en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李强(1986—),男,湖北荆门人,工程师,硕士,从事勘探地质和储量评价方面的研究工作。联系电话:(022)66501080,E-mail:liqiang60@cnooc.com.cn。

中图分类号:TE122.3

文献标识码:A

文章编号:1009-9603(2019)05-0041-07

DOI:10.13673/j.cnki.cn37-1359/te.2019.05.005

参考文献 1
DAHLSTROM C D A.Structure geology in the eastern margin of the Canadian Rocky Mountain[M].Calgary:Bulletin of Canadian Petroleum Geology,1970:332-406.
参考文献 2
MORLEY C K,NELSON R A,PATTON T L,et al.Transfer zones in the East African Rift system and their relevance to hydrocarbon exploration in rifts[J].AAPG Bulletin,1990,74(8):1 234-1 253.
参考文献 3
PEACOCK D C P,SANDERSON D J.Geometry and development of relay ramps in normal fault systems[J].AAPG Bulletin,1994,78(2):147-165.
参考文献 4
PEACOCK D C P,SANDERSON D J.Strike-slip relay ramps[J].Journal of Structural Geology,1995,17(10):1 351-1 360.
参考文献 5
MOUSLOPOULOU V,NICOL A,LITTLE T A,et al.Displacement transfer between intersecting regional strike-slip and extensional fault systems[J].Journal of Structural Geology,2007,29(1):100-116.
参考文献 6
MOUSTAFA A R.Controls on the geometry of transfer zones in the Suez Rift and Northwest Red Sea:Implications for the structural geometry of rift systems[J].AAPG Bulletin,2002,86(6):979-1 002.
参考文献 7
ACOCELLA V,MORVILLO P,Funiciello R.What controls relay ramps and transfer faults within rift zones?Insights from analogue models[J].Journal of Structural Geology,2005,27(3):397-408.
参考文献 8
KONSTANTINOVSKAYA E A,HARRIS L B,POULIN J,et al.Transfer zones and fault reactivation in inverted rift basins:In⁃ sights from physical modelling[J].Tectonophysics,2007,441(1/4):1-26.
参考文献 9
徐长贵.渤海走滑转换带及其对大中型油气田形成的控制作用[J].地球科学——中国地质大学学报,2016,41(9):1 548-1 560.XU Changgui.Strike-slip transfer zone and its control on forma⁃ tion of medium and large-sized oilfields in Bohai sea area[J].Earth Science-Journal of China University of Geosciences,2016,41(9):1 548-1 560.
参考文献 10
徐长贵,余一欣,吴奎,等.辽东湾坳陷断裂联接及其控油气作用[J].石油与天然气地质,2014,35(4):456-462.XU Changgui,YU Yixin,WU Kui,et al.Fault linkages and their control on hydrocarbon accumulation in the Liaodongwan Depres⁃ sion,offshore Bohai Bay Basin[J].Oil & Gas Geology,2014,35(4):456-462.
参考文献 11
余一欣,周心怀,魏刚,等.渤海湾地区构造变换带及油气意义 [J].古地理学报,2008,10(5):555-560.YU Yixin,ZHOU Xinhuai,WEI Gang,et al.Structural transfer zones and their hydrocarbon significances in Bohai Bay area[J].Journal of Palaeogeography,2008,10(5):555-560.
参考文献 12
余一欣,周心怀,徐长贵,等.渤海海域断裂相互作用及其油气地质意义[J].石油与天然气地质,2018,39(1):11-19.YU Yixin,ZHOU Xinhuai,XU Changgui,et al.Fault interactions and their significances for hydrocarbon accumulation in offshore Bohai Bay Basin,eastern China[J].Oil & Gas Geology,2018,39(1):11-19.
参考文献 13
漆家福.裂陷盆地中的构造变换带及其石油地质意义[J].海相油气地质,2007,12(4):43-50.QI Jiafu.Structural transfer zones and significance for hydrocar⁃ bon accumulation in rifting basins[J].Marine Origin Petroleum Geology,2007,12(4):43-50.
参考文献 14
李伟,陈兴鹏,吴智平,等.渤海海域辽中南洼压扭构造带成因演化及其控藏作用[J].高校地质学报,2016,22(3):502-511.LI Wei,CHEN Xingpeng,WU Zhiping,et al.Study on the origin and evolution of transpressional structural belt and its control on oil and gas accumulation in the south of Liaozhong sub-sag,Bo⁃ hai Sea area[J].Geological Journal of China Universities,2016,22(3):502-511.
参考文献 15
何京,柳屿博,吴奎,等.渤海海域辽中凹陷南洼断裂体系及走滑控圈模式过程[J].断块油气田,2017,24(2):147-153.HE Jing,LIU Yubo,WU Kui,et al.Development characteristics of fault system and trap-controlling effect of strike-slip faults in south of Liaozhong Sag,East China[J].Fault-Block Oil & Gas Field,2017,24(2):147-153.
参考文献 16
李强,田晓平,张婕茹,等.辽中凹陷南洼旅大21油田油气成藏条件及分布特征[J].油气地质与采收率,2018,25(3):11-19.LI Qiang,TIAN Xiaoping,ZHANG Jieru,et al.Hydrocarbon accu⁃ mulation conditions and distribution characteristics of LD21 Oil⁃ field,south of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2018,25(3):11-19.
参考文献 17
周心怀,余一欣,魏刚,等.渤海辽东湾海域 JZ25-1S转换带与油气成藏的关系[J].石油学报,2008,29(6):837-840.ZHOU Xinhuai,YU Yixin,WEI Gang,et al.Relationship between JZ25-1S transfer zone and hydrocarbon accumulation in Lia⁃ odongwan offshore of Bohai Bay Basin[J].Acta Petrolei Sinica,2008,29(6):837-840.
参考文献 18
柳永军,徐长贵,朱文森,等.辽东湾坳陷挤压型和拉张型走滑转换带特征及其控藏作用[J].大庆石油地质与开发,2018,37(1):15-20.LIU Yongjun,XU Changgui,ZHU Wensen,et al.Characteristics of the compressional and extensional strike-slip transform belts and their controlling actions on the hydrocarbon accumulation for Liaodong Bay Depression[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(1):15-20.
参考文献 19
龚再升,王国纯.渤海新构造运动控制晚期油气成藏[J].石油学报,2001,22(2):1-7.GONG Zaisheng,WANG Guochun.Neotectonism and late hydro⁃ carbon accumulation in Bohai Sea[J].Acta Petrolei Sinica,2001,22(2):1-7.
参考文献 20
康海亮,林畅松,张宗和,等.南堡凹陷1号构造源上油气成藏特征及控制因素分析[J].中国石油勘探,2017,22(3):49-55.KANG Hailiang,LIN Changsong,ZHANG Zonghe,et al.Abovesource hydrocarbon accumulation in No.1 structure of Nanpu sag and its controlling factors[J].China Petroleum Exploration,2017,22(3):49-55.
参考文献 21
吕延防,王伟,胡欣蕾,等.断层侧向封闭性定量评价方法[J].石油勘探与开发,2016,43(2):310-316.LÜ Yanfang,WANG Wei,HU Xinlei,et al.Quantitative evalua⁃ tion method of fault lateral sealing[J].Petroleum Exploration and Development,2016,43(2):310-316.
参考文献 22
吕延防,王帅.断层封闭性定量评价[J].大庆石油学院学报,2010,34(5):35-41.LÜ Yanfang,WANG Shuai.Quantitative evaluation of fault seal [J].Journal of Daqing Petroleum Institute,2010,34(5):35-41.
参考文献 23
付广,展铭望.活动期断裂侧向封闭的地质条件及其研究方法 [J].天然气工业,2016,36(10):28-34.FU Guang,ZHAN Mingwang.Geological conditions for lateral sealing of active faults and relevant research methods[J].Natural Gas Industry,2016,36(10):28-34.
参考文献 24
付广,王浩然,胡欣蕾.断层垂向封闭的断-储排替压力差法及其应用[J].石油学报,2014,35(4):685-691.FU Guang,WANG Haoran,HU Xinlei.Modification and applica⁃ tion of fault-reservoir displacement pressure differential method for vertical sealing of faults[J].Acta Petrolei Sinica,2014,35(4):685-691.
参考文献 25
洪国郎,金强,程付启,等.改进的断层封闭性计算参数的获取方法及应用——以辽西凸起中南段为例[J].油气地质与采收率,2018,25(3):50-54,60.HONG Guolang,JIN Qiang,CHENG Fuqi,et al.An improved method for extracting parameters and its application to calculat⁃ ing fault sealing capacity:A case study of the central-southern section of the Liaoxi Uplift[J].Petroleum Geology and Recovery Efficiency,2018,25(3):50-54,60.
参考文献 26
王亚琳.惠民凹陷夏口走滑正断层封堵能力差异性及其成因动力学机制[J].特种油气藏,2018,25(3):23-27.WANG Yalin.Sealing difference of the Xiakou strike-slip normal fault in Huimin Sag and its dynamic mechanism[J].Special Oil & Gas Reservoirs,2018,25(3):23-27.
参考文献 27
谭丽娟,解宏泽,张辉,等.一种生长断层封闭性定量研究方法:以辽河坳陷辽中凹陷 JX1-1油田为例[J].石油实验地质,2018,40(2):268-273.TAN Lijuan,XIE Hongze,ZHANG Hui,et al.A quantitative re⁃ search method on the sealing of growth faults:A case study of JX1-1 oil field in Liaozhong Sag,Liaohe Depression[J].Petro⁃ leum Geology & Experiment,2018,40(2):268-273.
目录contents

    摘要

    对辽中凹陷南洼三维地震资料进行解释,将剖面解释与平面成图分析相结合,探讨辽中凹陷南洼旅大21油田和旅大16油田构造转换带的变形特征,并分析构造转换带与油气成藏的关系。研究结果表明,郯庐断裂带贯穿辽中凹陷南洼,在中央走滑断层、旅大16-3断层和旅大16-21断层的局部弯曲段形成旅大21油田增压型“S”型构造转换带、旅大16油田北部增压型“S”型构造转换带和旅大16油田南部释压型“S”型构造转换带,在旅大16-3断层和旅大16-21断层的叠覆区形成旅大16油田中部释压型叠覆型构造转换带。构造转换带改变了分段断层传递的应力,使三维空间应变守恒,采用断层的位移-距离法探讨旅大16油田中部释压型叠覆型构造转换带的变形特征。构造转换带对油气成藏的控制作用主要表现为:控制构造圈闭的形成,控制优质储层的发育,控制油气运移过程和断层封堵。辽中凹陷南洼增压型构造转换带是有利的油气勘探领域。

    Abstract

    Through interpreting the 3D seismic data and by combining the results with plane mapping,the deformation char- acteristics of structural transfer zone of LD21 Oilfield and LD16 Oilfield in the south subsag of Liaozhong Sag were dis- cussed,and the relationship between the structural transfer zone and hydrocarbon accumulation was analyzed as well. The results show that Tan-Lu fault zone runs through the south subsag of Liaozhong Sag,in which restraining S-shaped structur- al transfer zone of LD21 Oilfield,restraining S-shaped structural transfer zone of the north of LD16 Oilfield and releasing S-shaped structural transfer zone of the south of LD16 Oilfield are formed in partially curved sections of central strike-slip fault,Fault LD16-3 and Fault LD16-21,respectively. Releasing intersecting structural transfer zone of the middle of LD16 Oilfield is formed in intersecting area of Fault LD16-3 and Fault LD16-21. The structural transfer zone changes the stress- es transmitted by the segmental faults,so that the three-dimensional spatial strain is conserved. The fault displacementdistance method is used to investigate the deformation characteristics of the intersecting structural transfer zone of the mid- dle of LD16 Oilfield. The control of structural transfer zone on hydrocarbon accumulation is mainly as follows:controlling the formation of structural traps,the development of high-quality reservoir,the hydrocarbon migration,and the fault block- ing. Restraining structural transfer zone is a favorable field for oil and gas exploration in the south subsag of Liaozhong Sag.

  • 构造转换带是指在构造变形中为保持区域上的应变量守恒而产生的调节构造。构造转换带最早由DAHLSTROM在研究加拿大落基山地区挤压变形中褶皱-逆冲断层的几何形态时提出的[1]。 MORLEY等将构造转换带的概念应用于伸展构造研究中[2]。近年的油气勘探实践发现,构造转换带与油气的富集成藏关系密切,受到越来越广泛的关注。中外学者针对构造转换带的类型与特征、成因机制及其对油气成藏的控制作用开展了相关研究,并逐渐将构造转换带的概念外延至走滑构造[3-13]

  • 走滑转换构造是指与走滑断层伴生,或者由于断层的走滑活动“转换”而形成的压性、张性、压扭性或张扭性构造。郯庐断裂带是中国东部著名的走滑断裂带,其渤海海域段的油气资源丰富,探明储量约占渤海海域的70%,其中走滑构造转换带具有较好的油气发现,近年来在辽东湾坳陷辽中凹陷南洼发现的旅大21油田和旅大16油田均位于走滑构造转换带,证实构造转换带对油气的富集成藏具有重要作用。前人对旅大21油田和旅大16油田开展了很多研究工作,主要包括构造演化特征[14]、断裂体系特征[15]、油气成藏条件和主要控藏因素等方面[16],但从整体角度探讨该区构造转换带特征及对油气成藏的控制作用方面则甚少。为此,笔者从辽中凹陷南洼最近发现的2个大中型油田出发,剖析其构造转换带类型及发育特征,并从构造圈闭、优质储层、油气运移和断层封堵方面探讨构造转换带对油气成藏的控制作用,研究成果对辽中凹陷南洼下步的油气勘探具有一定的借鉴意义。

  • 1 区域地质概况

  • 辽东湾坳陷位于渤海海域东北部,为渤海湾盆地下辽河凹陷向渤海海域的延伸部分;其形态狭长,为在中生界基底之上发育的新生代坳陷(图1)。辽东湾坳陷受控于郯庐走滑断裂带,由西至东被分割为辽西凹陷、辽西凸起、辽中凹陷、辽东凸起和辽东凹陷,表现为三凹两凸的构造格局。辽中凹陷为辽东湾坳陷的二级构造单元,为东断西超的半地堑断陷,平面上呈NE—SW向展布[16]

  • 作为渤海湾盆地的重要组成部分,辽东湾坳陷新生代构造演化主要分为5个阶段:①初始裂陷阶段,为古新世—始新世,距今65.0~38.0Ma。②裂后热沉降阶段,为渐新世沙二段—沙一段沉积时期,距今38.0~32.8Ma。③再次裂陷阶段,为渐新世东营组沉积时期,距今32.8~24.6Ma。④中新世拗陷阶段,距今24.6~5.3Ma。⑤上新世新构造运动阶段,自5.3Ma以来至今[16]。受控于构造演化,辽东湾坳陷新生界主要发育2套构造层序,即古近系断陷层序和新近系拗陷层序。古近纪为裂谷发育的鼎盛期,湖盆发育,新近纪湖泊基本消亡,以河流-泛滥平原沉积发育为特征。辽东湾坳陷辽中凹陷南洼古近系由下至上依次为孔店组、沙河街组和东营组,发育多套辫状河三角洲、扇三角洲砂岩,与上覆湖相泥岩形成良好的储盖组合;新近系自下而上为馆陶组和明化镇组,为一套辫状河-曲流河陆源粗碎屑沉积,新近系之上为第四系所覆盖。

  • 图1 辽中凹陷南洼区域构造位置

  • Fig.1 Structural location of south subsag of Liaozhong Sag

  • 在辽东湾海域南部辽中凹陷南洼,郯庐断裂带从S至N走向由NNE突变为NE向,走向的突变导致该区构造活动强烈,并在辽中凹陷南洼发育中央走滑断层、旅大16-3断层、旅大16-21断层及相应的调节断层。3条走滑断层的弯曲和叠覆形成一系列走滑转换构造。近年来在辽中凹陷南洼的构造转换带发现了旅大21油田和旅大16油田,其中旅大21油田的主要成藏层位为沙河街组、东营组和馆陶组,旅大16油田的主要成藏层位为东营组,且旅大16油田北部、中部和南部油气成藏具有差异富集的特点。勘探实践表明,构造转换带是辽中凹陷南洼油气勘探的有利场所,在走滑断层的不同部位发育不同类型的构造转换带,进而具有不同的发育特征和油气富集特点。

  • 2 构造转换带类型及发育特征

  • 针对构造转换带类型的划分及其发育特征的刻画是明确构造转换带对油气成藏控制作用的基础。利用三维地震资料对辽中凹陷南洼进行构造解释,并将剖面解释与平面成图分析相结合,以近年新发现的旅大21油田和旅大16油田为例,从勘探实践角度,对这2个油田的构造转换带类型进行划分,并分析其发育特征。

  • 2.1 构造转换带类型

  • 先前多根据局部应力场对走滑构造转换带进行划分,共分为挤压型和伸展型走滑构造转换带[9]。目前考虑到断层对断块型油藏的控制作用,首先针对构造转换带在走滑断层的位置,划分为断边型、断间型和断梢型3大类;再根据构造转换带形态及其与断层的相互作用将3大类构造转换带进一步细分,其中断边型构造转换带可以划分为“S”型构造转换带和帚状构造转换带,断间型构造转换带划分为叠覆型构造转换带、双重型构造转换带和共轭型构造转换带,断梢型构造转换带主要为叠瓦扇型构造转换带;最后根据构造转换带的局部应力特征,将各小类再细分为增压型和释压型[9]

  • 2.2 构造转换带发育特征

  • 2.2.1 “S”型构造转换带

  • “S”型构造转换带在旅大21油田和旅大16油田均有发育。断边型构造转换带是指发育于一条走滑断层的边部或一条断层内形成的构造转换带。由于断裂两盘岩性的差异,导致走滑过程中受阻形成局部弯曲段,在弯曲部位产状发生变化,并形成 “S”型构造转换带[9]

  • 辽中凹陷南洼发育的断裂系统属于郯庐走滑断裂带的一部分,控制研究区及其伴生构造的形成。走滑断层并非一条直线,而是呈“S”形弯曲。利用三维地震资料开展构造解释工作,并结合方差切片分析,在旅大21油田识别落实中央走滑断层,其走向从S至N由NNE突变为NE向,长度为40~50km,倾向为SE向,倾角为70°~80°(图2)。中央走滑断层是辽中凹陷南洼的东部控洼断层,并将旅大21油田分为东、西两部分;在剖面上与走滑调节断层形成负花状构造,具有典型的走滑构造标志; 平面上该断层呈NE向穿过旅大21油田,具有左阶 “S”型弯曲的特点,而郯庐断裂自古近纪以来具有右旋走滑的特征,右旋左阶“S”型构造转换带处于挤压应力背景下,在中央走滑断层的局部弯曲段形成断边型构造转换带,即旅大21油田增压型“S”型构造转换带。

  • 图2 旅大21油田构造转换带发育模式及圈闭展布

  • Fig.2 Development mode of structural transfer zone and traps distribution in LD21Oilfield

  • 在旅大16油田识别落实旅大16-3断层和旅大16-21断层。根据断层弯曲和叠覆特征,将旅大16油田分为北部、中部和南部3部分。旅大16-21断层为辽中凹陷南洼的西部控洼断层,近SN走向,长度为60~65km,断面陡直,略微南倾。其在剖面上与东侧走滑调节断层形成半花状构造,平面上具有右阶“S”型弯曲的特点,右旋右阶“S”型构造转换带处于伸展应力背景下,在旅大16-21断层的局部弯曲段形成断边型构造转换带,即旅大16油田南部释压型“S”型构造转换带(图3)。

  • 旅大16-3断层位于旅大16-21断层东部,为洼中走滑断层,近NE走向,长度为20~25km。在剖面上,断面直立,控制小型洼陷的形成,东盘发育反转构造;平面上具有左阶“S”型弯曲的特点,右旋左阶“S”型构造转换带处于挤压应力背景下,在旅大16-3断层的局部弯曲段形成断边型构造转换带,即旅大16油田北部增压型“S”型构造转换带(图3)。

  • 图3 旅大16油田构造转换带发育模式及圈闭展布

  • Fig.3 Development mode of structural transfer zone and traps distribution in LD16Oilfield

  • 2.2.2 叠覆型构造转换带

  • 叠覆型构造转换带发育于旅大16油田中部,是断间型构造转换带的一种。断间型构造转换带是指在2条断层或多条断层之间,由于断层的相互作用而形成的转换带。若2条或多条走滑断层首尾叠覆但不搭接的交替排列,在这些走滑断层之间的过渡区则形成叠覆型构造转换带[9]

  • 在旅大16油田中部,旅大16-3断层和旅大16-21断层表现为首尾互相叠覆,在这2条走滑断层之间发育被调节断层复杂化的断块构造。旅大16-3断层和旅大16-21断层右阶排列,右旋右阶“S”型构造转换带处于伸展应力背景下,在叠覆区形成断间型构造转换带,即旅大16油田中部释压型叠覆型构造转换带(图3)。

  • 转换带改变了分段断层的传递应力,使三维空间应变守恒,采用断层位移-距离法探讨旅大16油田中部释压型叠覆型构造转换带的变形特征[17]。结果表明(图4),从旅大16-3断层和旅大16-21断层的发育特征来看,其位移量从断层一端至叠覆位置逐渐减小,并最终减小为0,且旅大16-3断层和旅大16-21断层沿走向位置的位移总量基本保持一致。

  • 图4 旅大16油田中部释压型叠覆型构造转换带主要断层沿走向的位移量变化

  • Fig.4 Displacement-distance features along fault strike in central intersecting structural transfer zone of LD16Oilfield

  • 3 构造转换带对油气成藏的控制作用

  • 中外研究结果表明,构造转换带与油气的富集成藏关系密切,发现了大量与构造转换带相关的油气田[15-27]。而辽中凹陷南洼的勘探实践表明,构造转换带对油气成藏的控制作用主要表现在对构造圈闭形成、优质储层发育、油气运移过程以及断层封堵能力等方面。

  • 3.1 控制构造圈闭形成

  • 辽中凹陷南洼旅大21油田和旅大16油田发育的4个构造转换带的应力性质和断层发育存在差异性,但多类型的构造转化带从应力性质来看可以分为2种:一种是增压型构造转换带,包括旅大21油田增压型“S”型构造转换带和旅大16油田北部增压型“S”型构造转换带;另一种是释压型构造转换带,包括旅大16油田南部释压型“S”型构造转换带和中部释压型叠覆型构造转换带。

  • 增压型与释压型2类构造转换带形成的圈闭特征具有明显的差异性:一是圈闭类型的差异。增压型构造转换带以挤压应力为主,通常形成背斜、断背斜和鼻状构造(图2),而释压型构造转化带以张性应力为主,通常由于离散作用形成负地形(图3)。二是圈闭规模的差异。例如旅大21油田增压型“S” 型构造转换带,右旋左阶“S”型构造转换带处于挤压应力背景下,形成依附于中央走滑断层的旅大21油田大型半背斜圈闭,最大单块圈闭面积达12.5km2(图2,表1);而旅大16油田中部释压型叠覆型构造转换带,右旋右阶“S”型构造转换带处于伸展应力背景下,形成逐级下掉的小型断块圈闭,最大单块圈闭面积为2.3km2(图3,表1);与之毗邻的南部释压型“S”型构造转换带,最大单块圈闭面积为3.7km2(图3,表1);而北部增压型“S”型构造转换带与中部释压型叠覆型构造转换带的构造位置相距较近,但由于应力背景不同,处于挤压应力环境的北部增压型“S”型构造转换带的最大单块圈闭面积为7.3km2(图3,表1)[15]

  • 3.2 控制优质储层发育

  • 构造转换带控制优质储层的发育主要体现在2个方面:一是控制储层的展布范围。构造转换带是运输物源的重要通道,由于走滑断层的右旋作用,在走滑调节断层处形成的顺向断槽为良好的输砂通道。古近纪东营组沉积时期辽中凹陷南洼郯庐断裂带的持续右旋走滑作用造成源-汇耦合带不断向北迁移,形成垂向上由深至浅呈“鱼跃式”展布、平面上由南至北叠置展布的砂体发育模式。基于以上认识,在旅大16油田东三段的地震剖面上,通过已钻井标定识别出3期呈“鱼跃式”叠置展布的扇三角洲-辫状河三角洲前缘砂体,并钻探发现了高丰度油藏,证实该区“鱼跃式”砂体发育模式的正确性[18]。二是改善储层的质量。郯庐断裂带在辽中凹陷南洼从南至北走向发生变化,构造活动强烈,构造转换带一般均为局部强应变带,应变和应力释放强烈,为构造裂缝的产生提供了条件;此外断层的活动也会导致储层孔隙和裂缝比例的增加,储集性能变好。旅大16油田东三段发育的扇三角洲-辫状河三角洲前缘沉积的岩心分析结果表明:其平均孔隙度为24.9%,渗透率为156.6mD,为中孔中渗透储层;东二段上亚段和东一段发育的辫状河三角洲前缘沉积的平均孔隙度为27.7%,渗透率为1 113.0mD,为高孔高渗透储层。

  • 3.3 控制油气运移过程

  • 构造转换带对油气运移过程的控制作用主要体现在2个方面:一方面是走滑断层派生的挤压应力控制走滑转换带的形成和演化。古近纪由于走滑断层的右旋走滑活动和垂向差异升降,断裂的左阶排列和“S”型弯曲形成了各类构造转换带,特别是增压型构造转换带,在古近纪处于构造高部位,为油气运移的低势区[14]。东营组沉积时期,在辽中凹陷中央部位沿早期正断层发生右旋走滑运动,中央走滑断层的“S”型弯曲在压扭构造带形成左阶排列的挤压应力场,由于挤压应力作用控制地层发生反转,形成旅大21反转构造,并被辽中富生烃凹陷包围,长期处于油气运移的低势区。另一方面,由于挤压应力,增压型走滑构造转换带的主干断裂通常并不具有油气运移作用,但主干断裂的伴生断裂却可以起到较好的油气运移作用[19-20]。旅大21油田主干断裂的伴生断裂断至新近系,并深入沙河街组烃源岩,其伴生断裂将东盘分割为多个断块,新构造运动时期断层活动,将古近系油藏的油气调整至浅层新近系成藏。而在旅大16油田,走滑派生断层同样起到较好的油气运移作用,但不同的是旅大16油田的北部主要受挤压应力作用,而中部和南部主要受伸展应力作用,应力性质的不同导致其油气成藏层位的差异。在北部挤压应力处,油气主要在东三段富集;而中部和南部伸展应力处,派生断层更发育,构造活动更强烈,油气成藏层位更丰富,在东三段、东二段上亚段和东一段均有油气富集,反映出走滑派生断层活跃的油气运移能力。

  • 表1 构造转换带控圈要素

  • Table1 Elements of traps controlled by structural transfer zone

  • 3.4 控制断层封堵能力

  • 渤海海域属于渤海湾盆地的一部分,为复杂的陆相断陷盆地,自古近纪以来,经历了多期裂陷活动,断层发育,也形成大量与断层相关的断块圈闭,而控圈断层的封堵性对油气保存具有重要作用,侧封性也影响油气富集的丰度[21-27]。旅大21油田和旅大16油田的油气丰度统计结果显示,旅大21油田处于挤压应力背景,断层主断面呈挤压闭合状态,挤压幅度大,旋扭作用强,封闭性好,泥岩涂抹程度高,利于油气保存,油气丰度达900×104 t/km2; 同样在旅大16油田,其北部处于挤压应力背景,油气丰度达800×104 t/km2,而中部和南部处于伸展应力背景下,油气丰度仅为200×104 t/km2(表1),表明增压型构造转换带的断层封堵性较好,而良好的油气保存条件利于形成高丰度油气藏,因此辽中凹陷南洼增压型构造转换带为有利的油气勘探领域。

  • 4 结论

  • 受郯庐走滑断裂右旋走滑活动的影响,辽中凹陷南洼形成多个构造转换带。在中央走滑断层、旅大16-3断层和旅大16-21断层的局部弯曲段形成旅大21油田增压型“S”型构造转换带、旅大16油田北部增压型“S”型构造转换带和南部释压型“S”型构造转换带,在旅大16-3断层和旅大16-21断层的叠覆区形成旅大16油田中部释压型叠覆型构造转换带,不同的构造转换带类型具有不同的发育特征和油气富集特点。构造转换带对油气成藏具有控制作用,主要表现在:控制圈闭的类型和规模,增压型构造转换带以背斜、断裂背斜和鼻状构造为主,圈闭规模较大,释压型构造转化带以断块圈闭为主,圈闭规模相对较小;控制储层的展布范围和改善储层的质量;控制油气运移过程,增压型构造转换带在古近纪处于构造高部位,为油气运移的低势区,主干断裂派生断层断至的层位控制油气成藏的层位;控制断层封堵能力,挤压应力背景断层的主断面呈挤压闭合状态,封闭性好,有利于油气的保存,油气丰度高。辽中凹陷南洼增压型构造转换带为有利的油气勘探领域。

  • 参考文献

    • [1] DAHLSTROM C D A.Structure geology in the eastern margin of the Canadian Rocky Mountain[M].Calgary:Bulletin of Canadian Petroleum Geology,1970:332-406.

    • [2] MORLEY C K,NELSON R A,PATTON T L,et al.Transfer zones in the East African Rift system and their relevance to hydrocarbon exploration in rifts[J].AAPG Bulletin,1990,74(8):1 234-1 253.

    • [3] PEACOCK D C P,SANDERSON D J.Geometry and development of relay ramps in normal fault systems[J].AAPG Bulletin,1994,78(2):147-165.

    • [4] PEACOCK D C P,SANDERSON D J.Strike-slip relay ramps[J].Journal of Structural Geology,1995,17(10):1 351-1 360.

    • [5] MOUSLOPOULOU V,NICOL A,LITTLE T A,et al.Displacement transfer between intersecting regional strike-slip and extensional fault systems[J].Journal of Structural Geology,2007,29(1):100-116.

    • [6] MOUSTAFA A R.Controls on the geometry of transfer zones in the Suez Rift and Northwest Red Sea:Implications for the structural geometry of rift systems[J].AAPG Bulletin,2002,86(6):979-1 002.

    • [7] ACOCELLA V,MORVILLO P,Funiciello R.What controls relay ramps and transfer faults within rift zones?Insights from analogue models[J].Journal of Structural Geology,2005,27(3):397-408.

    • [8] KONSTANTINOVSKAYA E A,HARRIS L B,POULIN J,et al.Transfer zones and fault reactivation in inverted rift basins:In⁃ sights from physical modelling[J].Tectonophysics,2007,441(1/4):1-26.

    • [9] 徐长贵.渤海走滑转换带及其对大中型油气田形成的控制作用[J].地球科学——中国地质大学学报,2016,41(9):1 548-1 560.XU Changgui.Strike-slip transfer zone and its control on forma⁃ tion of medium and large-sized oilfields in Bohai sea area[J].Earth Science-Journal of China University of Geosciences,2016,41(9):1 548-1 560.

    • [10] 徐长贵,余一欣,吴奎,等.辽东湾坳陷断裂联接及其控油气作用[J].石油与天然气地质,2014,35(4):456-462.XU Changgui,YU Yixin,WU Kui,et al.Fault linkages and their control on hydrocarbon accumulation in the Liaodongwan Depres⁃ sion,offshore Bohai Bay Basin[J].Oil & Gas Geology,2014,35(4):456-462.

    • [11] 余一欣,周心怀,魏刚,等.渤海湾地区构造变换带及油气意义 [J].古地理学报,2008,10(5):555-560.YU Yixin,ZHOU Xinhuai,WEI Gang,et al.Structural transfer zones and their hydrocarbon significances in Bohai Bay area[J].Journal of Palaeogeography,2008,10(5):555-560.

    • [12] 余一欣,周心怀,徐长贵,等.渤海海域断裂相互作用及其油气地质意义[J].石油与天然气地质,2018,39(1):11-19.YU Yixin,ZHOU Xinhuai,XU Changgui,et al.Fault interactions and their significances for hydrocarbon accumulation in offshore Bohai Bay Basin,eastern China[J].Oil & Gas Geology,2018,39(1):11-19.

    • [13] 漆家福.裂陷盆地中的构造变换带及其石油地质意义[J].海相油气地质,2007,12(4):43-50.QI Jiafu.Structural transfer zones and significance for hydrocar⁃ bon accumulation in rifting basins[J].Marine Origin Petroleum Geology,2007,12(4):43-50.

    • [14] 李伟,陈兴鹏,吴智平,等.渤海海域辽中南洼压扭构造带成因演化及其控藏作用[J].高校地质学报,2016,22(3):502-511.LI Wei,CHEN Xingpeng,WU Zhiping,et al.Study on the origin and evolution of transpressional structural belt and its control on oil and gas accumulation in the south of Liaozhong sub-sag,Bo⁃ hai Sea area[J].Geological Journal of China Universities,2016,22(3):502-511.

    • [15] 何京,柳屿博,吴奎,等.渤海海域辽中凹陷南洼断裂体系及走滑控圈模式过程[J].断块油气田,2017,24(2):147-153.HE Jing,LIU Yubo,WU Kui,et al.Development characteristics of fault system and trap-controlling effect of strike-slip faults in south of Liaozhong Sag,East China[J].Fault-Block Oil & Gas Field,2017,24(2):147-153.

    • [16] 李强,田晓平,张婕茹,等.辽中凹陷南洼旅大21油田油气成藏条件及分布特征[J].油气地质与采收率,2018,25(3):11-19.LI Qiang,TIAN Xiaoping,ZHANG Jieru,et al.Hydrocarbon accu⁃ mulation conditions and distribution characteristics of LD21 Oil⁃ field,south of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2018,25(3):11-19.

    • [17] 周心怀,余一欣,魏刚,等.渤海辽东湾海域 JZ25-1S转换带与油气成藏的关系[J].石油学报,2008,29(6):837-840.ZHOU Xinhuai,YU Yixin,WEI Gang,et al.Relationship between JZ25-1S transfer zone and hydrocarbon accumulation in Lia⁃ odongwan offshore of Bohai Bay Basin[J].Acta Petrolei Sinica,2008,29(6):837-840.

    • [18] 柳永军,徐长贵,朱文森,等.辽东湾坳陷挤压型和拉张型走滑转换带特征及其控藏作用[J].大庆石油地质与开发,2018,37(1):15-20.LIU Yongjun,XU Changgui,ZHU Wensen,et al.Characteristics of the compressional and extensional strike-slip transform belts and their controlling actions on the hydrocarbon accumulation for Liaodong Bay Depression[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(1):15-20.

    • [19] 龚再升,王国纯.渤海新构造运动控制晚期油气成藏[J].石油学报,2001,22(2):1-7.GONG Zaisheng,WANG Guochun.Neotectonism and late hydro⁃ carbon accumulation in Bohai Sea[J].Acta Petrolei Sinica,2001,22(2):1-7.

    • [20] 康海亮,林畅松,张宗和,等.南堡凹陷1号构造源上油气成藏特征及控制因素分析[J].中国石油勘探,2017,22(3):49-55.KANG Hailiang,LIN Changsong,ZHANG Zonghe,et al.Abovesource hydrocarbon accumulation in No.1 structure of Nanpu sag and its controlling factors[J].China Petroleum Exploration,2017,22(3):49-55.

    • [21] 吕延防,王伟,胡欣蕾,等.断层侧向封闭性定量评价方法[J].石油勘探与开发,2016,43(2):310-316.LÜ Yanfang,WANG Wei,HU Xinlei,et al.Quantitative evalua⁃ tion method of fault lateral sealing[J].Petroleum Exploration and Development,2016,43(2):310-316.

    • [22] 吕延防,王帅.断层封闭性定量评价[J].大庆石油学院学报,2010,34(5):35-41.LÜ Yanfang,WANG Shuai.Quantitative evaluation of fault seal [J].Journal of Daqing Petroleum Institute,2010,34(5):35-41.

    • [23] 付广,展铭望.活动期断裂侧向封闭的地质条件及其研究方法 [J].天然气工业,2016,36(10):28-34.FU Guang,ZHAN Mingwang.Geological conditions for lateral sealing of active faults and relevant research methods[J].Natural Gas Industry,2016,36(10):28-34.

    • [24] 付广,王浩然,胡欣蕾.断层垂向封闭的断-储排替压力差法及其应用[J].石油学报,2014,35(4):685-691.FU Guang,WANG Haoran,HU Xinlei.Modification and applica⁃ tion of fault-reservoir displacement pressure differential method for vertical sealing of faults[J].Acta Petrolei Sinica,2014,35(4):685-691.

    • [25] 洪国郎,金强,程付启,等.改进的断层封闭性计算参数的获取方法及应用——以辽西凸起中南段为例[J].油气地质与采收率,2018,25(3):50-54,60.HONG Guolang,JIN Qiang,CHENG Fuqi,et al.An improved method for extracting parameters and its application to calculat⁃ ing fault sealing capacity:A case study of the central-southern section of the Liaoxi Uplift[J].Petroleum Geology and Recovery Efficiency,2018,25(3):50-54,60.

    • [26] 王亚琳.惠民凹陷夏口走滑正断层封堵能力差异性及其成因动力学机制[J].特种油气藏,2018,25(3):23-27.WANG Yalin.Sealing difference of the Xiakou strike-slip normal fault in Huimin Sag and its dynamic mechanism[J].Special Oil & Gas Reservoirs,2018,25(3):23-27.

    • [27] 谭丽娟,解宏泽,张辉,等.一种生长断层封闭性定量研究方法:以辽河坳陷辽中凹陷 JX1-1油田为例[J].石油实验地质,2018,40(2):268-273.TAN Lijuan,XIE Hongze,ZHANG Hui,et al.A quantitative re⁃ search method on the sealing of growth faults:A case study of JX1-1 oil field in Liaozhong Sag,Liaohe Depression[J].Petro⁃ leum Geology & Experiment,2018,40(2):268-273.

  • 参考文献

    • [1] DAHLSTROM C D A.Structure geology in the eastern margin of the Canadian Rocky Mountain[M].Calgary:Bulletin of Canadian Petroleum Geology,1970:332-406.

    • [2] MORLEY C K,NELSON R A,PATTON T L,et al.Transfer zones in the East African Rift system and their relevance to hydrocarbon exploration in rifts[J].AAPG Bulletin,1990,74(8):1 234-1 253.

    • [3] PEACOCK D C P,SANDERSON D J.Geometry and development of relay ramps in normal fault systems[J].AAPG Bulletin,1994,78(2):147-165.

    • [4] PEACOCK D C P,SANDERSON D J.Strike-slip relay ramps[J].Journal of Structural Geology,1995,17(10):1 351-1 360.

    • [5] MOUSLOPOULOU V,NICOL A,LITTLE T A,et al.Displacement transfer between intersecting regional strike-slip and extensional fault systems[J].Journal of Structural Geology,2007,29(1):100-116.

    • [6] MOUSTAFA A R.Controls on the geometry of transfer zones in the Suez Rift and Northwest Red Sea:Implications for the structural geometry of rift systems[J].AAPG Bulletin,2002,86(6):979-1 002.

    • [7] ACOCELLA V,MORVILLO P,Funiciello R.What controls relay ramps and transfer faults within rift zones?Insights from analogue models[J].Journal of Structural Geology,2005,27(3):397-408.

    • [8] KONSTANTINOVSKAYA E A,HARRIS L B,POULIN J,et al.Transfer zones and fault reactivation in inverted rift basins:In⁃ sights from physical modelling[J].Tectonophysics,2007,441(1/4):1-26.

    • [9] 徐长贵.渤海走滑转换带及其对大中型油气田形成的控制作用[J].地球科学——中国地质大学学报,2016,41(9):1 548-1 560.XU Changgui.Strike-slip transfer zone and its control on forma⁃ tion of medium and large-sized oilfields in Bohai sea area[J].Earth Science-Journal of China University of Geosciences,2016,41(9):1 548-1 560.

    • [10] 徐长贵,余一欣,吴奎,等.辽东湾坳陷断裂联接及其控油气作用[J].石油与天然气地质,2014,35(4):456-462.XU Changgui,YU Yixin,WU Kui,et al.Fault linkages and their control on hydrocarbon accumulation in the Liaodongwan Depres⁃ sion,offshore Bohai Bay Basin[J].Oil & Gas Geology,2014,35(4):456-462.

    • [11] 余一欣,周心怀,魏刚,等.渤海湾地区构造变换带及油气意义 [J].古地理学报,2008,10(5):555-560.YU Yixin,ZHOU Xinhuai,WEI Gang,et al.Structural transfer zones and their hydrocarbon significances in Bohai Bay area[J].Journal of Palaeogeography,2008,10(5):555-560.

    • [12] 余一欣,周心怀,徐长贵,等.渤海海域断裂相互作用及其油气地质意义[J].石油与天然气地质,2018,39(1):11-19.YU Yixin,ZHOU Xinhuai,XU Changgui,et al.Fault interactions and their significances for hydrocarbon accumulation in offshore Bohai Bay Basin,eastern China[J].Oil & Gas Geology,2018,39(1):11-19.

    • [13] 漆家福.裂陷盆地中的构造变换带及其石油地质意义[J].海相油气地质,2007,12(4):43-50.QI Jiafu.Structural transfer zones and significance for hydrocar⁃ bon accumulation in rifting basins[J].Marine Origin Petroleum Geology,2007,12(4):43-50.

    • [14] 李伟,陈兴鹏,吴智平,等.渤海海域辽中南洼压扭构造带成因演化及其控藏作用[J].高校地质学报,2016,22(3):502-511.LI Wei,CHEN Xingpeng,WU Zhiping,et al.Study on the origin and evolution of transpressional structural belt and its control on oil and gas accumulation in the south of Liaozhong sub-sag,Bo⁃ hai Sea area[J].Geological Journal of China Universities,2016,22(3):502-511.

    • [15] 何京,柳屿博,吴奎,等.渤海海域辽中凹陷南洼断裂体系及走滑控圈模式过程[J].断块油气田,2017,24(2):147-153.HE Jing,LIU Yubo,WU Kui,et al.Development characteristics of fault system and trap-controlling effect of strike-slip faults in south of Liaozhong Sag,East China[J].Fault-Block Oil & Gas Field,2017,24(2):147-153.

    • [16] 李强,田晓平,张婕茹,等.辽中凹陷南洼旅大21油田油气成藏条件及分布特征[J].油气地质与采收率,2018,25(3):11-19.LI Qiang,TIAN Xiaoping,ZHANG Jieru,et al.Hydrocarbon accu⁃ mulation conditions and distribution characteristics of LD21 Oil⁃ field,south of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2018,25(3):11-19.

    • [17] 周心怀,余一欣,魏刚,等.渤海辽东湾海域 JZ25-1S转换带与油气成藏的关系[J].石油学报,2008,29(6):837-840.ZHOU Xinhuai,YU Yixin,WEI Gang,et al.Relationship between JZ25-1S transfer zone and hydrocarbon accumulation in Lia⁃ odongwan offshore of Bohai Bay Basin[J].Acta Petrolei Sinica,2008,29(6):837-840.

    • [18] 柳永军,徐长贵,朱文森,等.辽东湾坳陷挤压型和拉张型走滑转换带特征及其控藏作用[J].大庆石油地质与开发,2018,37(1):15-20.LIU Yongjun,XU Changgui,ZHU Wensen,et al.Characteristics of the compressional and extensional strike-slip transform belts and their controlling actions on the hydrocarbon accumulation for Liaodong Bay Depression[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(1):15-20.

    • [19] 龚再升,王国纯.渤海新构造运动控制晚期油气成藏[J].石油学报,2001,22(2):1-7.GONG Zaisheng,WANG Guochun.Neotectonism and late hydro⁃ carbon accumulation in Bohai Sea[J].Acta Petrolei Sinica,2001,22(2):1-7.

    • [20] 康海亮,林畅松,张宗和,等.南堡凹陷1号构造源上油气成藏特征及控制因素分析[J].中国石油勘探,2017,22(3):49-55.KANG Hailiang,LIN Changsong,ZHANG Zonghe,et al.Abovesource hydrocarbon accumulation in No.1 structure of Nanpu sag and its controlling factors[J].China Petroleum Exploration,2017,22(3):49-55.

    • [21] 吕延防,王伟,胡欣蕾,等.断层侧向封闭性定量评价方法[J].石油勘探与开发,2016,43(2):310-316.LÜ Yanfang,WANG Wei,HU Xinlei,et al.Quantitative evalua⁃ tion method of fault lateral sealing[J].Petroleum Exploration and Development,2016,43(2):310-316.

    • [22] 吕延防,王帅.断层封闭性定量评价[J].大庆石油学院学报,2010,34(5):35-41.LÜ Yanfang,WANG Shuai.Quantitative evaluation of fault seal [J].Journal of Daqing Petroleum Institute,2010,34(5):35-41.

    • [23] 付广,展铭望.活动期断裂侧向封闭的地质条件及其研究方法 [J].天然气工业,2016,36(10):28-34.FU Guang,ZHAN Mingwang.Geological conditions for lateral sealing of active faults and relevant research methods[J].Natural Gas Industry,2016,36(10):28-34.

    • [24] 付广,王浩然,胡欣蕾.断层垂向封闭的断-储排替压力差法及其应用[J].石油学报,2014,35(4):685-691.FU Guang,WANG Haoran,HU Xinlei.Modification and applica⁃ tion of fault-reservoir displacement pressure differential method for vertical sealing of faults[J].Acta Petrolei Sinica,2014,35(4):685-691.

    • [25] 洪国郎,金强,程付启,等.改进的断层封闭性计算参数的获取方法及应用——以辽西凸起中南段为例[J].油气地质与采收率,2018,25(3):50-54,60.HONG Guolang,JIN Qiang,CHENG Fuqi,et al.An improved method for extracting parameters and its application to calculat⁃ ing fault sealing capacity:A case study of the central-southern section of the Liaoxi Uplift[J].Petroleum Geology and Recovery Efficiency,2018,25(3):50-54,60.

    • [26] 王亚琳.惠民凹陷夏口走滑正断层封堵能力差异性及其成因动力学机制[J].特种油气藏,2018,25(3):23-27.WANG Yalin.Sealing difference of the Xiakou strike-slip normal fault in Huimin Sag and its dynamic mechanism[J].Special Oil & Gas Reservoirs,2018,25(3):23-27.

    • [27] 谭丽娟,解宏泽,张辉,等.一种生长断层封闭性定量研究方法:以辽河坳陷辽中凹陷 JX1-1油田为例[J].石油实验地质,2018,40(2):268-273.TAN Lijuan,XIE Hongze,ZHANG Hui,et al.A quantitative re⁃ search method on the sealing of growth faults:A case study of JX1-1 oil field in Liaozhong Sag,Liaohe Depression[J].Petro⁃ leum Geology & Experiment,2018,40(2):268-273.