-
随着中国各大油田普遍进入开发中后期,致密油等非常规资源成为油气上产的主力[1],然而致密油储层的孔渗条件较差且天然裂缝发育,常规水力压裂方式难以实现经济有效的开发[2-4]。新疆、长庆等油田经过多年的矿场实践证明,体积压裂是开发该类油藏的有效手段[5-7],对水平井分段压裂后致密油储层产能的评价是制定合理压裂和采油参数的基础。中外众多学者在该领域做了大量工作,在研究稳态和非稳态产能的过程中,分别对不同形态水力裂缝参数(裂缝条数、裂缝导流能力、裂缝角度) 和基质物性(渗透率各向异性)的敏感性进行了分析[8-10],并考虑储层应力敏感性[11-13]以及多裂缝之间互相干扰的影响[14]。对于裂缝性油藏天然裂缝的处理,部分学者在油藏中划定平行的裂缝网络或采用分形理论形成树状网络,进而对基质和裂缝中的渗流过程分别进行研究[15-16];还有学者采用连续介质渗透率张量模型,利用各向异性渗透率的二阶张量,对裂缝和基质的渗透率进行等效分析[17-18]。但以上研究均无法准确地反映天然裂缝在储层中的真实分布状况以及对水平井产能的影响。
-
基于上述问题,以S油田某油井的实测裂缝数据为参考,利用COMSOL和MATLAB软件联合仿真技术对储层中的实际裂缝形态进行建模,通过基质-裂缝-井筒耦合流动模型对压裂后致密油藏产能进行模拟,并分析不同水力裂缝长度和间距对产能的影响。研究成果对致密油藏复杂缝网建模及产能模拟具有一定的指导意义。
-
1 致密油藏复杂缝网建模
-
为了使所构建的压裂后致密油藏的缝网结构更符合真实地质情况,有必要对压裂后油藏的组成部分进行分析并分别建模。对于天然裂缝发育的致密油储层,在水平井分段压裂之后,储层中流体的渗流通道主要包括以下4个部分:①岩石基质。该部分是致密油藏中油气的主要存储和流动空间,其物性条件在一定程度上决定压裂井的单井控制范围。②天然裂缝。天然裂缝的形成受构造作用影响,其分布密度和走向并非均匀随机,而是呈现一定的规律性。③水力裂缝。在压裂过程中压裂液在油藏中造缝,同时受天然裂缝影响,会在主裂缝两侧形成次级裂缝,其与天然裂缝相互交错延伸形成缝网,且这些次级裂缝的走向往往受地层主应力变化的影响。④水平井井筒。水平井井筒的长度和位置由具体施工参数决定。
-
对于致密油藏的岩石基质和天然裂缝,以S油田某油井的实测数据为例进行分析。S油田发育源储一体油藏,其孔隙度为11%,基质渗透率为0.012mD。储层具有较好的岩石脆性,最大和最小水平主应力的差异较小,天然裂缝较为发育(表1);其中S-4井最大天然裂缝密度为8.65条/m,但平均天然裂缝密度仅为2.87条/m,可见其天然裂缝分布并不均匀。由于无法确定天然裂缝的具体分布位置,拟采用天然裂缝密度分布较为均匀的S-2井进行建模,其最大天然裂缝密度为1.12条/m,平均天然裂缝密度为0.71条/m,二者差距较小,因此可认为该井的天然裂缝分布较为均匀,取其平均天然裂缝密度进行建模。
-
此外,致密油藏天然裂缝的走向并不是随机分布的,且直接影响压裂后裂缝缝网的形成。S-2井天然裂缝走向分布如表2所示。天然裂缝按照导流能力不同分为高导缝和高阻缝,S-2井高导缝走向主要为N0°E—N10°E以及N20°E—N40°E,高阻缝走向主要为N30°E—N40°E,在建模过程中排除高阻缝的影响,仅对高导缝进行模拟,且天然裂缝长度为40~60m。
-
水力裂缝参数对压裂井产能的影响是本次研究的重点,主裂缝长度分别取80,120和160m,裂缝间距分别取10,15和20m。次级裂缝由于受主应力影响,与主裂缝呈锐角分布,其方位角在N45°E— N45°W随机分布,裂缝密度为0.5条/m,裂缝长度为15~30m。水平井井筒沿X方向,长度为1 500m。
-
研究中不考虑裂缝的迂曲状况,将其视为直线段处理。利用COMSOL和MATLAB软件联合仿真技术,可以在天然裂缝分布认识不清且仅有上述部分统计数据的条件下,实现所需裂缝形态的几何建模,尽可能地接近矿场实际。在该过程中,利用程序中参数化曲线的parmax,rot和pos等关键词可以分别控制裂缝的长度、走向和位置,并利用达西定律模块以及管流模块建立流体在基质、裂缝和井筒中流动的数学模型进行求解。
-
2 裂缝-基质-井筒耦合流动模型的建立及验证
-
对于流体在油藏基质中的流动可以利用达西方程[19] 表示:
-
其中:
-
为了模拟流体在裂缝中的流动,对达西方程的系数进行修改以符合其高导流能力特点,并实现基质与裂缝之间流速和压力分布的连续性,其表达式为:
-
流体在水平井井筒中的流动可以用Navier-Stokes方程[20] 表示:
-
根据S-2井的油藏基质物性和裂缝参数对该井的复杂缝网进行建模,对S-2井流体在基质、裂缝及井筒内的流动过程进行分析。S-2井实测日产油量及数值模拟结果(图1)表明,其模拟日产油量与实测数据的变化趋势基本一致,验证了所建模型的准确性和可靠性。
-
3 模拟结果分析
-
COMSOL是一款利用有限元方法求解偏微分方程(组),从而进行多物理场耦合计算的数值模拟软件,其内置的数学模型灵活,材料属性设置方便,并内置MATLAB接口进行复杂逻辑处理。利用该软件对致密油藏中流体在基质、裂缝及井筒内的耦合流动过程进行分析,油藏边界设置为定压边界,且定压生产,其他模拟参数包括:油藏宽度为600m、长度为1 600m,边界压力为30MPa,生产压力为15MPa,原油密度为880kg/m3,地面原油黏度为45mPa·s,水力裂缝导流能力为30 μm2 ·cm,天然裂缝导流能力为10 μm2 ·cm。
-
图1 S-2井模拟和实测日产油量
-
Fig.1 Simulated and actual daily oil production of Well S-2
-
3.1 不同生产时间下的压力分布特征
-
为了便于观察致密油藏压裂后开发压力在井筒、水力裂缝及天然裂缝中的分布情况并减少计算量,以1 260~1 500m井段的10条水力裂缝及周围的天然裂缝为例进行说明。由于井筒在1 260m处的压力并不是生产压力,需模拟井筒压力变化过程,以获得1 260m处准确的井筒压力,确保模拟部分的压力变化特征与油藏整体压力变化一致。
-
由水平井井筒压力随生产时间的变化特征(图2)可见,流体压力由水平井的井筒端部不断波及到井筒内部。在生产初期,整个井筒压力变化较大,不能简单地认为井筒中为单一压力。图2中的下降曲线反映水平井1 260m处的井筒压力随生产时间的变化特征,该处井筒压力由30MPa降至约为21MPa,呈现降速变缓的压力下降过程。将1 260m处的井筒压力设置为边界条件,进行后续的油藏压力分布模拟。
-
图2 水平井的井筒压力随生产时间的变化特征
-
Fig.2 Pressure variation of horizontal wellbore
-
通过数值模拟,得到致密油藏复杂缝网在生产时间分别为100,300,600和1 000d的压力分布情况(图3)。结果表明,在油藏开发初期,由于井筒和主裂缝区域的导流能力较强,使得该区域可以迅速被波及。随着生产时间推移,油藏中低压区域的波及范围由主裂缝和部分次级裂缝向两侧基质呈现不规则扩展,沟通天然裂缝并影响相应的基质区域,表现出较强的非均质性。缝网中裂缝密度越大的区域,其压力波及效果越显著;未压裂区域由于裂缝之间的连通性较差,压力波及程度也较差,但在改造区域外围与水力主裂缝或次级裂缝连通的天然裂缝可以在一定程度上增大压力波及范围。在整个致密油藏范围内,压力低于25MPa的区域面积占整个油藏面积的比例在生产初期迅速增加并逐渐稳定;当生产时间为1 000d时,压力波及区域的面积约占整个油藏面积的34.1%。
-
图3 致密油藏复杂缝网在不同生产时间下压力分布特征
-
Fig.3 Pressure distribution of complex fracture network in tight oil reservoir at different production time
-
3.2 不同水力裂缝长度下的产能变化特征
-
在实际矿场施工过程中,可控的裂缝参数为裂缝长度和裂缝间距。取裂缝间距为15m,分别对水力裂缝长度为80,120和160m条件下致密油藏压裂后的产能变化特征进行分析。结果(图4)表明,就某一裂缝长度而言,在生产初期,油井日产油量均在短时间内呈大幅上升的趋势,这是由于生产初期主要是导流能力强的主裂缝及周围区域的油气向井筒内汇流(图4a)。同时日产油量随着水力裂缝长度的增加而升高,水力裂缝长度分别为80,120和160m所对应的初始日产油量分别为42.5,45.8和50.1m3/d,但是增加幅度逐渐减小。随着生产时间的推移,日产油量迅速下降,1 000d的日产油量均降至约为3m3/d,无法实现较长时间的稳产。此外,油井累积产油量在生产初期迅速增加(图4b),在日产油量下降后,逐渐进入稳定阶段。当生产时间为1 000d时,3种水力裂缝长度下的累积产油量分别为6 163,7 912和8 362m3,累积产油量随水力裂缝长度增大而增加的幅度明显变缓,继续增加裂缝长度对增加累积产油量的意义不大,因此最佳的水力裂缝长度约为160m。
-
图4 不同水力裂缝长度下致密油藏压裂产能变化特征
-
Fig.4 Productivity of fractured tight oil reservoir with different length of hydraulic fractures
-
3.3 不同水力裂缝间距下的产能变化特征
-
在水力裂缝间距分别为10,15和20m的条件下,对致密油藏压裂后的日产油量和累积产油量进行模拟,模拟过程中固定水力裂缝长度均为160m,水力裂缝间距增加幅度与水力裂缝长度的增加幅度相同,使结果更具对比性。与增加水力裂缝长度相比,减小裂缝间距可以在生产初期获得更高的日产油量且增产效果较明显(图5a)。这是由于较小的裂缝间距可以形成更密集的裂缝网络,使得油藏动用程度更高,压力传播所经过的距离更短,油井累积产油量也得到提高。在水力裂缝间距为10m的条件下,生产时间为1 000d的累积产油量为10 453m3;在水力裂缝间距为20m的条件下,生产时间约为200d的日产油量即衰减至初始日产油量的10%左右;在水力裂缝间距缩小至15m的条件下,生产时间约为600d的日产油量即衰减至初始日产油量的10%左右(图5b)。与延长水力裂缝长度类似,减小水力裂缝间距所获得的产油量增量不断减少,继续缩短水力裂缝间距对增加累积产油量的意义不大。通过模型模拟得到较为适宜的裂缝间距约为10m。
-
图5 不同水力裂缝间距下致密油藏压裂产能变化特征
-
Fig.5 Productivity of fractured tight oil reservoir with different spacing of hydraulic fractures
-
4 结论
-
利用COMSOL和MATLAB软件联合仿真技术提出在天然裂缝认识较为局限的条件下,以地质资料为依据对天然裂缝、水力主裂缝及次级裂缝进行建模的方法,并利用该软件分别对基质、裂缝和井筒中的流动过程进行模拟,为压裂后致密油藏产能分析提供更为合理的理论依据。
-
在致密油藏复杂缝网中,压力由井筒和主裂缝依次波及至次级裂缝、天然裂缝和基质,改造区域周边的裂缝对增大压力波及范围具有一定作用。增加水力裂缝长度和减小水力裂缝间距均可以提高油井的日产油量和累积产油量。在考虑裂缝及井筒有限导流能力的条件下,数值模拟得到的最优水力裂缝长度和裂缝间距分别为160和10m。在变化幅度相同的条件下,缩小水力裂缝间距比延长水力裂缝长度对提高油井产油量更为有利。
-
符号解释
-
ρ——地层流体密度,kg/m3;S ——基质存储系数,1/MPa;p ——流体压力,MPa;t ——生产时间,d;K ——基质渗透率,mD;μ ——地层流体黏度,mPa·s;G l ——流体压缩系数,1/MPa;ϕ ——孔隙度,f;G s ——基质压缩系数,1/MPa; S f ——裂缝存储系数,1/MPa;d f ——裂缝宽度,mm;K f ——裂缝渗透率,mD;u——流体流速,m/s;g ——重力加速度,m/s2。
-
参考文献
-
[1] 杨智,付金华,郭秋麟,等.鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力[J].中国石油勘探,2017,22(6):9-15.YANG Zhi,FU Jinhua,GUO Qiulin,et al.Discovery,characteris⁃ tics and resource potential of continental tight oil in Triassic Yan⁃ chang Formation,Ordos Basin[J].China Petroleum Exploration,2017,22(6):9-15.
-
[2] 邱振,李建忠,吴晓智,等.国内外致密油勘探现状、主要地质特征及差异[J].岩性油气藏,2015,27(4):119-126.QIU Zhen,LI Jianzhong,WU Xiaozhi,et al.Exploration status,main geologic characteristics and their differences of tight oil be⁃ tween America and China[J].Lithologic Reservoirs,2015,27(4):119-126.
-
[3] 张君峰,毕海滨,许浩,等.国外致密油勘探开发新进展及借鉴意义[J].石油学报,2015,36(2):127-137.ZHANG Junfeng,BI Haibin,XU Hao,et al.New progress and ref⁃ erence significance of overseas tight oil exploration and develop⁃ ment[J].Acta Petrolei Sinica,2015,36(2):127-137.
-
[4] 李晓骁,任晓娟,罗向荣.低渗透致密砂岩储层孔隙结构对渗吸特征的影响[J].油气地质与采收率,2018,25(4):115-120,126.LI Xiaoxiao,REN Xiaojuan,LUO Xiangrong.Influence of pore structures on the characteristic of spontaneous imbibition in lowpermeability tight sandstone reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(4):115-120,126.
-
[5] ZHOU Z Q,MU L J,LI X W,et al.Hybrid fracturing treatments unleash tight oil reservoirs consisting of sand shale sequences in the Changqing oilfield[C].Tianjin:IADC/SPE Asia Pacific Drill⁃ ing Technology Conference and Exhibition,2012.
-
[6] 章敬,李佳琦,史晓川,等.吉木萨尔凹陷致密油层压裂工艺探索与实践[J].新疆石油地质,2013,34(6):710-712.ZHANG Jing,LI Jiaqi,SHI Xiaochuan,et al.Fracturing technolo⁃ gy for dense oil reservoir in Jimusaer Sag:probe and practice[J].Xinjiang Petroleum Geology,2013,34(6):710-712.
-
[7] 林旺,范洪富,王志平,等.致密油藏体积压裂水平井产量预测研究[J].油气地质与采收率,2018,25(6):107-113.LIN Wang,FAN Hongfu,WANG Zhiping,et al.Prediction on pro⁃ duction of volume fractured horizontal well in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(6):107-113.
-
[8] 王晓泉,张守良,吴奇,等.水平井分段压裂多段裂缝产能影响因素分析[J].石油钻采工艺,2009,31(1):73-76.WANG Xiaoquan,ZHANG Shouliang,WU Qi,et al.Factors affect⁃ ing the productivity of multi-section fractures in subsection frac⁃ turing of horizontal wells[J].Oil Drilling & Production Technolo⁃ gy,2009,31(1):73-76.
-
[9] 张德良,张烈辉,赵玉龙,等.低渗透气藏多级压裂水平井稳态产能模型[J].油气地质与采收率,2013,20(3):107-110.ZHANG Deliang,ZHANG Liehui,ZHAO Yulong,et al.Study on steady productivity of fractured horizontal well in low permeabili⁃ ty gas reservoir[J].Petroleum Geology and Recovery Efficiency,2013,20(3):107-110.
-
[10] 李龙龙,姚军,李阳,等.分段多簇压裂水平井产能计算及其分布规律[J].石油勘探与开发,2014,41(4):457-461.LI Longlong,YAO Jun,LI Yang,et al.Productivity calculation and distribution of staged multi-cluster fractured horizontal wells [J].Petroleum Exploration and Development,2014,41(4):457-461.
-
[11] 徐新丽.含微裂缝低渗储层应力敏感性及其对产能影响[J].特种油气藏,2015,22(1):127-130.XU Xinli.Stress sensitivity of low-permeability reservoir contain⁃ ing micro-fracture and its influence on productivity[J].Special Oil & Gas Reservoirs,2015,22(1):127-130.
-
[12] LEI Q,XIONG W,YUAN J R,et al.Analysis of stress sensitivity and its influence on oil production from tight reservoir[C].Ken⁃ tucky:Eastern Regional Meeting,2007.
-
[13] YANG L,LU X B,SHI X,et al.Effect of microfractures properties on stress-dependent permeability in tight oil reservoir[C].Wash⁃ ington:52nd U.S.Rock Mechanics/Geomechanics Symposium,2018.
-
[14] 王树平,史云清,严谨,等.考虑裂缝干扰的气藏压裂水平井产能预测模型[J].大庆石油学院学报,2012,36(3):67-71.WANG Shuping,SHI Yunqing,YAN Jin,et al.A new productivity prediction model of fracturing horizontal well in gas reservoir tak⁃ ing into account of mutual interference between fractures[J].Jour⁃ nal of Daqing Petroleum Institute,2012,36(3):67-71.
-
[15] 李志强,赵金洲,胡永全,等.致密油层多区体积压裂产能预测 [J].油气地质与采收率,2016,23(1):134-138.LI Zhiqiang,ZHAO Jinzhou,HU Yongquan,et al.Productivity forecast of tight oil reservoirs after multi-zone stimulated reser⁃ voir volume fracturing[J].Petroleum Geology and Recovery Effi⁃ ciency,2016,23(1):134-138.
-
[16] 蒲谢洋,胡永全,赵金洲,等.致密油藏水力压裂复杂缝网单井产能预测[J].新疆石油地质,2016,37(2):208-212.PU Xieyang,HU Yongquan,ZHAO Jinzhou,et al.Productivity prediction of fracturing well with complex hydraulic fracture net⁃ work in tight oil reservoir[J].Xinjiang Petroleum Geology,2016,37(2):208-212.
-
[17] 刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5):779-784.LIU Jianjun,ZHANG Shengzong,LIU Xiangui,et al.Theory and simulation of fluid-solid coupling flow through low permeability fractured oil reservoir[J].Acta Mechanica Sinica,2002,34(5):779-784.
-
[18] 方思冬,战剑飞,黄世军,等.致密油藏多角度裂缝压裂水平井产能计算方法[J].油气地质与采收率,2015,22(3):84-89.FANG Sidong,ZHAN Jianfei,HUANG Shijun,et al.A computa⁃ tional method for productivity of arbitrary angular fractured hori⁃ zontal well in tight oil reservoirs[J].Petroleum Geology and Re⁃ covery Efficiency,2015,22(3):84-89.
-
[19] 杨孝,冯胜斌,王炯,等.鄂尔多斯盆地延长组长7段致密油储层应力敏感性及影响因素[J].中国石油勘探,2017,22(5):64-71.YANG Xiao,FENG Shengbin,WANG Jiong,et al.Stress sensitivi⁃ ty and its influence factors of tight oil reservoir in Chang7 Mem⁃ ber,Ordos Basin[J].China Petroleum Exploration,2017,22(5):64-71.
-
[20] BARS M L,WORSTER M G.Interfacial conditions between a pure fluid and a porous medium:implications for binary alloy solidifica⁃ tion[J].Journal of Fluid Mechanics,2006,550:149-173.
-
摘要
致密油藏多采用水平井分段多簇压裂方式生产,产能预测需兼顾天然裂缝和水力裂缝的分布,同时考虑裂缝与基质之间的耦合。以S油田天然裂缝的走向和密度为基础,利用COMSOL和MATLAB软件联合仿真技术,对致密油藏中水平井井筒、水力裂缝和天然裂缝的分布进行建模。利用基质-裂缝-井筒耦合流动模型,模拟了水力压裂条件下,不同裂缝间距和裂缝长度油藏的压力分布、日产油量和累积产油量。结果表明:水力压裂改造后,压力首先波及到导流能力较强的主裂缝和次级裂缝,随后向沟通的天然裂缝和基质扩展,且扩展速度逐渐变缓;对于无法连通的未改造区域,压力很难波及到。生产时间为1000 d时,压力波及区域面积仅为油藏面积的34.1%。增加裂缝长度及减小裂缝间距均可提高日产油量和累积产油量,其中减小水力裂缝间距对提高产能和累积产量的贡献更为显著。
Abstract
Most tight oil reservoirs are put into production by multistage fractured horizontal well,and the distribution of the natural fractures and hydraulic fractures,and the coupling of the fractures and matrix should be considered in the productiv- ity analysis. A model of the horizontal wellbore,and the distribution of the hydraulic fractures and natural fractures is pro- posed by the COMSOL and MATLAB program based on the real data of the fracture strike and density in S Oilfield. The pressure distribution,daily oil production and cumulative oil production under the different lengths and spacing of hydrau- lic fractures are simulated by the matrix-fracture-wellbore coupling flow model. The results show that the pressure drops can be firstly observed in the main fractures and secondary fractures with higher conductivity,and then pressure drops spread to the natural fractures and matrix slowly. Pressure drop is hard to spread to the unstimulated and disconnected res- ervoir regions. The low-pressure area accounted for 34.1% of the whole reservoir area when the production time is 1000 days. Increasing fracture length and decreasing fracture spacing are helpful to the improvement of both daily and cumula- tive oil production. Decreasing the fracture spacing is a more effective way to increase the daily oil production so that the cumulative oil production is improved significantly.
关键词
致密油藏 ; 天然裂缝 ; 体积压裂 ; 基质-裂缝-井筒耦合流动 ; 产能模拟