en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈彦君(1974—),男,甘肃靖远人,高级工程师,从事煤层气勘探评价及油气勘探综合研究。联系电话:18810593635,E-mail:yjy_cyj@petrochina.com.cn。

中图分类号:TE112.23

文献标识码:A

文章编号:1009-9603(2019)05-0066-07

DOI:10.13673/j.cnki.cn37-1359/te.2019.05.008

参考文献 1
原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.
参考文献 2
SEIDLE J.Fundamentals of coalbed methane reservoir engineering [M].Tulsa:PennWell Books,2011.
参考文献 3
伊伟,熊先钺,卓莹,等.韩城矿区煤储层特征及煤层气资源潜力[J].中国石油勘探,2017,22(6):78-86.YI Wei,XIONG Xianyue,ZHUO Ying,et al.Coal reservoirs and CBM potentials in Hancheng mining area[J].China Petroleum Ex⁃ ploration,2017,22(6):78-86.
参考文献 4
李朋朋,张小东,杨延辉,等.不同变形程度煤的吸附时间及其影响因素[J].油气地质与采收率,2017,24(4):43-48,54.LI Pengpeng,ZHANG Xiaodong,YANG Yanhui,et al.Adsorption time of coals with different degrees of deformation and their influ⁃ encing factors[J].Petroleum Geology and Recovery Efficiency,2017,24(4):43-48,54.
参考文献 5
马世忠,张宇鹏.应用压汞实验方法研究致密储层孔隙结构——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2017,24(1):26-33.MA Shizhong,ZHANG Yupeng.Study on the pore structure of tight reservoir by using method of mercury injection-A case study of the Lucaogou Formation in Jimsar sag,Junggar Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2017,24(1):26-33.
参考文献 6
王刚,沈俊男,褚翔宇,等.基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J].煤炭学报,2017,42(8):2 074-2 080.WANG Gang,SHEN Junnan,CHU Xiangyu,et al.Characteriza⁃ tion and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J].Journal of China Coal Society,2017,42(8):2 074-2 080.
参考文献 7
QU Zhenghui,WANG Geoff G X,JIANG Bo,et al.Experimental study on the porous structure and compressibility of tectonized coals[J].Energy & Fuels,2010,24(5):2 964-2 973.
参考文献 8
琚宜文,李小诗.构造煤超微结构研究新进展[J].自然科学进展,2009,19(2):131-140.JU Yiwen,LI Xiaoshi.New progress in the study of ultrastructure of tectonic coal[J].Progress in Natural Science,2009,19(2):131-140.
参考文献 9
张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.ZHANG Hui.Genetical type of pores in coal reservoir and its re⁃ search significance[J].Journal of China Coal Society,2001,26(1):40-44.
参考文献 10
姚素平,焦堃,张科,等.煤纳米孔隙结构的原子力显微镜研究 [J].科学通报,2011,56(22):1 820-1 827.YAO Suping,JIAO Kun,ZHANG KE,et al.An atomic force mi⁃ croscopy study of coal nanopore structure[J].China Science Bul⁃ letin,2011,56(22):1 820-1 827.
参考文献 11
赵毅鑫,彭磊.煤纳米孔径与分形特征的同步辐射小角散射 [J].科学通报,2017,62(21):2 416-2 427.ZHAO Yixin,PENG Lei.Investigation on the size and fractal di⁃ mension of nano-pore in coals by synchrotron small angle X-ray scattering[J].Chinese Science Bulletin,2017,62(21):2 416-2 427.
参考文献 12
琚宜文,姜波,侯泉林,等.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报,2005,50(17):1 884-1 892.JU Yiwen,JIANG Bo,HOU Quanlin,et al.Relationship between nano-scale deformation of coal structure and metamorphic defor⁃ mation environment[J].Chinese Science Bulletin,2005,50(17):1 884-1 892.
参考文献 13
WIRTH Richard.Focused Ion Beam(FIB)combined with SEM and TEM:Advanced analytical tools for studies of chemical com⁃ position,microstructure and crystal structure in geomaterials on a nanometre scale[J].Chemical Geology,2009,261(3/4):217-229.
参考文献 14
MATHEWS J P,CAMPBELL Q P,XU H,et al.A review of the ap⁃ plication of X-ray computed tomography to the study of coal[J].Fuel,2017,209:10-24.
参考文献 15
宋晓夏,唐跃刚,李伟,等.基于显微CT的构造煤渗流孔精细表征[J].煤炭学报,2013,38(3):435-440.SONG Xiaoxia,TANG Yuegang,LI Wei,et al.Advanced charac⁃ terization of seepage pores in deformed coals based on micro-CT [J].Journal of China Coal Society,2013,38(3):435-440.
参考文献 16
LI Zhentao,LIU Dameng,CAI Yidong,et al.Multi-scale quantita⁃ tive characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT [J].Fuel,2017,209(1):43-53.
参考文献 17
刘玉龙,汤达祯,许浩,等.基于 X-CT 技术不同煤岩类型煤储层非均质性表征[J].煤炭科学技术,2017,45(3):141-146.LIU Yulong,TANG Dazhen,XU Hao,et al.Description of coal res⁃ ervoir heterogeneity under different lithotypes based on X-CT technology[J].Coal Science and Technology,2017,45(3):141-146.
参考文献 18
李伟,要惠芳,刘鸿福,等.基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014,39(6):1 127-1 132.LI Wei,YAO Huifang,LIU Hongfu,et al.Advanced characteriza⁃ tion of three-dimensional pores in coals with different coal-body structure by micro-CT[J].Journal of China Coal Society,2014,39(6):1 127-1 132.
参考文献 19
王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.
参考文献 20
何岩峰,赵虹宇,窦祥骥,等.考虑应力敏感的页岩储层纳米孔隙渗透率计算模型[J].大庆石油地质与开发,2018,37(6):151-157.HE Yanfeng,ZHAO Hongyu,DOU Xiangji,et al.Calculating mod⁃ el of the nano-pore permeability in the shale reservoir consider⁃ ing the stress sensitivity[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(6):151-157.
参考文献 21
WANG Yuzhu,RAHMAN Sheik S,ARNS Christoph H.Super res⁃ olution reconstruction of μ-CT image of rock sample using neigh⁃ bour embedding algorithm[J].Physica A:Statistical Mechanics and its Applications,2018,493(1):177-188.
参考文献 22
JING Yu,ARMSTRONG Ryan T,MOSTAGHIMI Peyman.Impact of mineralization on digital coal properties[J].Energy & Fuels,2017,31(11):11 558-11 568.
参考文献 23
唐雁刚,张荣虎,魏红兴,等.致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J].特种油气藏,2018,25(5):30-34.TANG Yangang,ZHANG Ronghu,WEI Hongxing,et al.Quantita⁃ tive permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J].Spe⁃ cial Oil & Gas Reservoirs,2018,25(5):30-34.
目录contents

    摘要

    深入探究煤层气赋存和运移机理,不仅需要分析煤岩孔裂隙结构的空间分布特征,还需对其进行定量表征。为此,以沁水盆地南部马必东区块3#煤层为研究对象,应用X射线微米CT扫描技术,先构建低精度CT扫描煤岩母样三维数字化模型,再通过高精度CT扫描构建煤岩子样三维数字化模型。在此基础上,利用Avizo图像处理软件,重构煤岩孔裂隙系统,实现煤岩孔裂隙的多尺度定量表征。研究结果表明,沁水盆地南部马必东区块3#煤层发育多尺度孔裂隙结构。煤岩孔裂隙宏观上以C型为主,微观上以E型为主。煤岩发育成孤立片状分布的宏观孔裂隙及连通性较差的孔裂隙。据子样和母样矿物含量的相关性可知,较大规模的孔裂隙多被矿物充填,限制了煤层气的渗流和产出。

    Abstract

    The in-depth understanding of the storage and migration of coalbed methane requires qualitative analysis and quantitative characterization of the pore-fracture system in coal. In this study,the core samples of the No.3 coal seam in Mabidong Block in the southern Qinshui Basin was discussed in detail. The X-ray micro-CT scanning technology was ap- plied,and three-dimensional digital model of the parent sample and the three-dimensional digital model of the child sam- ple were proposed through low-resolution CT and high-resolution CT respectively. Based on that,the Avizo software was used to establish the pore-fracture system of coal sample,which realized the multi-scale quantitative characterization of the pore -fracture system. The results show that multi-scale pore structures develops in the No.3 coal seam of Mabidong Block in southern Qinshui Basin. Generally,the macropores are mainly C-type and the micropores are mainly E type. The overall pore connectivity is poor,and the fractures are isolated and distributed in sheets. According to the correlation of the mineral content between parent samples and child samples,it can be concluded that the large-scale fractures of the coal samples are mostly filled with minerals,which limits the percolation and production of the coalbed methane.

  • 煤层气是赋存在煤层的烃类气体,是优质清洁能源。中国煤层气资源潜力巨大,加快煤层气有效动用,有助于保障煤矿安全生产、增加清洁能源供应、减少温室气体排放[1]。生产过程中,吸附在煤岩基质微纳米孔裂隙中的煤层气通过排水降压、解吸、扩散至储层的大中孔、割理和天然微裂隙中,在压差的作用下从天然微裂缝渗流到人工裂缝或者井筒[2]。因此,精确表征和刻画煤岩的孔裂隙系统对指导煤层气的有效排采和开发具有重要的意义[3]

  • 表征煤岩孔裂隙的常规方法主要包括压汞和液氮等实验方法[4-5],该类方法主要通过注入流体测量样品的连通孔裂隙,测试过程中可能对样品内部结构产生一定的破坏,影响实验的准确性[6-7]。近年来,基于图像处理和分析技术测量煤岩的孔裂隙结构方法得到了广泛的应用[8]。其中评价煤岩平面微观特征的技术手段主要包括:高分辨率场发射扫描电镜法[9]、原子力显微镜法[10]、小角度X射线散射法[11] 和透射电子显微镜法[12] 等。表征煤岩结构及孔裂隙空间的三维展布主要依靠聚焦离子束扫描电镜(FIB-SEM)和X射线微米CT扫描技术,通过图像处理、分割等技术手段构建煤岩的三维孔裂隙网格模型,分析孔裂隙的结构特征和形态学参数。 FIB-SEM图像精度高,但剥蚀岩石区域较小、视野有限,常用于分析煤岩微米至纳米尺度储渗空间的结构与物性显现[13];X射线CT扫描技术利用X射线对岩石进行全方位、大范围快速且无损扫描并重构三维结构特征,其图像精度可达十几个微米至几个微米,相比于传统实验方法如压汞法和气体吸附法,X射线CT扫描技术具有不仅能呈现样品中孔裂隙空间分布与连通性,还能够精细定量表征煤岩孔裂隙形态、分布以及矿物分布的特点,因此该方法被广泛应用于精确表征煤岩微米-毫米级连通微裂隙特征[14-15]

  • 目前,诸多学者应用X射线CT扫描技术从单一尺度对煤岩的精细结构进行系统评价。研究主要包括:评价特定煤岩的三维孔裂隙空间分布特征[716];剖析不同煤岩类型或煤体结构煤岩的孔裂隙差异[17-18];动态监测煤岩的孔裂隙系统随外界条件的变化趋势[19-20] 及探究不同图像处理技术在煤岩评价上的优缺点等[21-22]。尽管CT扫描技术对前人探究煤岩微观结构奠定了基础,但利用该技术对煤岩多尺度孔裂隙评价的研究相对较少[23]。为此,以沁水盆地南部马必东区块煤层气开发评价井取心样品为对象,运用X射线微米CT扫描技术,借助三维可视化软件Avizo将CT图片进行处理和重建,建立研究区煤岩多尺度三维孔裂隙模型,并对煤岩的孔裂隙结构和矿物分布进行定量精细表征,以期为进一步认识研究区煤岩物性特征及后续气井的开发和改造提供借鉴。

  • 1 实验器材与方法

  • 1.1 实验器材

  • 实验仪器采用天津三英精密仪器股份有限公司生产的Nanovoxe l3502E型3D计算机断层扫描系统,仪器体素分辨率最高可达0.5 μm,扫描最大电压为190kV,最大功率为25W。

  • 实验用煤岩样品取自沁水盆地南部马必东区块某开发评价井3# 煤层,取心深度为1 130.1~1 134.9m。宏观煤岩类型为半亮型,煤岩结构为碎裂结构。实验样品包括母样和子样,母样为直接采集的取心样品(图1a),子样取自母样,经人工钻取并打磨成高度约为0.08cm、直径约为0.13cm的圆柱形煤样(图1b),其主要参数如表1所示。母样为CT粗扫的煤岩,子样为CT精扫的煤岩,其扫描方式均为步进式扫描,每次旋转0.25°,曝光时间为1 500ms,其参数参见表2。

  • 图1 实验样品照片

  • Fig.1 Experimental samples photos

  • 表1 实验样品的基本参数

  • Table1 Basic parameters of samples

  • 表2 扫描煤岩样品所使用的参数

  • Table2 Parameters for CT scanning

  • 1.2 实验方法

  • 图像处理 在样品的制备过程中,煤样边缘孔裂隙易在切割或研磨过程中被破坏,影响对煤样真实孔裂隙的观察和分析,另外,图片过多还会加重建模分析过程中的计算负担。因此在图像处理和分析过程中,从CT扫描实验得到的母样数据中选取700张连续的CT切片,将其从中心位置裁剪成1 200×700pixel大小的图片;从子样数据中选取500张连续的CT切片,将其从中心位置裁剪成800×800pixel大小的图片。

  • 在选取合适的分析区域以后,为缩小生成的CT图像与实际图像之间的偏差,采用中值滤波的方法对图像进行降噪。该方法将周围像素灰度值相差较大的像素改为与周围像素值相近的像素值来消除孤立噪声点,具有在消除图像噪声的同时能够保护图像边缘的特点。分析降噪前后的CT图片(图2)能清楚地看出,通过中值滤波法降噪后,噪声点明显减少。

  • 图像分割 图像处理后,采用分水岭算法对煤岩的孔裂隙结构进行三维重建,考虑分水岭算法对图像中噪声及细微的灰度变化产生过渡分割的现象,在CT扫描之前通过压汞实验对样品进行孔裂隙度的测定,进而通过高分辨率CT灰度图像以及Avi⁃ zo软件反复调整阈值,确保对应的孔裂隙率与实测孔裂隙率更接近。由阈值分割前后的图像对比(图3)可以看出,在图像分割后煤岩中孔裂隙、煤岩基质以及高密度矿物的分布更加明显。

  • 图2 CT图片降噪前后对比

  • Fig.2 Noise reduction of CT image

  • 图3 阈值分割前后图像对比

  • Fig.3 Thresholding segmentation image

  • CT三维煤岩结构重建 阈值分割后,为充分了解煤岩样品内部整体孔裂隙结构和矿物分布特征,利用Avizo图像处理软件,采用快速分水岭算法捕获连通孔裂隙分水岭线,以区分和提取不同的孔裂隙结构进行定量分析,建立三维孔裂隙结构。由图4a可以看出1号母样的孔裂隙规模、不同孔径孔裂隙的分布情况及连通情况(红色为连通孔裂隙,彩色为孤立孔裂隙),由图4b可以看出1号母样煤岩基质和裂隙的空间分布及接触关系,清晰显示了孔裂隙在煤岩中的分布情况(紫色为微裂隙,绿色为煤岩基质)。

  • 图4 1号母样孔裂隙结构三维示意

  • Fig.4 Three-dimensional pores and fractures structure sketch map in the No.1parent sample

  • 2 煤岩多尺度孔裂隙空间分布特征

  • 2.1 母样孔裂隙空间分布特征

  • 煤岩的宏观孔裂隙系统及矿物的充填情况对煤层气的运移和产出起决定作用,二者的分布状态直接反映了煤岩的渗透性及可改造特征。1号煤岩母样的原生割理被后期构造作用改造完全,导致相互垂直的原生割理完全不可见。母样发育3条较为明显的宏观孔裂隙,呈片状分布、延伸较远顺层展布,此外还发育大量的孤立宏观孔裂隙(图5a,蓝色为连通孔裂隙,彩色为孤立孔裂隙)。母样大部分孔裂隙均被矿物充填,连通孔裂隙主要分布在顺层方向,垂直层理方向上的孔裂隙连通较差(图5b,蓝色为连通孔裂隙,彩色为孤立孔裂隙)。

  • 2.2 子样孔裂隙空间分布特征

  • 煤层气储层作为双孔裂隙介质,除宏观孔裂隙以外,基质中还存在大量的微观孔裂隙。其中煤岩基质中的纳米级孔裂隙为煤层气的储集提供了场所,而微米级孔裂隙则作为沟通纳米级孔裂隙和宏观孔裂隙的通道,其连通程度控制了煤层气的产出。由图6可以看出,在分辨率为0.8 μm的条件下, 1号子样发育大量的微米级孔裂隙,整体上呈均匀分布的分散孔或矿物充填孔,除1条呈片状分布的孔裂隙以外,其余孔裂隙均不连通。

  • 分析母样和子样的矿物分布和孔裂隙空间分布特征,认为研究区煤岩样品微观过渡孔发育较差,采取针对性的改造措施有效地释放微观孔裂隙,是进一步提高研究区产能的方向。

  • 图5 母样宏观孔裂隙以及矿物分布

  • Fig.5 Pores,fractures and mineral distribution in parent sample

  • 图6 子样孔裂隙空间与矿物

  • Fig.6 Pores,fractures and mineral distribution in child sample

  • 3 煤岩多尺度孔裂隙结构的定量表征

  • 观察重建煤样的多尺度孔裂隙结构,定性分析其孔裂隙空间分布和矿物分布特征,是了解煤岩微观结构的直观手段,但要对孔裂隙结构进一步研究,需对孔裂隙结构微观参数进行定量计算和剖析。

  • 3.1 母样孔裂隙结构的定量表征

  • 为定量分析煤岩母样的孔裂隙结构特征,通过CT粗扫,结合Avizo图像处理对煤岩母样的孔裂隙结构和矿物分布进行单独提取和刻画,根据孔裂隙所占空间将煤岩母样的孔裂隙系统分为A—C共3种类型。A型孔裂隙为CT粗扫能够识别出的最小孔裂隙系统,单个孔裂隙体积小于107 μm3;B型孔裂隙为CT粗扫识别出的过渡孔裂隙,单个孔裂隙体积为107~109 μm3;C型孔裂隙为CT粗扫识别出的最大孔裂隙系统,单个孔裂隙体积均大于109 μm3

  • 分析结果(表3,表4)表明,3块母样的总孔裂隙体积百分比为2.46%~4.90%,裂缝平均宽度和分形维数较接近,与煤岩埋深相关性不大。总孔裂隙的主要组成为C型,A型和B型占比较低。由于3块样品的矿物含量较高,除去孤立孔裂隙后,仅有部分C型孔裂隙相连通,母样的连通孔裂隙体积百分比为1.81%~4.11%。由此可知,3块样品虽然宏观孔裂隙连通性均较好,但过渡性孔裂隙较不发育,不利于沟通次一级孔裂隙使煤层气发生扩散和运移。

  • 表3 母样的孔裂隙体积百分比和矿物含量分析结果

  • Table3 Pore volume and mineral content of parent sample

  • 表4 母样的连通孔裂隙体积百分比分析结果

  • Table4 Total connected pore volume of parent sample

  • 为深入分析母样孔裂隙结构与分布,在对孔裂隙进行整体刻画后,从单孔孔裂隙体积的角度对母样的孔裂隙数目和体积百分比进行统计分类。由图7可知,3块母样不同孔裂隙体积的孔裂隙数目随孔裂隙体积的逐渐增大而降低,而孔裂隙体积所占百分比却在孔裂隙体积达到1010 μm3以后显著增加。这说明母样宏观裂隙数目虽少,但其总孔裂隙体积占比最大。以1号母样为例,该样品仅发育4条宏观孔裂隙,但总孔裂隙体积占比达86%。

  • 3.2 子样孔裂隙结构的定量表征

  • 为定量表征煤岩子样孔裂隙结构,采用与母样类似的分析方法,利用CT扫描技术,结合Avizo图像处理对子样的孔裂隙结构和矿物分布进行单独提取和刻画,并根据孔裂隙所占空间将煤岩子样的孔裂隙系统分为D—F型共3种类型(表5)。D型孔裂隙为CT精扫能够识别出的最小孔裂隙系统,单个孔裂隙体积小于10 μm3;E型孔裂隙为CT精扫识别出的过渡孔裂隙,单个孔裂隙体积为10~1 000 μm3;F型孔裂隙为CT精扫识别出的最大孔裂隙系统,单个孔裂隙体积均大于1 000 μm3

  • 图7 母样孔裂隙体积与孔裂隙数目及体积百分比的关系

  • Fig.7 Pore number and pore volume percentage under different pore volume of parent sample

  • 分析结果(表5)表明,3块子样与母样总孔裂隙体积相关性不大,总体为1.83%~4.64%。与母样相比,子样矿物含量均偏低,进一步说明研究区矿物主要充填了样品中较大规模的宏观孔裂隙。3块子样孔裂隙以E型为主,D型和F型较少。与母样不同,子样孔裂隙除1号样品的Z方向以外均不连通。

  • 由子样不同孔裂隙体积的孔裂隙数目及对应体积百分比关系(图8)可知,子样与母样孔裂隙体积分布模式有很大区别。由于子样缺少大规模孔裂隙,随孔裂隙体积的增大,孔裂隙数目与孔裂隙体积百分比均呈先增大后减小的趋势。子样孔裂隙体积为10~100 μm3 的孔裂隙数目最多,孔裂隙体积为100~1 000 μm3 的孔裂隙体积百分比最大。

  • 表5 子样的孔裂隙体积百分比和矿物含量分析结果

  • Table5 Pore volume and mineral content of child sample

  • 图8 子样孔裂隙体积与孔裂隙数目及体积百分比的关系

  • Fig.8 Pore number and pore volume percentage under different pore volume of child sample

  • 4 结论

  • 沁水盆地马必东区块3#煤层发育多尺度孔裂隙结构,孔裂隙总体积分布比较分散,在局部区域形成连片状裂隙。煤岩孔裂隙宏观上以C型为主,微观上以E型为主。根据子样和母样矿物含量的相关性可知,样品较大规模的孔裂隙多被矿物充填,限制了煤层气的渗流和产出。认为消除孔裂隙中充填矿物的影响,进一步释放煤层气的渗流通道,是提高研究区煤层气产量的有效方式。

  • 参考文献

    • [1] 原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    • [2] SEIDLE J.Fundamentals of coalbed methane reservoir engineering [M].Tulsa:PennWell Books,2011.

    • [3] 伊伟,熊先钺,卓莹,等.韩城矿区煤储层特征及煤层气资源潜力[J].中国石油勘探,2017,22(6):78-86.YI Wei,XIONG Xianyue,ZHUO Ying,et al.Coal reservoirs and CBM potentials in Hancheng mining area[J].China Petroleum Ex⁃ ploration,2017,22(6):78-86.

    • [4] 李朋朋,张小东,杨延辉,等.不同变形程度煤的吸附时间及其影响因素[J].油气地质与采收率,2017,24(4):43-48,54.LI Pengpeng,ZHANG Xiaodong,YANG Yanhui,et al.Adsorption time of coals with different degrees of deformation and their influ⁃ encing factors[J].Petroleum Geology and Recovery Efficiency,2017,24(4):43-48,54.

    • [5] 马世忠,张宇鹏.应用压汞实验方法研究致密储层孔隙结构——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2017,24(1):26-33.MA Shizhong,ZHANG Yupeng.Study on the pore structure of tight reservoir by using method of mercury injection-A case study of the Lucaogou Formation in Jimsar sag,Junggar Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2017,24(1):26-33.

    • [6] 王刚,沈俊男,褚翔宇,等.基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J].煤炭学报,2017,42(8):2 074-2 080.WANG Gang,SHEN Junnan,CHU Xiangyu,et al.Characteriza⁃ tion and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J].Journal of China Coal Society,2017,42(8):2 074-2 080.

    • [7] QU Zhenghui,WANG Geoff G X,JIANG Bo,et al.Experimental study on the porous structure and compressibility of tectonized coals[J].Energy & Fuels,2010,24(5):2 964-2 973.

    • [8] 琚宜文,李小诗.构造煤超微结构研究新进展[J].自然科学进展,2009,19(2):131-140.JU Yiwen,LI Xiaoshi.New progress in the study of ultrastructure of tectonic coal[J].Progress in Natural Science,2009,19(2):131-140.

    • [9] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.ZHANG Hui.Genetical type of pores in coal reservoir and its re⁃ search significance[J].Journal of China Coal Society,2001,26(1):40-44.

    • [10] 姚素平,焦堃,张科,等.煤纳米孔隙结构的原子力显微镜研究 [J].科学通报,2011,56(22):1 820-1 827.YAO Suping,JIAO Kun,ZHANG KE,et al.An atomic force mi⁃ croscopy study of coal nanopore structure[J].China Science Bul⁃ letin,2011,56(22):1 820-1 827.

    • [11] 赵毅鑫,彭磊.煤纳米孔径与分形特征的同步辐射小角散射 [J].科学通报,2017,62(21):2 416-2 427.ZHAO Yixin,PENG Lei.Investigation on the size and fractal di⁃ mension of nano-pore in coals by synchrotron small angle X-ray scattering[J].Chinese Science Bulletin,2017,62(21):2 416-2 427.

    • [12] 琚宜文,姜波,侯泉林,等.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报,2005,50(17):1 884-1 892.JU Yiwen,JIANG Bo,HOU Quanlin,et al.Relationship between nano-scale deformation of coal structure and metamorphic defor⁃ mation environment[J].Chinese Science Bulletin,2005,50(17):1 884-1 892.

    • [13] WIRTH Richard.Focused Ion Beam(FIB)combined with SEM and TEM:Advanced analytical tools for studies of chemical com⁃ position,microstructure and crystal structure in geomaterials on a nanometre scale[J].Chemical Geology,2009,261(3/4):217-229.

    • [14] MATHEWS J P,CAMPBELL Q P,XU H,et al.A review of the ap⁃ plication of X-ray computed tomography to the study of coal[J].Fuel,2017,209:10-24.

    • [15] 宋晓夏,唐跃刚,李伟,等.基于显微CT的构造煤渗流孔精细表征[J].煤炭学报,2013,38(3):435-440.SONG Xiaoxia,TANG Yuegang,LI Wei,et al.Advanced charac⁃ terization of seepage pores in deformed coals based on micro-CT [J].Journal of China Coal Society,2013,38(3):435-440.

    • [16] LI Zhentao,LIU Dameng,CAI Yidong,et al.Multi-scale quantita⁃ tive characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT [J].Fuel,2017,209(1):43-53.

    • [17] 刘玉龙,汤达祯,许浩,等.基于 X-CT 技术不同煤岩类型煤储层非均质性表征[J].煤炭科学技术,2017,45(3):141-146.LIU Yulong,TANG Dazhen,XU Hao,et al.Description of coal res⁃ ervoir heterogeneity under different lithotypes based on X-CT technology[J].Coal Science and Technology,2017,45(3):141-146.

    • [18] 李伟,要惠芳,刘鸿福,等.基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014,39(6):1 127-1 132.LI Wei,YAO Huifang,LIU Hongfu,et al.Advanced characteriza⁃ tion of three-dimensional pores in coals with different coal-body structure by micro-CT[J].Journal of China Coal Society,2014,39(6):1 127-1 132.

    • [19] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

    • [20] 何岩峰,赵虹宇,窦祥骥,等.考虑应力敏感的页岩储层纳米孔隙渗透率计算模型[J].大庆石油地质与开发,2018,37(6):151-157.HE Yanfeng,ZHAO Hongyu,DOU Xiangji,et al.Calculating mod⁃ el of the nano-pore permeability in the shale reservoir consider⁃ ing the stress sensitivity[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(6):151-157.

    • [21] WANG Yuzhu,RAHMAN Sheik S,ARNS Christoph H.Super res⁃ olution reconstruction of μ-CT image of rock sample using neigh⁃ bour embedding algorithm[J].Physica A:Statistical Mechanics and its Applications,2018,493(1):177-188.

    • [22] JING Yu,ARMSTRONG Ryan T,MOSTAGHIMI Peyman.Impact of mineralization on digital coal properties[J].Energy & Fuels,2017,31(11):11 558-11 568.

    • [23] 唐雁刚,张荣虎,魏红兴,等.致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J].特种油气藏,2018,25(5):30-34.TANG Yangang,ZHANG Ronghu,WEI Hongxing,et al.Quantita⁃ tive permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J].Spe⁃ cial Oil & Gas Reservoirs,2018,25(5):30-34.

  • 参考文献

    • [1] 原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    • [2] SEIDLE J.Fundamentals of coalbed methane reservoir engineering [M].Tulsa:PennWell Books,2011.

    • [3] 伊伟,熊先钺,卓莹,等.韩城矿区煤储层特征及煤层气资源潜力[J].中国石油勘探,2017,22(6):78-86.YI Wei,XIONG Xianyue,ZHUO Ying,et al.Coal reservoirs and CBM potentials in Hancheng mining area[J].China Petroleum Ex⁃ ploration,2017,22(6):78-86.

    • [4] 李朋朋,张小东,杨延辉,等.不同变形程度煤的吸附时间及其影响因素[J].油气地质与采收率,2017,24(4):43-48,54.LI Pengpeng,ZHANG Xiaodong,YANG Yanhui,et al.Adsorption time of coals with different degrees of deformation and their influ⁃ encing factors[J].Petroleum Geology and Recovery Efficiency,2017,24(4):43-48,54.

    • [5] 马世忠,张宇鹏.应用压汞实验方法研究致密储层孔隙结构——以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].油气地质与采收率,2017,24(1):26-33.MA Shizhong,ZHANG Yupeng.Study on the pore structure of tight reservoir by using method of mercury injection-A case study of the Lucaogou Formation in Jimsar sag,Junggar Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2017,24(1):26-33.

    • [6] 王刚,沈俊男,褚翔宇,等.基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J].煤炭学报,2017,42(8):2 074-2 080.WANG Gang,SHEN Junnan,CHU Xiangyu,et al.Characteriza⁃ tion and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J].Journal of China Coal Society,2017,42(8):2 074-2 080.

    • [7] QU Zhenghui,WANG Geoff G X,JIANG Bo,et al.Experimental study on the porous structure and compressibility of tectonized coals[J].Energy & Fuels,2010,24(5):2 964-2 973.

    • [8] 琚宜文,李小诗.构造煤超微结构研究新进展[J].自然科学进展,2009,19(2):131-140.JU Yiwen,LI Xiaoshi.New progress in the study of ultrastructure of tectonic coal[J].Progress in Natural Science,2009,19(2):131-140.

    • [9] 张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.ZHANG Hui.Genetical type of pores in coal reservoir and its re⁃ search significance[J].Journal of China Coal Society,2001,26(1):40-44.

    • [10] 姚素平,焦堃,张科,等.煤纳米孔隙结构的原子力显微镜研究 [J].科学通报,2011,56(22):1 820-1 827.YAO Suping,JIAO Kun,ZHANG KE,et al.An atomic force mi⁃ croscopy study of coal nanopore structure[J].China Science Bul⁃ letin,2011,56(22):1 820-1 827.

    • [11] 赵毅鑫,彭磊.煤纳米孔径与分形特征的同步辐射小角散射 [J].科学通报,2017,62(21):2 416-2 427.ZHAO Yixin,PENG Lei.Investigation on the size and fractal di⁃ mension of nano-pore in coals by synchrotron small angle X-ray scattering[J].Chinese Science Bulletin,2017,62(21):2 416-2 427.

    • [12] 琚宜文,姜波,侯泉林,等.煤岩结构纳米级变形与变质变形环境的关系[J].科学通报,2005,50(17):1 884-1 892.JU Yiwen,JIANG Bo,HOU Quanlin,et al.Relationship between nano-scale deformation of coal structure and metamorphic defor⁃ mation environment[J].Chinese Science Bulletin,2005,50(17):1 884-1 892.

    • [13] WIRTH Richard.Focused Ion Beam(FIB)combined with SEM and TEM:Advanced analytical tools for studies of chemical com⁃ position,microstructure and crystal structure in geomaterials on a nanometre scale[J].Chemical Geology,2009,261(3/4):217-229.

    • [14] MATHEWS J P,CAMPBELL Q P,XU H,et al.A review of the ap⁃ plication of X-ray computed tomography to the study of coal[J].Fuel,2017,209:10-24.

    • [15] 宋晓夏,唐跃刚,李伟,等.基于显微CT的构造煤渗流孔精细表征[J].煤炭学报,2013,38(3):435-440.SONG Xiaoxia,TANG Yuegang,LI Wei,et al.Advanced charac⁃ terization of seepage pores in deformed coals based on micro-CT [J].Journal of China Coal Society,2013,38(3):435-440.

    • [16] LI Zhentao,LIU Dameng,CAI Yidong,et al.Multi-scale quantita⁃ tive characterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray μ-CT [J].Fuel,2017,209(1):43-53.

    • [17] 刘玉龙,汤达祯,许浩,等.基于 X-CT 技术不同煤岩类型煤储层非均质性表征[J].煤炭科学技术,2017,45(3):141-146.LIU Yulong,TANG Dazhen,XU Hao,et al.Description of coal res⁃ ervoir heterogeneity under different lithotypes based on X-CT technology[J].Coal Science and Technology,2017,45(3):141-146.

    • [18] 李伟,要惠芳,刘鸿福,等.基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014,39(6):1 127-1 132.LI Wei,YAO Huifang,LIU Hongfu,et al.Advanced characteriza⁃ tion of three-dimensional pores in coals with different coal-body structure by micro-CT[J].Journal of China Coal Society,2014,39(6):1 127-1 132.

    • [19] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

    • [20] 何岩峰,赵虹宇,窦祥骥,等.考虑应力敏感的页岩储层纳米孔隙渗透率计算模型[J].大庆石油地质与开发,2018,37(6):151-157.HE Yanfeng,ZHAO Hongyu,DOU Xiangji,et al.Calculating mod⁃ el of the nano-pore permeability in the shale reservoir consider⁃ ing the stress sensitivity[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(6):151-157.

    • [21] WANG Yuzhu,RAHMAN Sheik S,ARNS Christoph H.Super res⁃ olution reconstruction of μ-CT image of rock sample using neigh⁃ bour embedding algorithm[J].Physica A:Statistical Mechanics and its Applications,2018,493(1):177-188.

    • [22] JING Yu,ARMSTRONG Ryan T,MOSTAGHIMI Peyman.Impact of mineralization on digital coal properties[J].Energy & Fuels,2017,31(11):11 558-11 568.

    • [23] 唐雁刚,张荣虎,魏红兴,等.致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J].特种油气藏,2018,25(5):30-34.TANG Yangang,ZHANG Ronghu,WEI Hongxing,et al.Quantita⁃ tive permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J].Spe⁃ cial Oil & Gas Reservoirs,2018,25(5):30-34.