(10):903-910.

    • [28] 刘鹏.不同体系域碎屑岩储集体成岩演化差异——以渤南洼陷沙三段为例[J].油气地质与采收率,2019,26(2):60-67,93.LIU Peng.Diagenetic evolution difference of clastic reservoirs in different system tract:A case study of 3rd member of Shahejie Formation in Bonan Sag,Jiyang Depression[J].Petroleum Geolo⁃ gy and Recovery Efficiency,2019,26(2):60-67,93.

    • [29] 钟高润,张小莉,杜江民,等.致密砂岩储层应力敏感性实验研究[J].地球物理学进展,2016,31(3):1 300-1 306.ZHONG Gaorun,ZHANG Xiaoli,DU Jiangmin,et al.Experiment of the stress sensitivity of tight sandstone reservoirs[J].Progress in Geophysics,2016,31(3):1 300-1 306.

    • [30] 周立宏,蒲秀刚,肖敦清,等.渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J].天然气地球科学,2018,29(9):1 323-1 332.ZHOU Lihong,PU Xiugang,XIAO Dunqing,et al.Geological con⁃ ditions for shale oil formation and the main controlling factors for the enrichment of the 2nd member of Kongdian Formation in the Cangdong Sag,Bohai Bay Basin[J].Natural Gas Geoscience,2018,29(9):1 323-1 332.

  • 参考文献

    • [1] 刘文卿,汤达祯,潘伟义,等.北美典型页岩油地质特征对比及分类[J].科技通报,2016,32(11):13-18.LIU Wenqing,TANG Dazhen,PAN Weiyi,et al.Comparison of geological characteristics and types of typical shale oil in North America[J].Bulletin of Science and Technology,2016,32(11):13-18.

    • [2] 边瑞康,武晓玲,包书景,等.美国页岩油分布规律及成藏特点 [J].西安石油大学学报:自然科学版,2014,29(1):1-9,14.BIAN Ruikang,WU Xiaoling,BAO Shujing,et al.Distribution law and reservoir forming characteristics of shale oil in America[J].Journal of Xi’an Shiyou University:Natural Science Edition,2014,29(1):1-9,14.

    • [3] 黎茂稳,马晓潇,蒋启贵,等.北美海相页岩油形成条件、富集特征与启示[J].油气地质与采收率,2019,26(1):13-28.LI Maowen,MA Xiaoxiao,JIANG Qigui,et al.Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J].Petroleum Geology and Recovery Efficiency,2019,26(1):13-28.

    • [4] 王宏语,杨润泽,张峰,等.富含有机质泥页岩岩相表征的研究现状与趋势[J].地质科技情报,2018,37(2):141-148.WANG Hongyu,YANG Runze,ZHANG Feng,et al.Research progress and trend of organic-rich shale lithofacies characteriza⁃ tion[J].Geological Science and Technology Information,2018,37(2):141-148.

    • [5] 孙焕泉.济阳坳陷页岩油勘探实践与认识[J].中国石油勘探,2017,22(4):1-14.SUN Huanquan.Exploration practice and cognitions of shale oil in Jiyang depression[J].China Petroleum Exploration,2017,22(4):1-14.

    • [6] 方正伟,张守鹏,刘惠民,等.济阳坳陷沙四段上亚段—沙三段下亚段泥页岩层理结构特征及储集性控制因素[J].油气地质与采收率,2019,26(1):101-108.FANG Zhengwei,ZHANG Shoupeng,LIU Huimin,et al.Bedding structure characteristics and the storage controlling factors of mud-shale in Upper Es4 to Lower Es3 Members in Jiyang Depres⁃ sion[J].Petroleum Geology and Recovery Efficiency,2019,26(1):101-108.

    • [7] 蒋启贵,黎茂稳,马媛媛,等.页岩油可动性分子地球化学评价方法——以济阳坳陷页岩油为例[J].石油实验地质,2018,40(6):849-854.JIANG Qigui,LI Maowen,MA Yuanyuan,et al.Molecular geo⁃ chemical evaluation of shale oil mobility:a case study of shale oil in Jiyang Depression[J].Petroleum Geology & Experiment,2018,40(6):849-854.

    • [8] 侯中帅,陈世悦.东营凹陷沙四段上亚段—沙三段下亚段泥页岩成岩演化及其对储层发育的影响[J].油气地质与采收率,2019,26(1):119-128.HOU Zhongshuai,CHEN Shiyue.Diagenesis evolution characteris⁃ tics of shale in Upper Es4 to Lower Es3 Members in Dongying Sag and its influence on the formation of reservoir[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2019,26(1):119-128.

    • [9] 何晋译,蔡进功,雷天柱,等.东营凹陷古近系泥页岩中可溶有机质特征与页岩油“甜点”预测[J].油气地质与采收率,2019,26(1):174-182.HE Jinyi,CAI Jingong,LEI Tianzhu,et al.Characteristics of solu⁃ ble organic matter of Paleogene shale in Dongying Sag and predic⁃ tion of shale oil“sweet spots”[J].Petroleum Geology and Recov⁃ ery Efficiency,2019,26(1):174-182.

    • [10] 邵新荷,庞雄奇,胡涛,等.渤海湾盆地东濮凹陷沙三段泥页岩储层孔隙微观特征及其对油气滞留的意义[J].石油与天然气地质,2019,40(1):67-77.SHAO Xinhe,PANG Xiongqi,HU Tao,et al.Microscopic charac⁃ teristics of pores in Es3 shales and its significances for hydrocar⁃ bon retention in Dongpu Sag,Bohai Bay Basin[J].Oil & Gas Geol⁃ ogy,2019,40(1):67-77.

    • [11] 赵贤正,周立宏,蒲秀刚,等.陆相湖盆页岩层系基本地质特征与页岩油勘探突破——以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J].石油勘探与开发,2018,45(3):361-372.ZHAO Xianzheng,ZHOU Lihong,PU Xiugang,et al.Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin:A case study from the Paleogene1st sub-mem⁃ ber of Kong2 Member in Cangdong sag,Bohai Bay Basin,China [J].Petroleum Exploration and Development,2018,45(3):361-372.

    • [12] 朱日房,张林晔,李政,等.陆相断陷盆地页岩油资源潜力评价——以东营凹陷沙三段下亚段为例[J].油气地质与采收率,2019,26(1):129-136.ZHU Rifang,ZHANG Linye,LI Zheng,et al.Evaluation of shale oil resource potential in continental rift basin:A case study of Lower Es3 Member in Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(1):129-136.

    • [13] 高秋菊,谭明友,张营革,等.陆相页岩油“甜点”井震联合定量评价技术——以济阳坳陷罗家地区沙三段下亚段为例[J].油气地质与采收率,2019,26(1):165-173.GAO Qiuju,TAN Mingyou,ZHANG Yingge,et al.Well-seismic joint technology for quantitative evaluation of“sweet spot”in con⁃tinental shale oil:A case study of Lower Es3 Member of Luojia ar⁃ ea in Jiyang Depression[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(1):165-173.

    • [14] 王勇,宋国奇,刘惠民,等.济阳坳陷页岩油富集主控因素[J].油气地质与采收率,2015,22(4):20-25.WANG Yong,SONG Guoqi,LIU Huimin,et al.Main control fac⁃ tors of enrichment characteristics of shale oil in Jiyang depression [J].Petroleum Geology and Recovery Efficiency,2015,22(4):20-25.

    • [15] 朱德顺.渤海湾盆地东营凹陷和沾化凹陷页岩油富集规律[J].新疆石油地质,2016,37(3):270-274.ZHU Deshun.Accumulation pattern of shale oil in Dongying Sag and Zhanhua Sag,Bohai Bay Basin[J].Xinjiang Petroleum Geolo⁃ gy,2016,37(3):270-274.

    • [16] 秦长文,秦璇.美国鹰滩和尼奥泊拉拉页岩油富集主控因素 [J].特种油气藏,2015,22(3):34-37.QIN Changwen,QIN Xuan.Major controlling factors for shale oil enrichment in Eagle Ford and Niobrara Plays[J].Special Oil & Gas Reservoirs,2015,22(3):34-37.

    • [17] 李志明,芮晓庆,黎茂稳,等.北美典型混合页岩油系统特征及其启示[J].吉林大学学报:地球科学版,2015,45(4):1 060-1 072.LI Zhiming,RUI Xiaoqing,LI Maowen,et al.Characteristics of typical hybrid shale-oil system in North America and its implica⁃ tions[J].Journal of Jilin Unviersity:Earth Science Edition,2015,45(4):1 060-1 072.

    • [18] 高辉,何梦卿,赵鹏云,等.鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J].石油实验地质,2018,40(2):133-140.GAO Hui,HE Mengqing,ZHAO Pengyun,et al.Comparison of geological characteristics of Chang7 shale oil in Ordos Basin and typical shale oil in North America[J].Petroleum Geology & Ex⁃ periment,2018,40(2):133-140.

    • [19] MURPHY T,BRANNSTROM C,FRY M,et al.Economic-devel⁃ opment stakeholder perspectives on boomtown dynamics in the Eagle Ford Shale,Texas[J].Geographical Review,2016,108(1):24-44.

    • [20] VAISHALI S,ANIRBID S,ANAND G.Hydraulic fracturing de⁃ sign and 3D modeling:a case study from Cambay Shale and Eagle⁃ ford Shale[J].Multiscale and Multidisciplinary Modeling,Experi⁃ ments and Design,2019,2(1):1-13.

    • [21] 王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.WANG Min,SHI Lei,WANG Wenguang,et al.Comparative study on geochemical characteristics of shale oil between China and U.S.A[J].Lithologic Reservoirs,2014,26(3):67-73.

    • [22] 胡莹,卢双舫,李文浩,等.威利斯顿盆地巴肯组泥页岩排烃效率地质研究[J].中国矿业,2016,25(10):163-167.HU Ying,LU Shuangfang,LI Wenhao,et al.Geological research on hydrocarbon expulsion efficiency of shale in Bakken Forma⁃ tion in the Williston Basin[J].China Mining Magazine,2016,25(10):163-167.

    • [23] LI Maowen,JIANG Chunqing.Bakken/Madison petroleum systems in the Canadian Williston Basin.Part1:C21—C26 20-n-alkylpreg⁃ nanes and their triaromatic analogs as indicators for Upper Devo⁃ nian-Mississippian epicontinental black shale derived oils?[J].Organic Geochemistry,2001,32(5):667-675.

    • [24] JIANG Chunqing,LI Maowen,OSADETZ K G,et al.Bakken/Madi⁃ son petroleum systems in the Canadian Williston Basin.Part2:mo⁃ lecular markers diagnostic of Bakken and Lodgepole source rocks [J].Organic Geochemistry,2001,32(9):1 037-1 054.

    • [25] JONES L E A,WANG H F.Ultrasonic velocities in Cretaceous shales from the Williston basin[J].Geophysics,1981,46(3):288-297.

    • [26] RITTER S M,BAESEMANN J F.Early Permian conodont assem⁃ blages from the Wolfcamp Shale,Midland Basin,West Texas[J].Journal of Paleontology,1991,65(4):670-677.

    • [27] HUANG Siyuan,JIA Hu,SHENG J J.Research on oxidation kinet⁃ ics of tight oil from Wolfcamp field[J].Petroleum Science and Technology,2016,34(10):903-910.

    • [28] 刘鹏.不同体系域碎屑岩储集体成岩演化差异——以渤南洼陷沙三段为例[J].油气地质与采收率,2019,26(2):60-67,93.LIU Peng.Diagenetic evolution difference of clastic reservoirs in different system tract:A case study of 3rd member of Shahejie Formation in Bonan Sag,Jiyang Depression[J].Petroleum Geolo⁃ gy and Recovery Efficiency,2019,26(2):60-67,93.

    • [29] 钟高润,张小莉,杜江民,等.致密砂岩储层应力敏感性实验研究[J].地球物理学进展,2016,31(3):1 300-1 306.ZHONG Gaorun,ZHANG Xiaoli,DU Jiangmin,et al.Experiment of the stress sensitivity of tight sandstone reservoirs[J].Progress in Geophysics,2016,31(3):1 300-1 306.

    • [30] 周立宏,蒲秀刚,肖敦清,等.渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J].天然气地球科学,2018,29(9):1 323-1 332.ZHOU Lihong,PU Xiugang,XIAO Dunqing,et al.Geological con⁃ ditions for shale oil formation and the main controlling factors for the enrichment of the 2nd member of Kongdian Formation in the Cangdong Sag,Bohai Bay Basin[J].Natural Gas Geoscience,2018,29(9):1 323-1 332.