en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

卢川(1987—),男,四川营山人,工程师,博士,从事稠油热采和油藏数值模拟等方面的研究。联系电话:(010)84524823,E-mail:luchuan2106@163.com。

中图分类号:TE345

文献标识码:A

文章编号:1009-9603(2019)05-0107-05

DOI:10.13673/j.cnki.cn37-1359/te.2019.05.014

参考文献 1
JIMENEZ J.The field performance of SAGD projects in Canada [C].Malaysia:International Petroleum Technology Conference,2008.
参考文献 2
KATHY C.SAGD well pair spacing evaluation with consideration of central processing facility constraints[C].Calgary:SPE Heavy Oil Conference,2013.
参考文献 3
陈元千.双水平井注蒸汽开采重质油藏GASD产能计算公式的推导与对比[J].油气地质与采收率,2018,25(3):77-81.CHEN Yuanqian.Derivation and comparison of the GASD produc⁃ tivity calculation formula of steam flooding in dual-horizontal well for recovery of heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(3):77-81.
参考文献 4
孙启冀,吕延防,李琳琳,等.复合型井组蒸汽辅助重力泄油开发三维势分布规律[J].油气地质与采收率,2017,24(3):71-77.SUN Qiji,LÜ Yanfang,LI Linlin,et al.Three-dimensional poten⁃ tial distribution of composite well group in SAGD process[J].Pe⁃ troleum Geology and Recovery Efficiency,2017,24(3):71-77.
参考文献 5
但松林,刘尚奇,罗艳艳,等.基于BP神经网络预测高含水层对SAGD开发效果的影响[J].大庆石油地质与开发,2019,38(2):73-80.DAN Songlin,LIU Shangqi,LUO Yanyan,et al.Predicted SAGD development effects by BP neural network for the high-watercut reservoir[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2019,38(2):73-80
参考文献 6
何万军,木合塔尔,董宏,等.风城油田重37井区SAGD开发提高采收率技术[J].新疆石油地质,2015,36(4):483-486.HE Wanjun,MUHETAER,DONG Hong,et al.EOR technologies of SAGD development in Zhong-37 wellblock,Fengcheng oil⁃ field,Junggar basin[J].Xinjiang Petroleum Geology,2015,36(4):483-486.
参考文献 7
杨智,赵睿,高志谦,等.浅层超稠油双水平井SAGD立体井网开发模式研究[J].特种油气藏,2015,22(6):104-107.YANG Zhi,ZHAO Rui,GAO Zhiqian,et al.Study on SAGD ste⁃ reo well pattern development mode of dual horizontal wells for shallow extra heavy oil[J].Special Oil & Gas Reservoirs,2015,22(6):104-107.
参考文献 8
HU Changhao,ZHANG Tiantian,WANG Zhongyuan,et al.Study on development well pattern of combined steam drive and gravity drainage in a reservoir with interbeds and its application:a case study[C].Oman:SPE EOR Conference at Oil and Gas West Asia,2018.
参考文献 9
KONSTANTIN F,ALEKSANDR G,ALEKSANDR S.Comparative analysis of different well patterns for steam-assisted gravity drain⁃ age[C].Russia:SPE Russian Petroleum Technology Conference,2018.
参考文献 10
BULTER R M.A new approach to the modeling of steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1985,24(3):42-51.
参考文献 11
BULTER R M.Some recent developments in SAGD[J].Journal of Canadian Petroleum Technology,2001,40(1):18-22.
参考文献 12
BULTER R M.A new approach to the modeling of steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1985,24(3):42-51.
参考文献 13
霍进,樊玉新,桑林翔,等.浅层超稠油蒸汽辅助重力泄油开发理论与实践[M].北京:石油工业出版社,2014:147.HUO Jin,FAN Yuxin,SANG Linxiang,et al.Theory and practice of steam assisted gravity drainage in shallow super heavy oil reser⁃ voir[M].Beijing:Petroleum Industry Press,2014:147.
参考文献 14
周游,鹿腾,武守亚,等.双水平井蒸汽辅助重力泄油蒸汽腔扩展速度计算模型及其应用[J].石油勘探与开发,2019,46(2):334-341.ZHOU You,LU Teng,WU Shouya,et al.Models of steam-assisted gravity drainage(SAGD)steam chamber expanding velocity in double horizontal wells and its application[J].Petroleum Explora⁃ tion and Development,2019,46(2):334-341.
参考文献 15
赵睿,罗池辉,陈河青,等.鱼骨注汽水平井SAGD在风城油田超稠油油藏中的应用[J].新疆石油地质,2017,38(5):611-615.ZHAO Rui,LUO Chihui,CHEN Heqing,et al.Application of SAGD technology with fishbone steam-injection horizontal well in super heavy oil reservoirs[J].Xinjiang Petroleum Geology,2017,38(5):611-615.
参考文献 16
谢华锋,王健,黄海平,等.储层流体非均质性对加拿大油砂热采的影响[J].油气地质与采收率,2016,23(6):94-98,104.XIE Huafeng,WANG Jian,HUANG Haiping,et al.Influence of fluid heterogeneity on SAGD in Canadian oil sands[J].Petroleum Geology and Recovery Efficiency,2016,23(6):94-98,104.
参考文献 17
陶亮,李凌铎,袁玉晓,等.超稠油非均质油藏直井-水平井SAGD精细化调控研究[J].特种油气藏,2018,25(2):80-84.TAO Liang,LI Lingduo,YUAN Yuxiao,et al.Fine control of verti⁃ cal-horizontal SAGDD in super-heavy oil heterogeneous reservoir [J].Special Oil & Gas Reservoirs,2018,25(2):80-84.
目录contents

    摘要

    为确保油砂蒸汽辅助重力泄油的开发效果和经济效益,对加拿大长湖油田拟开发 A区开展合理井距优选研究。首先,根据地质参数分布范围,以累积产油量为评价指标,筛选地质主控因素;其次,利用数值模拟方法,明确单一地质主控因素对开发指标的影响规律;最后,考虑钻完井投资和原油价格等经济参数,以净现值为评价标准,评价复合地质因素下不同井距经济效益,形成一套综合考虑地质条件、开发效果和经济效益的合理井距优选方法及流程,实现目标油价下合理井距的快速优选。对于长湖油田拟开发 A区,油层厚度、夹层范围、层间高含水饱和度层厚度、顶部水层厚度是影响开发效果的4大地质主控因素。根据拟开发A区的参数值,选取油层厚度为25 m,夹层范围为60%,层间高含水饱和度层厚度为3.7 m,顶部水层厚度为2.2 m,当油价为50美元/bbl时,推荐经济合理井距为102 m,与实际模型所计算的最大净现值对应井距(100 m)基本一致。

    Abstract

    In order to ensure the performance and economic benefits of oil sands developed by steam-assisted gravity drain- age(SAGD),well spacing evaluation is performed for Block A in Longlake Oilfield,Canada. Firstly,according to the distri- bution of geological parameters of the area,the cumulative oil production is used as the evaluation index to screen the main geological controlling factors. Secondly,numerical simulation is used to clarify the influence of single main geological con- trolling factor on development indicators. Finally,considering the well drilling and completion investment,crude oil price, and other economic parameters,the net present value is used as the indicator to evaluate the economic benefits of various well spacing under the complex geological factors. An optimal screening method and the process to optimize SAGD well spacing are obtained by comprehensively considering geological conditions,development effects,and economic benefits. The preferred method and process achieve a rapid optimization of reasonable well spacing at a target oil price. For Block A in Longlake Oilfield,oil layer thickness,interbed distribution,high water saturation interlayer thickness,and top water lay- er thickness are four main geological controlling factors. According to the geological parameters of Block A,the average thickness of the preferred oil layer is 25 m,the interbed distribution is 60%,the high water saturation interlayer thickness is 3.7 m,and the top water layer thickness is 2.2 m. When the oil price is 50 US dollars per barrel,the recommended well spacing is 102 m,which is close to the well spacing(100 m)calculated by the actual model corresponding to the maximum net present value.

  • 在双水平井蒸汽辅助重力泄油(SAGD)过程中,平面上水平注采井对间的距离(简称井距)将对蒸汽腔扩展和开发效果产生重要影响[1-5]。目前SAGD井距的选取主要有3种方法:一是类比法,根据行业内相似油田的开发经验,选取目标油田的井距[6-9]。二是理论公式法,依据Bulter重力泄油理论,按照井距之半为油层厚度的1.0~2.0倍进行选择[10-12]。三是数值模拟法,通过建立目标区油藏数值模拟模型,计算不同井距条件下的油藏开发指标,优选井距[13-17]。类比法以实际相似油田开发为依据,但类比精度具有较大不确定性。理论公式法基于均质油藏推导得到,无法考虑复杂地质因素影响。数值模拟法前期需大量精细地质建模和油藏数值模拟工作,资料需求量大。针对加拿大长湖油田拟开发A区,在优先筛选地质主控因素基础上,以经济指标为优选依据,确定复合地质因素影响下SAGD合理井距,形成一套可推广的井距优选方法和流程。

  • 1 拟开发A区概况

  • 拟开发A区位于加拿大长湖油田南部。油层中部埋深为270m,对应油层压力为1 100kPa,平均孔隙度为32%,平均水平渗透率为3 400mD,平均垂向渗透率为2 200mD,地层温度为10℃,地层原油黏度约为1.0×106 mPa·s。拟采用双水平井SAGD方式开发。根据储层底部构造变化确定水平井布井方向后,得到A区沿水平井方向长度约为900m,垂直水平井方向宽度约为600m。区域内平均油层厚度为25m。油层顶部水层发育,平均含水饱和度为95%,平均厚度为2.2m。油层中部广泛发育层间高含水饱和度层和低渗透夹层。层间高含水饱和度层平均含水饱和度为65%,平均厚度为3.7m。夹层平均渗透率为200mD,平均厚度为1.7m,在拟开发A区展布范围约为60%。

  • 2 合理井距优选

  • 2.1 地质主控因素筛选

  • 根据A区基本地质参数,利用数值模拟方法建立基础模型,研究并筛选井距的地质主控因素。基础模型沿水平井方向(即I方向)长度为100m,模拟百米井长的开发效果,网格步长为50m;垂直水平井方向(即J方向)宽度为600m,网格步长为2m;油藏深度方向(即 K方向)网格步长为1m。注采井间垂向距离为5m。模拟75和150m井距,对应井对数分别为8和4。采用6因素5水平正交设计方案,共50组。地质因素和水平参数如表1所示。

  • 表1 地质因素及水平参数

  • Table1 Geological factors and parameters in horizontal direction

  • 以生产15a累积产油量为评价指标,在75m井距下油层厚度(H e)、顶部水层厚度(H t)、层间高含水饱和度层厚度(H i)、层间高含水饱和度层范围、夹层厚度、夹层范围(E b)6因素的极差结果分别为27.81× 104,2.66×104,2.67×104,1.65×104,0.87×104 和10.02× 104 m3;在150m井距下6因素的极差结果分别为30.86×104,6.00×104,6.53×104,5.77×104,5.38×104 和12.14×104 m3;可见极差由大到小排序依次为油层厚度、夹层范围、层间高含水饱和度层厚度、顶部水层厚度、层间高含水饱和度层范围、夹层厚度。不同井距条件下,油层厚度和夹层范围均为影响累积产油量最重要的地质因素。因此,确定影响SAGD开发效果的地质主控因素依次为油层厚度、夹层范围、层间高含水饱和度层厚度、顶部水层厚度。

  • 2.2 技术合理井距确定

  • 根据筛选出的地质主控因素,以高峰日产油量和采出程度为评价指标,确定不同井距对SAGD开发效果的影响。由单一地质主控因素影响下评价指标随井距的变化(图1)可知,在4种单一地质主控因素影响下,随井距增大,高峰日产油量和采出程度均呈逐渐减小的趋势。但从变化幅度可知,井距对高峰日产油量的影响程度大于对采出程度的影响程度。仅从技术角度考虑,为获得更高的高峰日产油量和采出程度,应尽量选择较小井距。

  • 2.3 经济合理井距优选

  • 结合长湖油田SAGD开发成本,对不同井距下的经济效益进行评价。长湖油田油砂SAGD开发单注采井对钻完井成本约为296×104 美元/井对,注入蒸汽的发生成本约为7.07美元/m3,折现率取值为11%,不考虑分摊地面工程建设投资。以净现值(NPV)为评价指标,计算不同油价下、不同单一地质主控因素下不同井距方案的经济效益。

  • 图1 单一地质主控因素影响下评价指标随井距的变化

  • Fig.1 Variation of evaluation index along with well spacing under single geological factor

  • 当油层厚度为15,25和35m,油价为50和70美元/bbl时,NPV 随井距的变化(图2)可见,当油价为50美元/bbl时,随井距增加,NPV 逐渐增大;当油价为70美元/bbl时,油层厚度为15和25m时,随井距增加,NPV逐渐增大,油层厚度为35m时,NPV随井距增加先增大后减小,井距为100m对应NPV最大,其值为2 817×104 美元。可见经济条件和油层条件是影响井距的敏感因素。

  • 图2 不同油价、不同油层厚度条件下NPV随井距的变化

  • Fig.2 Variation of NPV along with well spacing under different oil prices and reservoir thickness

  • 由于不同油价、不同因素水平下NPV差异较大,为方便对比,对NPV进行归一化处理,其表达式为:

  • NPV归一化 =NPVi-NPVmin NPVmax -NPVmin
    (1)
  • 从而得到单一地质主控因素条件下归一化 NPV 随井距的变化(图3)。归一化 NPV 越大,经济性越好。与技术合理井距研究结果不同,在不同地质主控因素条件下,油价将对井距优选产生重要影响。

  • 对于实际开发区块,井距的选择受多种地质因素共同影响。综合考虑各地质主控因素归一化 NPV随井距变化和各因素影响权重,计算不同油价下复合地质因素影响下综合归一化 NPV,其表达式为:

  • NPV综合一化 =fj×NPV地质主控因素 j -归一化
    (2)
  • 综合归一化 NPV 最大值对应的井距即为目标区块拟布井区的推荐井距。

  • 根据拟开发A区油层平均厚度、夹层展布范围、层间高含水饱和度层厚度和顶部水层厚度,选取层间高含水饱和度层厚度为4.0m,顶部水层厚度为2.0m,油层厚度为25m,夹层范围为60%,当目标油价为50美元/bbl时,得到4因素对应的归一化NPV,从而得到综合归一化 NPV(图4)。综合归一化 NPV 最大值为0.813,得到拟开发A区推荐经济合理井距为102m。

  • 图3 不同油价、单一地质主控因素条件下归一化NPV随井距的变化

  • Fig.3 Variation of normalized NPV along with well spacing under different oil prices and single geological factor

  • 图4 综合归一化NPV随井距的变化

  • Fig.4 Variation of comprehensive normalized NPV along with well spacing

  • 3 井距优选流程及合理性验证

  • 根据合理井距优选,可形成SAGD双水平井开发井距优选流程(图5)。在筛选目标油田拟布井区地质主控因素基础上,分别确定单一地质主控因素下经济指标随井距变化规律。考虑不同因素的影响程度,确定复合地质因素影响下的合理井距。

  • 为进一步验证井距优选方法结果的合理性,在建立拟开发A区实际精细油藏模型后,选取井距分别为80,100和120m进行开发指标预测,并对模拟结果采用相同经济参数进行评价,得到油价为50美元/bbl时,NPV 分别为1 218.5 × 104,1 614.1 × 104, 921.1×104 美元。NPV 最大值对应井距为100m,与所提出的井距优选方法推荐的102m基本一致。因此,利用该方法可实现对拟开发区井距的快速优选。

  • 图5 复合地质因素影响下井距优选流程

  • Fig.5 Screening process of well spacing under multiple geological parameters

  • 4 结论

  • 影响双水平井SAGD开发效果的地质主控因素为油层厚度、夹层范围、层间高含水饱和度层厚度、顶部水层厚度。

  • 在不考虑经济效益前提下,SAGD井距减小有利于获得更高的高峰日产油量和采出程度。

  • 长湖油田拟开发A区油层平均厚度为25m,夹层展布范围为60%,层间高含水饱和度层厚度为3.7m,顶部水层厚度为2.2m,在油价为50美元/bbl时,推荐经济合理井距为102m。

  • 针对目标区块,明确地质主控因素并考虑各因素对经济指标的影响权重,建立复合地质因素下SAGD井距优选方法,可实现对目标区井距的快速优选。

  • 符号解释

  • NPV归一化——归一化净现值;NPVi ——第 i 个井距对应的净现值,104 美元;i ——井距取值由小到大时的井距个数; NPV ——净现值,104美元;NPV综合归一化——综合归一化净现值;fj ——对应的第 j个地质主控因素的影响权重,依次取值为0.4,0.3,0.2,0.1;j ——地质主控因素的序号,1,2,3,4依次为油层厚度、夹层范围、层间高含水饱和度层范围、顶部水层厚度;NPV地质主控因素j-归一化——地质主控因素 j对应的归一化净现值。

  • 参考文献

    • [1] JIMENEZ J.The field performance of SAGD projects in Canada [C].Malaysia:International Petroleum Technology Conference,2008.

    • [2] KATHY C.SAGD well pair spacing evaluation with consideration of central processing facility constraints[C].Calgary:SPE Heavy Oil Conference,2013.

    • [3] 陈元千.双水平井注蒸汽开采重质油藏GASD产能计算公式的推导与对比[J].油气地质与采收率,2018,25(3):77-81.CHEN Yuanqian.Derivation and comparison of the GASD produc⁃ tivity calculation formula of steam flooding in dual-horizontal well for recovery of heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(3):77-81.

    • [4] 孙启冀,吕延防,李琳琳,等.复合型井组蒸汽辅助重力泄油开发三维势分布规律[J].油气地质与采收率,2017,24(3):71-77.SUN Qiji,LÜ Yanfang,LI Linlin,et al.Three-dimensional poten⁃ tial distribution of composite well group in SAGD process[J].Pe⁃ troleum Geology and Recovery Efficiency,2017,24(3):71-77.

    • [5] 但松林,刘尚奇,罗艳艳,等.基于BP神经网络预测高含水层对SAGD开发效果的影响[J].大庆石油地质与开发,2019,38(2):73-80.DAN Songlin,LIU Shangqi,LUO Yanyan,et al.Predicted SAGD development effects by BP neural network for the high-watercut reservoir[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2019,38(2):73-80

    • [6] 何万军,木合塔尔,董宏,等.风城油田重37井区SAGD开发提高采收率技术[J].新疆石油地质,2015,36(4):483-486.HE Wanjun,MUHETAER,DONG Hong,et al.EOR technologies of SAGD development in Zhong-37 wellblock,Fengcheng oil⁃ field,Junggar basin[J].Xinjiang Petroleum Geology,2015,36(4):483-486.

    • [7] 杨智,赵睿,高志谦,等.浅层超稠油双水平井SAGD立体井网开发模式研究[J].特种油气藏,2015,22(6):104-107.YANG Zhi,ZHAO Rui,GAO Zhiqian,et al.Study on SAGD ste⁃ reo well pattern development mode of dual horizontal wells for shallow extra heavy oil[J].Special Oil & Gas Reservoirs,2015,22(6):104-107.

    • [8] HU Changhao,ZHANG Tiantian,WANG Zhongyuan,et al.Study on development well pattern of combined steam drive and gravity drainage in a reservoir with interbeds and its application:a case study[C].Oman:SPE EOR Conference at Oil and Gas West Asia,2018.

    • [9] KONSTANTIN F,ALEKSANDR G,ALEKSANDR S.Comparative analysis of different well patterns for steam-assisted gravity drain⁃ age[C].Russia:SPE Russian Petroleum Technology Conference,2018.

    • [10] BULTER R M.A new approach to the modeling of steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1985,24(3):42-51.

    • [11] BULTER R M.Some recent developments in SAGD[J].Journal of Canadian Petroleum Technology,2001,40(1):18-22.

    • [12] BULTER R M.A new approach to the modeling of steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1985,24(3):42-51.

    • [13] 霍进,樊玉新,桑林翔,等.浅层超稠油蒸汽辅助重力泄油开发理论与实践[M].北京:石油工业出版社,2014:147.HUO Jin,FAN Yuxin,SANG Linxiang,et al.Theory and practice of steam assisted gravity drainage in shallow super heavy oil reser⁃ voir[M].Beijing:Petroleum Industry Press,2014:147.

    • [14] 周游,鹿腾,武守亚,等.双水平井蒸汽辅助重力泄油蒸汽腔扩展速度计算模型及其应用[J].石油勘探与开发,2019,46(2):334-341.ZHOU You,LU Teng,WU Shouya,et al.Models of steam-assisted gravity drainage(SAGD)steam chamber expanding velocity in double horizontal wells and its application[J].Petroleum Explora⁃ tion and Development,2019,46(2):334-341.

    • [15] 赵睿,罗池辉,陈河青,等.鱼骨注汽水平井SAGD在风城油田超稠油油藏中的应用[J].新疆石油地质,2017,38(5):611-615.ZHAO Rui,LUO Chihui,CHEN Heqing,et al.Application of SAGD technology with fishbone steam-injection horizontal well in super heavy oil reservoirs[J].Xinjiang Petroleum Geology,2017,38(5):611-615.

    • [16] 谢华锋,王健,黄海平,等.储层流体非均质性对加拿大油砂热采的影响[J].油气地质与采收率,2016,23(6):94-98,104.XIE Huafeng,WANG Jian,HUANG Haiping,et al.Influence of fluid heterogeneity on SAGD in Canadian oil sands[J].Petroleum Geology and Recovery Efficiency,2016,23(6):94-98,104.

    • [17] 陶亮,李凌铎,袁玉晓,等.超稠油非均质油藏直井-水平井SAGD精细化调控研究[J].特种油气藏,2018,25(2):80-84.TAO Liang,LI Lingduo,YUAN Yuxiao,et al.Fine control of verti⁃ cal-horizontal SAGDD in super-heavy oil heterogeneous reservoir [J].Special Oil & Gas Reservoirs,2018,25(2):80-84.

  • 参考文献

    • [1] JIMENEZ J.The field performance of SAGD projects in Canada [C].Malaysia:International Petroleum Technology Conference,2008.

    • [2] KATHY C.SAGD well pair spacing evaluation with consideration of central processing facility constraints[C].Calgary:SPE Heavy Oil Conference,2013.

    • [3] 陈元千.双水平井注蒸汽开采重质油藏GASD产能计算公式的推导与对比[J].油气地质与采收率,2018,25(3):77-81.CHEN Yuanqian.Derivation and comparison of the GASD produc⁃ tivity calculation formula of steam flooding in dual-horizontal well for recovery of heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(3):77-81.

    • [4] 孙启冀,吕延防,李琳琳,等.复合型井组蒸汽辅助重力泄油开发三维势分布规律[J].油气地质与采收率,2017,24(3):71-77.SUN Qiji,LÜ Yanfang,LI Linlin,et al.Three-dimensional poten⁃ tial distribution of composite well group in SAGD process[J].Pe⁃ troleum Geology and Recovery Efficiency,2017,24(3):71-77.

    • [5] 但松林,刘尚奇,罗艳艳,等.基于BP神经网络预测高含水层对SAGD开发效果的影响[J].大庆石油地质与开发,2019,38(2):73-80.DAN Songlin,LIU Shangqi,LUO Yanyan,et al.Predicted SAGD development effects by BP neural network for the high-watercut reservoir[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2019,38(2):73-80

    • [6] 何万军,木合塔尔,董宏,等.风城油田重37井区SAGD开发提高采收率技术[J].新疆石油地质,2015,36(4):483-486.HE Wanjun,MUHETAER,DONG Hong,et al.EOR technologies of SAGD development in Zhong-37 wellblock,Fengcheng oil⁃ field,Junggar basin[J].Xinjiang Petroleum Geology,2015,36(4):483-486.

    • [7] 杨智,赵睿,高志谦,等.浅层超稠油双水平井SAGD立体井网开发模式研究[J].特种油气藏,2015,22(6):104-107.YANG Zhi,ZHAO Rui,GAO Zhiqian,et al.Study on SAGD ste⁃ reo well pattern development mode of dual horizontal wells for shallow extra heavy oil[J].Special Oil & Gas Reservoirs,2015,22(6):104-107.

    • [8] HU Changhao,ZHANG Tiantian,WANG Zhongyuan,et al.Study on development well pattern of combined steam drive and gravity drainage in a reservoir with interbeds and its application:a case study[C].Oman:SPE EOR Conference at Oil and Gas West Asia,2018.

    • [9] KONSTANTIN F,ALEKSANDR G,ALEKSANDR S.Comparative analysis of different well patterns for steam-assisted gravity drain⁃ age[C].Russia:SPE Russian Petroleum Technology Conference,2018.

    • [10] BULTER R M.A new approach to the modeling of steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1985,24(3):42-51.

    • [11] BULTER R M.Some recent developments in SAGD[J].Journal of Canadian Petroleum Technology,2001,40(1):18-22.

    • [12] BULTER R M.A new approach to the modeling of steam-assisted gravity drainage[J].Journal of Canadian Petroleum Technology,1985,24(3):42-51.

    • [13] 霍进,樊玉新,桑林翔,等.浅层超稠油蒸汽辅助重力泄油开发理论与实践[M].北京:石油工业出版社,2014:147.HUO Jin,FAN Yuxin,SANG Linxiang,et al.Theory and practice of steam assisted gravity drainage in shallow super heavy oil reser⁃ voir[M].Beijing:Petroleum Industry Press,2014:147.

    • [14] 周游,鹿腾,武守亚,等.双水平井蒸汽辅助重力泄油蒸汽腔扩展速度计算模型及其应用[J].石油勘探与开发,2019,46(2):334-341.ZHOU You,LU Teng,WU Shouya,et al.Models of steam-assisted gravity drainage(SAGD)steam chamber expanding velocity in double horizontal wells and its application[J].Petroleum Explora⁃ tion and Development,2019,46(2):334-341.

    • [15] 赵睿,罗池辉,陈河青,等.鱼骨注汽水平井SAGD在风城油田超稠油油藏中的应用[J].新疆石油地质,2017,38(5):611-615.ZHAO Rui,LUO Chihui,CHEN Heqing,et al.Application of SAGD technology with fishbone steam-injection horizontal well in super heavy oil reservoirs[J].Xinjiang Petroleum Geology,2017,38(5):611-615.

    • [16] 谢华锋,王健,黄海平,等.储层流体非均质性对加拿大油砂热采的影响[J].油气地质与采收率,2016,23(6):94-98,104.XIE Huafeng,WANG Jian,HUANG Haiping,et al.Influence of fluid heterogeneity on SAGD in Canadian oil sands[J].Petroleum Geology and Recovery Efficiency,2016,23(6):94-98,104.

    • [17] 陶亮,李凌铎,袁玉晓,等.超稠油非均质油藏直井-水平井SAGD精细化调控研究[J].特种油气藏,2018,25(2):80-84.TAO Liang,LI Lingduo,YUAN Yuxiao,et al.Fine control of verti⁃ cal-horizontal SAGDD in super-heavy oil heterogeneous reservoir [J].Special Oil & Gas Reservoirs,2018,25(2):80-84.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告