en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

肖武(1975—),男,江西萍乡人,高级工程师,博士,从事油气田开发及战略规划研究。联系电话:(0546)8715217,E-mail:xiaowu.slyt@sinopec.com。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2019)05-0127-05

DOI:10.13673/j.cnki.cn37-1359/te.2019.05.017

参考文献 1
胡景双,邵先杰,马平华,等.复杂小断块油田中高含水期开发调整实践[J].断块油气田,2010,17(2):202-205.HU Jingshuang,SHAO Xianjie,MA Pinghua,et al.Practice of de⁃ velopment adjusting at medium-high water cut stage for complex small fault-block oilfield[J].Fault-Block Oil & Gas Field,2010,17(2):202-205.
参考文献 2
吴晓慧.大庆长垣油田特高含水期水驱精细挖潜措施后产量变化规律[J].大庆石油地质与开发,2018,37(5):71-75.WU Xiaohui.Changed laws of the production after waterflooding finely-tapped-potential stimulations for Daqing Placanticline Oil⁃ fields at the stage of extra-high watercut[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(5):71-75.
参考文献 3
邓学峰,赵辉,沈文洁,等.基于井间连通性的油藏注采调整优化方法[J].特种油气藏,2018,25(6):101-104.DENG Xuefeng,ZHAO Hui,SHEN Wenjie,et al.Reservoir injec⁃ tion-production optimization based on inter-well connectivity[J].Special Oil & Gas Reservoirs,2018,25(6):101-104.
参考文献 4
刘晨,张金庆,周文胜,等.海上中高含水油田提液潜力动态计算方法[J].油气地质与采收率,2017,24(4):110-115.LIU Chen,ZHANG Jinqing,ZHOU Wensheng,et al.Dynamic cal⁃ culation method for liquid production increase potential of off⁃ shore oilfield at high water cut stage[J].Petroleum Geology and Recovery Efficiency,2017,24(4):110-115.
参考文献 5
史树彬,刘承杰,靳彦欣,等.高含水期油藏提液影响因素研究 [J].石油地质与工程,2012,26(5):83-85.SHI Shubin,LIU Chengjie,JIN Yanxin,et al.Influence factors re⁃ search of liquid extraction effect in reservoir at high-water cut stage[J].Petroleum Geology and Engineering,2012,26(5):83-85.
参考文献 6
刘敏.埕岛油田馆陶组上段油藏合理产液量及注水量矢量优化方法[J].油气地质与采收率,2017,24(3):105-109.LIU Min.Vector optimization method for reasonable fluid produc⁃ tion and water injection rate of reservoir in the Upper Guantao Formation,Chengdao oilfield[J].Petroleum Geology and Recov⁃ ery Efficiency,2017,24(3):105-109.
参考文献 7
柏明星,张志超,梁健巍.中高渗透砂岩油田优势流场识别与调整[J].油气地质与采收率,2017,24(1):100-105.BAI Mingxing,ZHANG Zhichao,LIANG Jianwei.Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(1):100-105.
参考文献 8
王继强,岳圣杰,宋瑞文,等.特高含水期油田水驱特征曲线优化研究[J].特种油气藏,2017,24(5):97-101.WANG Jiqiang,YUE Shengjie,SONG Ruiwen,et al.Optimization of characteristic curves for water flooding operations in develop⁃ ment of oilfields in stages with extremely high water cut[J].Spe⁃ cial Oil & Gas Reservoirs,2017,24(5):97-101.
参考文献 9
田鸿照,彭彩珍,于雪琳,等.水驱油田开发指标的综合预测法 [J].断块油气田,2011,18(2):238-240.TIAN Hongzhao,PENG Caizhen,YU Xuelin,et al.Comprehen⁃ sive forecasting of development indexes in water drive oilfield[J].Fault-Block Oil & Gas Field,2011,18(2):238-240.
参考文献 10
林江,李志芬,张琪.不同含水条件下采液指数的预测方法研究[J].石油钻探技术,2003,31(4):43-45.LIN Jiang,LI Zhifen,ZHANG Qi.Study on liquid production in⁃ dex prediction for different water cut[J].Petroleum Drilling Tech⁃ niques,2003,31(4):43-45.
参考文献 11
高文君,李宁,侯程程,等.2 种无因次采液指数与含水率关系式的建立及优选[J].新疆石油地质,2015,36(1):70-74.GAO Wenjun,LI Ning,HOU Chengcheng,et al.Establishment and optimization of two dimensionless liquid production indexes and water cut relationships[J].Xinjiang Petroleum Geology,2015,36(1):70-74.
参考文献 12
李敏,喻高明,郑可.LH11-1油田动态法计算单井提液时机实例研究[J].石油地质与工程,2010,24(3):65-67.LI Min,YU Gaoming,ZHENG Ke.Research on single well extract⁃ ing time with dynamic method in LH11-1 oilfield[J].Petroleum Geology and Engineering,2010,24(3):65-67.
目录contents

    摘要

    保持合理采液规模是水驱油藏特高含水期延缓产量递减的主要措施之一,通常可利用岩心测试得到的油水相对渗透率曲线计算无因次采液指数随含水率的变化,以此预测特高含水期油藏合理产液量。然而,由于岩心与非均质油藏内的水驱油过程存在较大差异,使得基于岩心测试的理论无因次采液指数曲线并不适用于矿场实际情况。为此,在并联岩心水驱油实验的基础上,首先基于回归得到包含渗透率及渗透率级差的无因次采液指数曲线方程,建立考虑油藏物性及物性非均质程度影响的无因次采液指数增量图版;然后,将水驱油藏的流场划分为水驱波及区和未波及区,将岩心水驱油实验规律仅应用于水驱波及区,并绘制不同波及系数时的油藏无因次采液指数图版。实例分析结果表明,该方法所需参数较少,计算快捷,能够考虑储层非均质性的影响,并可根据矿场实测采液指数推算水驱波及系数。

    Abstract

    Maintaining a reasonable liquid production scale is one of the main measures to delay the decline of production in waterflooding reservoirs during extra-high water cut period,during which the relative permeability curve of oil and water obtained from core testing is usually used to calculate the variation of dimensionless liquid production index with water cut, so as to predict the reasonable liquid production of reservoirs in extra-high water cut period. However,the theoretical di- mensionless liquid production index curve based on core testing is not suitable for the actual situation in the field due to the great difference between the water flooding process in the core and heterogeneous reservoirs. Therefore,based on parallel core water flooding experiment,the dimensionless liquid production index curve equation with permeability and permeabili- ty ratio was obtained by regression,and the dimensionless liquid production index increment chart considering the influ- ence of reservoir physical properties and physical heterogeneity degree was established. Then,the flow field of the water flooding reservoir was divided into water flooding swept area and non-swept area,and the experimental law of core water flooding was applied to the water flooding swept area only,and the dimensionless liquid production index chart of the reser- voir with different sweep coefficients was plotted. Field example analysis shows that the method requires fewer parameters and is fast in calculation,can consider the influence of reservoir heterogeneity,and can calculate the current sweep efficien- cy of water flooding based on the measured fluid production index in the field.

  • 近年来,胜利油区各大主力油田均已进入高含水至特高含水期,剩余油分布及剩余可采储量动用潜力持续成为研究热点和开发调整的重点,理论研究和大量矿场实践表明,储层非均质性及油水黏度差异降低了储层内的水驱波及程度,导致油井提前见水、无效水循环和见水后产量快速递减。保持合理采液量规模是延缓水驱油藏中高含水期产量递减的一项重要措施[1-6],措施有效的前提条件是当前采出程度较低,且储层具有较大的提液潜力[7-9]。水驱波及系数可表征油藏的非均质程度及注采井网的完善程度,采液能力则可通过无因次采液指数随含水率的变化趋势来预测。前人对基于油水相对渗透率的无因次采液指数计算方法进行了大量的研究和改进[10-12],但鉴于研究尺度和数据来源的局限性,始终未能考虑由于储层非均质性导致的地层中油水分布及其变化过程对采液能力的影响。为此,笔者以模拟非均质油藏的经典并联岩心水驱油实验数据为基础,回归建立了渗透率及渗透率级差对无因次采液指数随含水率变化规律影响程度的多元方程及指标曲线图版;进一步将实际非均质油藏划分为水驱波及区和未波及区,将岩心测试的相对渗透率数据仅应用于波及区,计算不同波及系数时的油藏无因次采液指数图版;最后通过测算水驱波及系数进而得到非均质油藏无因次采液指数的变化规律,还可根据矿场实测采液指数推算水驱波及系数,为剩余油挖潜提供理论依据。

  • 1 非均质油藏无因次采液指数影响因素实验

  • 1.1 并联岩心驱替实验原理

  • 常规单岩心水驱油实验反映了微观非均质性对油水相对流动能力的影响,即使是取自同一层段的岩心,由于存在显著的微观非均质性,所测得的有效渗透率及相对渗透率曲线形态也会有较大差异。为了体现实际油藏大尺度条件下的层间及平面渗透率差异,采用并联岩心驱替实验流程,在岩心间设置较大渗透率差异,测试数据能够体现渗透率级差对地层油水相对流动能力的影响,进而可计算无因次采液指数曲线,分析非均质性对水驱油藏高含水期油井采液能力的影响。

  • 1.2 无因次采液指数主控因素的对比实验方案

  • 采用具有不同粒径组合的石英砂和不同含量的黏土,在模具里制作了不同长度、不同渗透率的人造岩心,在恒压条件下分别进行单岩心、双岩心并联及三岩心并联的非稳态水驱油实验。人造岩心的长度分别为5,20和100cm,气测渗透率从595mD到5 234mD,并联岩心渗透率级差最大为8.7,驱替压力梯度为0.05~0.4MPa/m,配制油平均黏度为15mPa·s。

  • 记录油、水流出量和对应的时间,计算无因次采液指数,绘制无因次采液指数随含水率的变化曲线。

  • 1.3 建立非均质储层无因次采液指数曲线的经验公式

  • 从实验数据的变化趋势可以看出,无因次采液指数随含水率的变化规律符合一元三次方程,且截距为1,对实验数据进行回归,可得方程式为:

  • JLD=afw3+bfw2+cfw+1
    (1)
  • 针对每组实验数据,无因次采液指数曲线方程的系数如表1。

  • 对比具有相近渗透率级差的无因次采液指数曲线方程中的系数 abc,发现三者均与渗透率呈线性关系,即:

  • a=A1K+A2b=B1K+B2c=C1K+C2
    (2)
  • 将表1中数据分别代入(2)式,回归得到无因次采液指数曲线方程系数abc关于渗透率的线性方程系数(表2)。

  • 研究分析发现,表2中各个系数关于渗透率级差呈现出线性或指数变化规律,从而表明无因次采液指数也是关于渗透率级差的函数。

  • 回归方程式分别为:

  • A1=0.0004e0.2165KDB1=-0.0004KDC1=0.0003KD
    (3)
  • A2=-0.6155KD+1.4782B2=1.1925KD-1.1108C2=-0.6905KD+1.3529
    (4)
  • 综上所述,基于岩心测试数据建立的多因素无因次采液指数曲线的经验公式为:

  • JLD=0.0004e0.2165KDK-0.6155KD+1.4782fw3+-0.0004KDK+1.1925KD-1.1108fw2+0.0003KDK-0.6905KD+1.3529fw+1
    (5)
  • 1.4 绘制无因次采液指数的校正图版

  • 本文所建立的无因次采液指数曲线方程的系数均来自岩心实验,反映的是实验岩样在完全被水驱波及条件下的油水相对流动能力。实际油藏的非均质性越强,则水驱波及程度越差,高含水期的采液能力将随油藏非均质性的增强而降低。

  • 表1 基于并联岩心驱替实验数据建立的无因次采液指数曲线方程系数

  • Table1 Coefficients of dimensionless liquid production index curve equation based on parallel core displacement experimental data

  • 为了突出物性及其非均质性对采液能力的影响,并削弱实验岩样之间油水相对流动能力差异的干扰,以具有最低渗透率实验岩样的无因次采液指数曲线为基准,绘制不同渗透率及渗透率级差下无因次采液指数增幅随含水率变化规律的校正图版 (图1)。

  • 表2 无因次采液指数曲线方程系数关于渗透率的线性方程系数

  • Table2 Linear equation coefficients of coefficient items of non-dimensional liquid production index curve on permeability

  • 图1 考虑渗透率及渗透率级差的无因次采液指数曲线校正图版

  • Fig.1 Correction of dimensionless liquid production index curves in consideration of permeability and permeability ratio

  • 2 非均质油藏无因次采液指数变化规律的预测方法

  • 基于岩心实验数据计算的无因次采液指数反映了水驱波及区的采液能力,在预测实际油藏采液能力变化规律和评价开采潜力时,还须考虑水驱未波及区的影响。

  • 将油井水淹后的油藏划分为水驱波及区和未波及区2部分(图2)。其中,水驱波及区驱油过程包括初期压降漏斗形成阶段的弹性泄油和水驱阶段的水驱油,水驱油规律符合实验测试的油水相对渗透率曲线,但需要根据目标油藏的实际渗透率及渗透率级差,按照所建立的校正图版修正无因次采液指数曲线;对于水驱未波及区,仅存在弹性泄油,采液规律符合弹性驱动的物质平衡方程。

  • 图2 非均质油藏水驱波及区与未波及区划分及流动特征

  • Fig.2 Division of water flooding sweep region and flow characteristics of heterogeneous reservoirs

  • 3 实例分析

  • 中国东部某断块油藏中的Ⅰ,Ⅱ类储层平均地层渗透率为3 270mD,渗透率级差为5.7,获取的典型岩样平均渗透率为793mD,其油水相对渗透率曲线如图2。该油藏在综合含水率为98%时进行综合挖潜调整,此时矿场的油井无因次采液指数约为5,远低于根据岩心相对渗透率测试数据计算的理论值(约为18)。运用新建立的方法预测该油藏采液能力的变化规律,并测算该油藏水驱波及系数,为挖潜提供可行性依据。

  • 将目标油藏划分为水驱波及区和未波及区,预测这2部分在并联的条件下油藏的整体采液能力随含水率的变化规律。计算步骤如下:①根据典型岩样的相对渗透率曲线(图2)绘制理论无因次采液指数曲线(图3)。②根据渗透率及级差,由新建立的图版法绘制无因次采液指数的校正曲线(图3)。③ 设定不同波及系数,按照并联模式计算油藏的整体无因次采液指数。④根据理论曲线与矿场监测数据的拟合程度,确定油藏水驱波及系数(图4)。对比分析结果表明,目标油藏在当前高含水阶段其水驱波及系数约为0.4,潜力较大。

  • 图3 目标油藏波及区无因次采液指数曲线

  • Fig.3 Dimensionless fluid production index curve of target reservoir in water flooding sweep region

  • 图4 图版法测算目标油藏水驱波及系数

  • Fig.4 Sweep efficiency of water-flooding reservoir with crossplot method

  • 4 结论

  • 基于岩心并联水驱油实验数据,建立无因次采液指数曲线的经验公式及考虑物性及非均质程度对采液能力影响的图版,并将水驱油藏划分为水驱波及区和未波及区,建立非均质油藏采液能力的预测方法;研究结果表明:储层的非均质程度降低了水驱油的波及系数,进而导致油藏的整体采液能力随非均质程度的增加而降低;对比矿场监测的油井采液能力变化规律,利用所建图版可以测算水驱油藏的水驱波及系数,从而为挖潜调整提供理论依据。新建立的方法所需参数较少,充分利用了岩心驱替实验数据,能够考虑储层物性及非均质性对驱油过程的影响,并可根据矿场数据快速评价水驱效果和预测合理采液规模。

  • 符号解释

  • J LD——无因次采液指数;a, b,c ——无因次采液指数曲线方程系数;f w——含水率;A 1,A 2,B 1,B 2,C 1,C 2——无因次采液指数曲线方程关于渗透率的方程系数;K ——渗透率,mD; K D——渗透率级差。

  • 参考文献

    • [1] 胡景双,邵先杰,马平华,等.复杂小断块油田中高含水期开发调整实践[J].断块油气田,2010,17(2):202-205.HU Jingshuang,SHAO Xianjie,MA Pinghua,et al.Practice of de⁃ velopment adjusting at medium-high water cut stage for complex small fault-block oilfield[J].Fault-Block Oil & Gas Field,2010,17(2):202-205.

    • [2] 吴晓慧.大庆长垣油田特高含水期水驱精细挖潜措施后产量变化规律[J].大庆石油地质与开发,2018,37(5):71-75.WU Xiaohui.Changed laws of the production after waterflooding finely-tapped-potential stimulations for Daqing Placanticline Oil⁃ fields at the stage of extra-high watercut[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(5):71-75.

    • [3] 邓学峰,赵辉,沈文洁,等.基于井间连通性的油藏注采调整优化方法[J].特种油气藏,2018,25(6):101-104.DENG Xuefeng,ZHAO Hui,SHEN Wenjie,et al.Reservoir injec⁃ tion-production optimization based on inter-well connectivity[J].Special Oil & Gas Reservoirs,2018,25(6):101-104.

    • [4] 刘晨,张金庆,周文胜,等.海上中高含水油田提液潜力动态计算方法[J].油气地质与采收率,2017,24(4):110-115.LIU Chen,ZHANG Jinqing,ZHOU Wensheng,et al.Dynamic cal⁃ culation method for liquid production increase potential of off⁃ shore oilfield at high water cut stage[J].Petroleum Geology and Recovery Efficiency,2017,24(4):110-115.

    • [5] 史树彬,刘承杰,靳彦欣,等.高含水期油藏提液影响因素研究 [J].石油地质与工程,2012,26(5):83-85.SHI Shubin,LIU Chengjie,JIN Yanxin,et al.Influence factors re⁃ search of liquid extraction effect in reservoir at high-water cut stage[J].Petroleum Geology and Engineering,2012,26(5):83-85.

    • [6] 刘敏.埕岛油田馆陶组上段油藏合理产液量及注水量矢量优化方法[J].油气地质与采收率,2017,24(3):105-109.LIU Min.Vector optimization method for reasonable fluid produc⁃ tion and water injection rate of reservoir in the Upper Guantao Formation,Chengdao oilfield[J].Petroleum Geology and Recov⁃ ery Efficiency,2017,24(3):105-109.

    • [7] 柏明星,张志超,梁健巍.中高渗透砂岩油田优势流场识别与调整[J].油气地质与采收率,2017,24(1):100-105.BAI Mingxing,ZHANG Zhichao,LIANG Jianwei.Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(1):100-105.

    • [8] 王继强,岳圣杰,宋瑞文,等.特高含水期油田水驱特征曲线优化研究[J].特种油气藏,2017,24(5):97-101.WANG Jiqiang,YUE Shengjie,SONG Ruiwen,et al.Optimization of characteristic curves for water flooding operations in develop⁃ ment of oilfields in stages with extremely high water cut[J].Spe⁃ cial Oil & Gas Reservoirs,2017,24(5):97-101.

    • [9] 田鸿照,彭彩珍,于雪琳,等.水驱油田开发指标的综合预测法 [J].断块油气田,2011,18(2):238-240.TIAN Hongzhao,PENG Caizhen,YU Xuelin,et al.Comprehen⁃ sive forecasting of development indexes in water drive oilfield[J].Fault-Block Oil & Gas Field,2011,18(2):238-240.

    • [10] 林江,李志芬,张琪.不同含水条件下采液指数的预测方法研究[J].石油钻探技术,2003,31(4):43-45.LIN Jiang,LI Zhifen,ZHANG Qi.Study on liquid production in⁃ dex prediction for different water cut[J].Petroleum Drilling Tech⁃ niques,2003,31(4):43-45.

    • [11] 高文君,李宁,侯程程,等.2 种无因次采液指数与含水率关系式的建立及优选[J].新疆石油地质,2015,36(1):70-74.GAO Wenjun,LI Ning,HOU Chengcheng,et al.Establishment and optimization of two dimensionless liquid production indexes and water cut relationships[J].Xinjiang Petroleum Geology,2015,36(1):70-74.

    • [12] 李敏,喻高明,郑可.LH11-1油田动态法计算单井提液时机实例研究[J].石油地质与工程,2010,24(3):65-67.LI Min,YU Gaoming,ZHENG Ke.Research on single well extract⁃ ing time with dynamic method in LH11-1 oilfield[J].Petroleum Geology and Engineering,2010,24(3):65-67.

  • 参考文献

    • [1] 胡景双,邵先杰,马平华,等.复杂小断块油田中高含水期开发调整实践[J].断块油气田,2010,17(2):202-205.HU Jingshuang,SHAO Xianjie,MA Pinghua,et al.Practice of de⁃ velopment adjusting at medium-high water cut stage for complex small fault-block oilfield[J].Fault-Block Oil & Gas Field,2010,17(2):202-205.

    • [2] 吴晓慧.大庆长垣油田特高含水期水驱精细挖潜措施后产量变化规律[J].大庆石油地质与开发,2018,37(5):71-75.WU Xiaohui.Changed laws of the production after waterflooding finely-tapped-potential stimulations for Daqing Placanticline Oil⁃ fields at the stage of extra-high watercut[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(5):71-75.

    • [3] 邓学峰,赵辉,沈文洁,等.基于井间连通性的油藏注采调整优化方法[J].特种油气藏,2018,25(6):101-104.DENG Xuefeng,ZHAO Hui,SHEN Wenjie,et al.Reservoir injec⁃ tion-production optimization based on inter-well connectivity[J].Special Oil & Gas Reservoirs,2018,25(6):101-104.

    • [4] 刘晨,张金庆,周文胜,等.海上中高含水油田提液潜力动态计算方法[J].油气地质与采收率,2017,24(4):110-115.LIU Chen,ZHANG Jinqing,ZHOU Wensheng,et al.Dynamic cal⁃ culation method for liquid production increase potential of off⁃ shore oilfield at high water cut stage[J].Petroleum Geology and Recovery Efficiency,2017,24(4):110-115.

    • [5] 史树彬,刘承杰,靳彦欣,等.高含水期油藏提液影响因素研究 [J].石油地质与工程,2012,26(5):83-85.SHI Shubin,LIU Chengjie,JIN Yanxin,et al.Influence factors re⁃ search of liquid extraction effect in reservoir at high-water cut stage[J].Petroleum Geology and Engineering,2012,26(5):83-85.

    • [6] 刘敏.埕岛油田馆陶组上段油藏合理产液量及注水量矢量优化方法[J].油气地质与采收率,2017,24(3):105-109.LIU Min.Vector optimization method for reasonable fluid produc⁃ tion and water injection rate of reservoir in the Upper Guantao Formation,Chengdao oilfield[J].Petroleum Geology and Recov⁃ ery Efficiency,2017,24(3):105-109.

    • [7] 柏明星,张志超,梁健巍.中高渗透砂岩油田优势流场识别与调整[J].油气地质与采收率,2017,24(1):100-105.BAI Mingxing,ZHANG Zhichao,LIANG Jianwei.Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J].Petroleum Geology and Recovery Efficien⁃ cy,2017,24(1):100-105.

    • [8] 王继强,岳圣杰,宋瑞文,等.特高含水期油田水驱特征曲线优化研究[J].特种油气藏,2017,24(5):97-101.WANG Jiqiang,YUE Shengjie,SONG Ruiwen,et al.Optimization of characteristic curves for water flooding operations in develop⁃ ment of oilfields in stages with extremely high water cut[J].Spe⁃ cial Oil & Gas Reservoirs,2017,24(5):97-101.

    • [9] 田鸿照,彭彩珍,于雪琳,等.水驱油田开发指标的综合预测法 [J].断块油气田,2011,18(2):238-240.TIAN Hongzhao,PENG Caizhen,YU Xuelin,et al.Comprehen⁃ sive forecasting of development indexes in water drive oilfield[J].Fault-Block Oil & Gas Field,2011,18(2):238-240.

    • [10] 林江,李志芬,张琪.不同含水条件下采液指数的预测方法研究[J].石油钻探技术,2003,31(4):43-45.LIN Jiang,LI Zhifen,ZHANG Qi.Study on liquid production in⁃ dex prediction for different water cut[J].Petroleum Drilling Tech⁃ niques,2003,31(4):43-45.

    • [11] 高文君,李宁,侯程程,等.2 种无因次采液指数与含水率关系式的建立及优选[J].新疆石油地质,2015,36(1):70-74.GAO Wenjun,LI Ning,HOU Chengcheng,et al.Establishment and optimization of two dimensionless liquid production indexes and water cut relationships[J].Xinjiang Petroleum Geology,2015,36(1):70-74.

    • [12] 李敏,喻高明,郑可.LH11-1油田动态法计算单井提液时机实例研究[J].石油地质与工程,2010,24(3):65-67.LI Min,YU Gaoming,ZHENG Ke.Research on single well extract⁃ ing time with dynamic method in LH11-1 oilfield[J].Petroleum Geology and Engineering,2010,24(3):65-67.