-
潜山是中国东部盆地重要的油气聚集场所,渤海湾盆地约有12%~15%的油气产量来自潜山[1-2]。大多数潜山是由比较致密的碳酸盐岩或火成岩组成,通常认为裂缝或溶蚀的裂缝是其主要的储集空间[3-4]。因此,裂缝的成因类型和分布规律成为潜山储层的研究重点[5-7],很多学者利用构造应力场模拟进行裂缝预测[7-11],有的取得一些好的效果[7-9],有的却没有反映实际情况[10-11]。实际上,潜山内幕可以是由多期断层、多种岩性组成的复杂系统,能否形成有效的储集空间还与溶蚀流体的活动有关,需进行深入研究。
-
自1988年发现以来,埕岛潜山已在太古界和下古生界碳酸盐岩发现油层[12],完钻探井和开发井41口,其中21口井钻遇工业油流,16口井投入开发,但多数井存在初期产量高、产量递减快以及含水率快速上升等问题,截至21世纪初仅有2口井在生产,究其原因为以裂缝为主要储集空间的开发方案与实际地质规律不符。笔者针对这些问题,通过岩心观察发现研究区含油层段主要是与断层相关的、具有溶蚀的角砾岩和碎裂岩,它们构成了潜山储层的新型储集体,而一般的裂缝和风化壳灰岩含油性很差,进而建立断层与新型储集体发育段、裂缝段的空间组合关系;此外,利用岩矿鉴定和地化方法分析潜山形成过程中地表水和热液流体对断层周围的溶蚀作用,提出埕岛潜山新型储集体发育模式,并利用测井和地震资料对储集体发育的有利层段进行识别和预测,为油田开发调整提供了依据。
-
1 断层-裂缝段-碎裂岩-角砾岩组合类型
-
埕岛潜山9口井的岩心观察发现,不论哪个层组的灰岩和白云岩均发育裂缝,以张性裂缝为主,且产状变化很大,有的呈高角度,有的为交叉网状,大部分被方解石充填(图1a—1d),基本上不含油; 当裂缝密度大于10条/m时,称其为碎裂岩(图1e— 1h),有时一块岩心上可见到10条以上的裂缝,这些裂缝多数也被方解石等矿物充填,但具有明显的再溶蚀现象,且多数是含油的(图1g—1h);断层角砾岩在岩心观察中经常为样品袋装的破碎岩块,可见多个方向擦痕,还可见巨晶方解石胶结现象,最显著的特点是含油性非常好(图1i—1j),这些含油性好的碎裂岩及角砾岩也组成了潜山内幕中的新型储集体。通过绘制岩心柱状图,发现裂缝段-碎裂岩-角砾岩与断层在空间上具有5种组合类型。
-
1.1 裂缝段-碎裂岩-角砾岩-碎裂岩-裂缝段对称式组合
-
埕北古3井上马家沟组3 441.3~3 452.1m灰岩由上至下分布(图2a):①厚度为0.3~1.2m的裂缝段,裂缝密度为4~8条/m,宽度为0.1~1.5mm,全部为张性裂缝,且缝内见方解石高度充填(图1c);②厚度为0.5~1.8m的碎裂岩,裂缝密度可达20条/m;③厚度约为0.5m的角砾岩,角砾大小不等,为油浸状,发育多方向擦痕,断层从角砾岩段穿过,与地震剖面对比发现,其为一条切割潜山顶面直至古近系—新近系的断层,形成断层角砾岩;④ 再往下分别为厚度为0.5~1.2m的碎裂岩和厚度约为0.6m的裂缝段。
-
图1 埕岛潜山碳酸盐岩发育的裂缝段、碎裂岩和角砾岩的岩心特征
-
Fig.1 Core characteristics of fractured rocks,cataclastic rocks and breccias in the carbonates in Chengdao buried hill
-
1.2 裂缝段-角砾岩-裂缝段对称式组合
-
埕北306井上马家沟组3 806~3 811.5m井段发育该种组合(图2b)。其断层上盘裂缝段厚度约为0.4m、下盘厚度约为1.2m,均为高角度裂缝,密度为4~6条/m;3 807.6~3 808.9m井段见粒径为1.5~3cm的角砾,含油性很好;角砾岩之下又出现密度为5~8条/m的裂缝段,形成裂缝段-角砾岩裂缝段对称式组合。
-
1.3 裂缝段-碎裂岩-角砾岩-裂缝段不对称组合
-
埕北304井八陡组3 411.3~3 417.8m井段为灰岩夹灰质泥岩,自上而下发育厚度为0.4~0.6m的裂缝段、厚度为0.5~0.8m的碎裂岩、厚度为0.6~0.9m的角砾岩以及厚度为0.7~1.0m的裂缝段(图2c)。该井八陡组灰岩发育一些风化淋滤形成的毫米级缝洞,其连通性差,没有含油现象。
-
1.4 裂缝段-碎裂岩-裂缝段对称式组合
-
埕北302井八陡组3 528.2~3 538.1m取心段未见角砾岩,但裂缝段和碎裂岩很发育(图2d)。其上部裂缝段的厚度为0.8~1.4m,断层从碎裂岩穿过,上、下盘碎裂岩的叠加厚度为1.4~2.2m,下部裂缝段的厚度约为0.6~0.8m,其中碎裂岩的含油性良好。
-
1.5 裂缝段-碎裂岩-角砾岩复杂式组合
-
该种组合在埕岛潜山很常见,往往在2条断层交叉处,由其各自的裂缝段-碎裂岩-角砾岩叠加在一起形成的。埕北304井八陡组3 364.3~3 375.2m取心段为该种组合,其发育2条断层,上部的断层角砾岩较厚,厚度为1.2~2.1m,下部的断层角砾岩较薄,厚度为0.7~1.1m,角砾岩上、下分布着厚度不等的3层碎裂岩和2层裂缝段(图2e)。断层交叉处裂缝段-碎裂岩-角砾岩复杂式组合是埕北304井重要的含油层段。
-
实际上,笔者通过岩心观察发现有的断层角砾岩不含油、胶结致密。例如埕北302井埋深约为4 001.82m的断层角砾岩具有一定的磨圆,泥质和钙质作为胶结物将砾间孔几乎完全充填,失去了储集性能(图3)。地震资料分析结果表明,这种角砾岩靠近断层发育,为断层角砾岩,但该断层为前古近纪形成的[13-15],未切割至潜山顶面(图3),也就是说在潜山形成期不再活动,其角砾岩在前古近纪已被胶结充填,失去了储集性能。
-
2 潜山内幕新型储集体溶蚀作用
-
岩心观察发现,埕岛潜山角砾岩、碎裂岩、裂缝段存在复杂的空间组合特征,且前两者都具有明显的溶蚀痕迹,为进一步分析这些新型储集体、裂缝段中溶蚀作用的差异,笔者选取一系列样品进行薄片、碳氧同位素和包裹体均一温度等分析。
-
图2 埕岛潜山与断层相关的裂缝段、碎裂岩、角砾岩组合特征
-
Fig.2 Combinations of fractures,cataclastic rocks and breccias related to faults in Chengdao buried hill
-
图3 埕岛潜山与前古近纪断层相关的致密断层角砾岩
-
Fig.3 Tight breccias formed by pre-tertiary fault in Chengdao buried hill
-
2.1 溶蚀特征
-
切割潜山和古近系—新近系断层附近的角砾岩、碎裂岩的溶蚀现象明显,有些裂缝段也见到溶蚀现象。角砾岩的溶蚀主要表现在角砾间方解石的再溶蚀,桩海102井八陡组角砾间充填的方解石再次被溶蚀形成2.5mm×1.8mm的孔洞(图4a),说明角砾岩砾间在方解石充填前后一直是流体活动的通道,具有一定的储集能力,研究区上马家沟组、冶里-亮甲山组砾间方解石溶蚀情况与八陡组相似 (图4b,4c)。角砾岩的角砾也会受到溶蚀作用,埕北30井冶里-亮甲山组钻遇大量的溶蚀孔洞,直径为3~20mm,多数呈开启状态,部分角砾也被溶蚀 (图4d)。潜山内部老断层在中生代活动,附近的角砾岩胶结程度普遍较高,偶尔可见溶蚀孔缝,但连通性差,所以含油性也差。
-
碎裂岩被多条裂缝切割,桩海102和埕北302井冶里-亮甲山组常见部分开启的溶蚀缝,宽度为1~3mm,缝壁周围可见方解石颗粒自由生长,后期被溶蚀,形成沿裂缝发育的孔洞(图4e)。埕北302井冶里-亮甲山组灰岩可见宽度为0.15mm的溶蚀缝,被溶蚀的矿物为裂缝中自由生长的方解石,沿着裂缝还可见另一条溶蚀缝(图4f),反映出碎裂岩发育的储集空间。有的方解石颗粒沿裂缝方向被选择性溶蚀,增大了碎裂岩的孔隙度(图4g)。
-
裂缝段灰岩中的溶蚀现象很少,充填程度相对较高,多被粒径为0.1~0.3mm的方解石颗粒充填。埕北302井八陡组和上马家沟组灰岩裂缝中见到0.3mm×0.2mm和0.2mm×0.15mm等沿裂缝展布的溶蚀孔(图4h)。
-
总的来说,断层附近角砾岩的溶蚀程度最高,形成溶洞、溶孔及少量溶蚀缝;碎裂岩溶蚀程度次之,以溶蚀缝和溶孔为主,包括少量的溶洞及晶间溶孔;而裂缝段的溶蚀程度最低。
-
2.2 溶蚀流体性质
-
流体和流体通道是控制溶蚀作用的根本因素。断层附近的角砾岩、碎裂岩和裂缝段提供了流体活动通道。对于潜山来讲,来自地表的流体和来自断层深部的部分热液具有溶蚀作用,因为低矿化度的热液具有溶蚀性能,当热液温度降低达到矿物饱和状态也会使碳酸盐矿物沉淀出来,形成孔缝洞的充填物。笔者通过对溶蚀孔缝洞中方解石和部分碳酸盐岩样品的锶同位素、碳氧同位素等地化分析,明确了溶蚀流体的性质,从而提出埕岛潜山内幕溶蚀作用模式。
-
2.2.1 锶同位素分析
-
与潜山形成相关的87Sr来源包括地表水、风化作用提供的富87Sr的壳源锶以及正常碳酸盐岩化学风化作用提供的87Sr。因此,碳酸盐矿物稳定沉淀后,87Sr/86Sr值可以很好地反映成岩流体的特征[16-18]。
-
选取埕岛潜山8个孔缝洞充填的方解石样品和18个奥陶系灰岩样品进行锶同位素分析,发现灰岩样品的锶同位素值集中在0.71~0.716,平均为0.714,多数孔缝洞方解石充填物样品的锶同位素值分布于0.716~0.72,平均为0.717(图5),高于周围灰岩样品的锶同位素值,表明方解石的锶同位素多来自于壳源和碳酸盐岩风化。因此,除碳酸盐岩风化提供的锶同位素外,缝洞充填方解石的锶同位素受到壳源锶同位素的影响较大,这与埕岛潜山形成过程中地表水活动所携带的风化壳物质在缝洞沉淀造成87Sr富集相关,值得注意的是,还存在2个孔缝洞充填的方解石样品的87Sr/86Sr值低于0.713,应当是热液流体携带的幔源锶所致(图5)。
-
图4 埕岛潜山角砾岩、碎裂岩、裂缝段的溶蚀特征
-
Fig.4 Dissolution characteristics of faulted breccias,cataclastic rocks and fractured rocks in Chengdao buried hill
-
图5 埕岛潜山奥陶系灰岩与孔缝洞方解石充填物锶同位素与碳同位素关系
-
Fig.5 Relationship between strontium isotope and carbon isotope of Ordovician limestone and calcite fillings in Chengdao buried hill
-
2.2.2 碳氧同位素分析
-
一般来说,溶蚀程度越高,来自围岩的13C含量也会增加,最终方解石胶结物的δ13C值也越大[18-19]。当地表淡水溶蚀海相碳酸盐岩时,18O含量较低的地表水会使得围岩中氧同位素的比值偏负,且偏负程度与温度的变化相关;随着温度升高,氧同位素的交换作用加强,使得碳酸盐岩的18O含量较低,地表水富集18O;当碳酸盐岩储层遭受高温热液流体时,高温会增强氧同位素的分馏作用,导致热液充填方解石的δ18O值更低[18-21]。
-
对埕岛潜山22块灰岩样品和12块孔缝洞方解石充填物样品的碳氧同位素组成进行分析,发现孔缝洞充填物的碳氧同位素比值低于奥陶系灰岩的,表明在成岩过程中,碳酸盐岩矿物受到地表水或热液等流体的改造作用。与不远处的富台潜山对比[22],灰岩样品的测试值分布于正常海水沉积区域,且受低温热液(正常地下水)溶蚀作用,埋深较大的馒头组、冶里-亮甲山组和下马家沟组方解石充填物样品确实落在了热液活动区,表明热液流体以低温及较高温为主,且在潜山内部自下而上流动过程中其温度具有下降的趋势(图6)。
-
2.2.3 热液温度与充填期次分析
-
在孔缝洞方解石充填结晶过程中,会捕获周围流体形成包裹体,气液包裹体的均一温度记录了其形成时的温度,包裹体成分可以反映流体的组成。对埕岛潜山桩海102等6口井的碳酸盐岩孔缝洞方解石充填物进行气液包裹体均一温度测试,共获得64个包裹体均一温度;其中油水包裹体占比为15%,其他包裹体占比为85%,说明部分形成包裹体的流体就是油气成藏流体,或者说成藏流体对潜山孔缝洞的形成和改造起到作用。以桩海102井冶里-亮甲山组4 623.06m碎裂状灰岩样品为例(图7) 说明这些包裹体的特征,对方解石测得3个油水包裹体和11个气液包裹体的均一温度,其中油水包裹体的均一温度为118~125℃,与埕岛潜山油气成藏期埋深为3 200m的地层温度相当[23],气液包裹体中27%的均一温度超过145℃,明显高于油气成藏期的地层温度,表明该井冶里-亮甲山组断层碎裂岩受到热液作用,但属于油气成藏期的低温热液。
-
图6 埕岛潜山碳酸盐岩与孔缝洞充填方解石碳氧同位素关系
-
Fig.6 Carbon and oxygen isotope relationship between carbonate rocks and calcite filled pores and fissures in Chengdao buried hill
-
图7 埕岛潜山桩海102井冶里-亮甲山组断层碎裂岩缝洞方解石充填物气液包裹体均一温度分析
-
Fig.7 Homogeneous temperature analysis of gas-liquid inclusions of calcite filler in fracture cave of fault fragmentation rock of YeliLiangjiashan formation in Zhuanghai102well, Chengdao buried hill
-
2.3 埕岛潜山新型储集体发育模式
-
埕岛潜山为断块潜山,多期次、多级别的断层纵横交错,控制着潜山的形态和裂缝段-碎裂岩-角砾岩的发育。基于地震资料解释和前人研究成果[13-15],认为研究区潜山断裂发育共有2期:①前古近纪发育的断层切割潜山内幕下古生界,古近纪— 新近纪没有再活动,形成胶结致密的断层角砾岩。 ②古近纪—新近纪断裂活动加剧,在断层面附近形成了大规模的晚期断层角砾岩,随着与断层面之间的距离增加,依次分布碎裂岩和裂缝段;当断层规模较小时,碎裂岩或裂缝段也会靠近断层面发育。期间部分早期断层会再次活动,早期胶结较为致密的断层角砾岩中也会出现少量的缝洞,但规模远不及晚期断层角砾岩。
-
除了控制形成储层外,断层也与新型储集体一同成为流体活动通道,特别是第2期断层。结合岩心、薄片和地化分析资料发现,地表水沿通道向下流动,溶蚀周围可溶性矿物颗粒,其中以角砾岩溶蚀最为强烈,溶洞、溶孔大量发育,碎裂岩相对次之,形成了较多的溶蚀缝、溶孔,裂缝段则基本未见溶蚀现象。热液流体沿通道从下向上活动,且多表现为充填作用,期间流体温度及流速逐渐降低,在角砾岩及碎裂岩的缝洞中沉淀重晶石、鞍型白云石等热液矿物,进而得到埕岛潜山新型储集体的发育模式(图8)。
-
除上述与古近纪—新近纪断层相关的储集体,在埕岛潜山构造演化过程中,其顶部遭受风化淋滤作用,形成沿不整合面发育的风化淋滤段;潜山抬升过程中,潜水面发生变化,潜山内幕碳酸盐岩可以形成水平溶蚀缝洞;这些组成了传统的潜山储集空间。综上所述,本文揭示的埕岛潜山新型储集体是研究区的主力含油层。
-
3 潜山内幕新型储集体分布与预测
-
3.1 测井识别及预测
-
将岩心描述得到的与断层相关的角砾岩-碎裂岩-裂缝段组合关系与测井曲线相结合,发现角砾岩具有“两高两低”的测井响应,即高声波时差、高中子孔隙度和低深、浅电阻率;其中,古近纪—新近纪活动断层伴生的角砾岩的深、浅电阻率具有很明显的幅度差。碎裂岩也具有“两高两低”的测井响应特征,但其各项参数的数值均小于角砾岩的。裂缝段对应的三孔隙度和自然伽马测井曲线无明显异常,深、浅电阻率呈高值且幅度差较小(表1)。
-
图8 埕岛潜山新型储集体的发育模式(以埕北30潜山剖面为例)
-
Fig.8 Formation model of new-type reservoir space in Chengdao buried hill (taking Chengbei30buried hill as an example)
-
基于埕岛潜山9口取心井描述的角砾岩、碎裂岩、裂缝段及其周围碳酸盐岩对应的测井曲线数值 (表1),引入浅侧向电导率和双侧向电导率差绝对值这2个特征参数,并优选出对研究区新型储集体反映比较敏感的补偿中子和声波时差测井,建立角砾岩-碎裂岩-裂缝段的测井综合判别公式:
-
根据岩心描述成果,确定了4个参数的权重系数。结果表明:当 M >0.30时,为角砾岩;0.15<M ≤ 0.30时,为碎裂岩;0.1≤M ≤0.15时,为裂缝段;M <0.1时,为周围碳酸盐岩(图9)。据此对埕岛潜山40余口井进行测井解释,得到研究区潜山全井段与断层相关的新型储集体的判别和预测结果。
-
3.2 地震预测
-
通过时深转换,将新型储集体的测井解释成果标定至地震资料上,可以明确新型储集体的地震反射特征。以过埕北30B-4井—埕北30井地震剖面为例,埕北30井潜山段的测井解释结果为自上而下依次为碎裂岩、角砾岩和碎裂岩,将其投影至地震资料上,发现靠近潜山顶部不整合面为能量较强的低频反射特征,向下为串珠状反射特征(图10);埕北30B-4井也存在碎裂岩和角砾岩,表现为能量较弱的低频团块或串珠状反射特征(图10)。据此,笔者利用Petrel软件的蚂蚁追踪模块完成对埕岛潜山断层分布的预测;再将各潜山区块新型储集体的测井解释成果标定于地震剖面上,确定新型储集体的分布范围;在没有井约束的部位,根据受断层控制的储集空间发育模式以及地震反射特征(串珠状、能量较弱的模糊团状或空白反射)进行解释,进而得到新型储集体在剖面上的分布特征(图10)。将周围具有相同反射特征的区域进行连接,发现这些储集体的大小、形状各异,但均围绕断层分布。当断层发育密集时,相邻的储集体会相互连接,纵向断距越大,储集体的分布范围越大,且在大、小断层交汇处的角砾岩非常发育。埕岛潜山八陡组和冶里-亮甲山组为新型储集体发育层系,可以将地震剖面解释成果投影至对应的蚂蚁属性切片中,圈出潜山各区块新型储集体的平面分布范围。
-
图9 埕岛潜山埕北30B-2井与断层相关新型储集体测井特征与识别结果
-
Fig.9 Well loggings and identifications of new-type reservoir formed by faults under well Chengbei30B-2in Chengdao buried hill
-
4 结论
-
埕岛潜山以奥陶系碳酸盐岩为主,除了风化淋滤形成的孔缝洞储集空间以外,还发育与断层相关的、储集空间良好的角砾岩-碎裂岩-裂缝段,其中角砾岩和碎裂岩含油性非常好,成为埕岛潜山内幕的新型储集体。通过岩心观测,发现埕岛潜山新型储集体存在裂缝段-碎裂岩-角砾岩-碎裂岩-裂缝段对称式、裂缝段-角砾岩-裂缝段对称式、裂缝段碎裂岩-角砾岩-裂缝段不对称式、裂缝段-碎裂岩裂缝段对称式、裂缝段-碎裂岩-角砾岩复杂式共5种组合类型。
-
通过岩矿鉴定和地化分析,发现断层-新型储集体是地表水和热液流体的通道,也是油气运移的通道,其溶蚀作用明显,油气聚集程度高。可以利用测井和地震资料对埕岛潜山内幕发育的断层-新型储集体进行识别和预测,明确潜山内幕新型储集体及油气分布特征,为潜山油藏开发调整提供可靠的地质依据。
-
图10 埕岛潜山埕北30区块新型储集体地震剖面解释成果
-
Fig.10 Seismic profile interpretations of new-type reservoir in Chengbei30block of Chengdao buried hill
-
符号解释
-
M ——角砾岩-碎裂岩-裂缝段的测井综合判别函数,f; K ——双侧向电导率差绝对值归一化后的数值,f;1/RS —— 浅侧向电导率差绝对值归一化后的数值,f;CNL ——补偿中子测井归一化后的数值,f;AC ——声波测井归一化后的数值,f。
-
参考文献
-
[1] 金强,王端平.潜山型碳酸盐岩储集空间成因模式[J].油气地质与采收率,2003,10(5):12-15.JIN Qiang,WANG Duanping.Genetic models on carbonate reser⁃ voir space of buried hill type[J].Petroleum Geology and Recovery Efficiency,2003,10(5):12-15.
-
[2] 李欣,闫伟鹏,崔周旗,等.渤海湾盆地潜山油气藏勘探潜力与方向[J].石油实验地质,2012,34(2):140-144,152.LI Xin,YAN Weipeng,CUI Zhouqi,et al.Prospecting potential and targets of buried-hill oil and gas reservoirs in Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2012,34(2):140-144,152.
-
[3] 昝念民,王艳忠,操应长.东营凹陷下古生界碳酸盐岩古潜山储层储集空间特征及发育模式[J].石油与天然气地质,2018,39(2):355-365.ZAN Nianmin,WANG Yanzhong,CAO Yingchang,et al.Charac⁃ teristics and development patterns of reservoir space of the Lower Paleozoic buried hills in Dongying Sag,Bohai Bay Basin[J].Oil & Gas Geology,2018,39(2):355-365.
-
[4] 黄胜兵,刘丽芳,吴克强,等.渤海海域沙垒田凸起西段花岗岩潜山优质储层形成控制因素及综合预测[J].中国石油勘探,2017,22(4):108-115.HUANG Shengbing,LIU Lifang,WU Keqiang,et al.Control fac⁃ tors and comprehensive prediction of granite buried hill reservoirs in western segment of Shaleitian bulge,Bohai Sea[J].China Petro⁃ leum Exploration,2017,22(4):108-115.
-
[5] 邓吉锋,史浩,王保全,等.渤中凹陷古生界碳酸盐岩潜山气藏储层特征及主控因素[J].大庆石油地质与开发,2015,34(4):15-20.DENG Jifeng,SHI Hao,WANG Baoquan,et al.Characteristics and main controlling factors of Paleozoic carbonate buried-hill gas reservoirs in Bozhong sag[J].Petroleum Geology & Oilfield Development in Daqing,2015,34(4):15-20.
-
[6] 于海波,王德英,牛成民,等.渤海海域渤南低凸起碳酸盐岩潜山储层特征及形成机制[J].石油实验地质,2015,37(2):150-156,163.YU Haibo,WANG Deying,NIU Chengmin,et al.Characteristics and formation mechanisms of buried hill carbonate reservoirs in Bonan Low Uplift,Bohai Bay[J].Petroleum Geology & Experi⁃ ment,2015,37(2):150-156,163.
-
[7] 黄保纲,汪利兵,赵春明,等.JZS 油田潜山裂缝储层形成机制及分布预测[J].石油与天然气地质,2011,32(5):710-717.HUANG Baogang,WANG Libing,ZHAO Chunming,et al.Forma⁃ tion mechanism and distribution of fractured buried hill reservoir in JZS oilfield[J].Oil & Gas Geology,2011,32(5):710-717.
-
[8] 商琳,戴俊生,贾开富,等.碳酸盐岩潜山不同级别构造裂缝分布规律数值模拟——以渤海湾盆地富台油田为例[J].天然气地球科学,2013,24(6):1 260-1 267.SHANG Lin,DAI Junsheng,JIA Kaifu,et al.Numerical Simula⁃ tion for the distribution of different levels of tectonic fractures in carbonate buried hills:Taking Futai Oilfield in Bohai Bay Basin as an example[J].Natural Gas Geoscience,2013,24(6):1 260-1 267.
-
[9] 刘大听,张淑娟,童亨茂.任丘潜山油藏裂缝预测及剩余油分布研究[J].石油学报,2001,22(4):49-54.LIU Dating,ZHANG Shujuan,TONG Hengmao.The fracture pre⁃ diction study of buried hill reservoir in Renqiu[J].Acta Petrolei Sinica,2001,22(4):49-54.
-
[10] 杨少春,齐陆宁,李拴豹.埕岛地区埕北20潜山带裂缝类型、发育期次及控制因素[J].中国石油大学学报:自然科学版,2012,36(5):1-6.YANG Shaochun,QI Luning,LI Shuanbao.Fracture types,devel⁃ opment phases and controlling factors of Chengbei20 buried hills in Chengdao area[J].Journal of China University of Petroleum:Edition of Natural Science,2012,36(5):1-6.
-
[11] 李行船,谢桂学,孟祥和.古构造应力场反演在储层裂缝预测中的应用——以埕北30潜山油藏为例[J].山东科技大学学报:自然科学版,2001,20(1):74-77.LI Xingchuan,XIE Guixue,MENG Xianghe.Application of paleo⁃ tectonic stress field inversion in reservoir fracture forecasting[J].Journal of Shandong University of Science and Technology:Natu⁃ ral Science,2001,20(1):74-77.
-
[12] 郑和荣,林会喜,王永诗.埕岛油田勘探实践与认识[J].石油勘探与开发,2000,27(6):1-3,8.ZHENG Herong,LIN Huixi,WANG Yongshi.Practice and knowl⁃ edge of exploration on Chengdao oil field[J].Petroleum Explora⁃ tion and Development,2000,27(6):1-3,8.
-
[13] 李伟,吴智平,张明华,等.埕岛地区中生代和新生代断层发育特征及其对沉积的控制作用[J].中国石油大学学报:自然科学版,2006,30(1):1-6,11.LI Wei,WU Zhiping,ZHANG Minghua,et al.Development char⁃ acteristic of Mesozoic and Cenozoic faults and its control over de⁃ position in Chengdao area[J].Journal of China University of Petro⁃ leum:Edition of Natural Science,2006,30(1):1-6,11.
-
[14] 马立驰,王永诗,景安语.济阳坳陷滩海地区古近系构造样式及其控藏作用[J].油气地质与采收率,2018,25(1):1-5.MA Lichi,WANG Yongshi,JING Anyu.Paleogene tectonic styles and their controls on hydrocarbon accumulation in the shallow sea of the Jiyang Depression[J].Petroleum Geology and Recovery Ef⁃ ficiency,2018,25(1):1-5.
-
[15] 马立驰,王永诗,杨贵丽.垦东-埕岛构造带古近纪断层活动特征[J].油气地质与采收率,2015,22(3):42-46,51.MA Lichi,WANG Yongshi,YANG Guili.Features of Paleogene fault activity in the Kendong-Chengdao structural belt[J].Petro⁃ leum Geology and Recovery Efficiency,2015,22(3):42-46,51.
-
[16] 黄思静,刘树根,李国蓉,等.奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响[J].成都理工大学学报:自然科学版,2004,31(1):1-7.HUANG Sijing,LIU Shugen,LI Guorong,et al.Strontium isotope composition of marine carbonate and the influence of diagenetic fluid on it in Ordovician[J].Journal of Chengdu University of Technology:Science & Technology Edition,2004,31(1):1-7.
-
[17] SWENNEN R,VANDEGINSTE V,ELLAM R.Genesis of zebra dolomites(Cathedral formation:Canadian Cordillera Fold and Thrust Belt,British Columbia)[J].Journal of Geochemical Explo⁃ ration,2003,78/79:571-577.
-
[18] 刘存革,李国蓉,朱传玲,等.塔河油田中下奥陶统岩溶缝洞方解石碳、氧、锶同位素地球化学特征[J].地球科学:中国地质大学学报,2008,33(3):377-386.LIU Cunge,LI Guorong,ZHU Chuanling,et al.Geochemistry char⁃ acteristics of carbon,oxygen and strontium isotopes of calcites filled in karstic fissure-cave in Lower-Middle Ordovician of Tahe Oilfield,Tarim Basin[J].Earth Science-Journal of China Univer⁃ sity of Geosciences,2008,33(3):377-386.
-
[19] Al-AASM Ihsan.Origin and characterization of hydrothermal dolo⁃ mite in the Western Canada Sedimentary Basin[J].Journal of Geo⁃ chemical Exploration,2003,78/79:9-15.
-
[20] 刘小平,吴欣松,张祥忠.轮古西地区奥陶系碳酸盐岩古岩溶储层碳、氧同位素地球化学特征[J].西安石油大学学报:自然科学版,2004,19(4):69-71,76.LIU Xiaoping,WU Xinsong,ZHANG Xiangzhong.Geochemistry characteristics of carbon and oxygen isotopes of Ordovician car⁃ bonate palaeokarst reservoir in the western region of Lungu,Tarim Basin[J].Journal of Xi’an Shiyou University:Natural Sci⁃ ence Edition,2004,19(4):69-71,76.
-
[21] 蔡春芳,李开开,李斌,等.塔河地区奥陶系碳酸盐岩缝洞充填物的地球化学特征及其形成流体分析[J].岩石学报,2009,25(10):2 399-2 404.CAI Chunfang,LI Kaikai,LI Bin,et al.Geochemical characteris⁃ tics and origins of fracture-and vug-fillings of the Ordovician in Tahe oilfield,Tarim basin[J].Acta Petrologica Sinica,2009,25(10):2 399-2 404.
-
[22] 金强,毛晶晶,杜玉山,等.渤海湾盆地富台油田碳酸盐岩潜山裂缝充填机制[J].石油勘探与开发,2015,42(4):454-462.JIN Qiang,MAO Jingjing,DU Yushan,et al.Fracture filling mech⁃ anisms in the carbonate buried-hill of Futai Oilfield in Bohai Bay Basin,East China[J].Petroleum Exploration and Development,2015,42(4):454-462.
-
[23] 王锋,肖贤明,陈永红,等.渤中坳陷埕北30潜山储层流体包裹体特征与成藏时间研究[J].海相油气地质,2006,11(2):47-51.WANG Feng,XIAO Xianming,CHEN Yonghong,et al.Feature of fluid inclusions from Chengbei-30 buried hill reservoir in Bo⁃ zhong depression and dating of hydrocarbon emplacement[J].Ma⁃ rine Origin Petroleum Geology,2006,11(2):47-51.
-
摘要
潜山油气藏是中国东部储量丰富的勘探开发对象,但受构造活动、岩性变化和流体溶蚀等影响,其内幕储集空间非常复杂。通过对胜利油区埕岛潜山的岩心观察,发现断层活动导致下古生界碳酸盐岩形成裂缝段(裂缝密度小于 10 条/m)、碎裂岩(裂缝密度大于 10 条/m)和角砾岩(砾径为 2~8 cm),其中角砾岩和碎裂岩的溶蚀现象明显、砾间空隙含油性好,而裂缝段及一般碳酸盐岩的含油性较差。利用测井和地震资料,提出了断层与裂缝段、碎裂岩、角砾岩的5种组合,查明潜山内幕以断层破碎带(碎裂岩-角砾岩)为主体的新型储集体的分布规律。进而利用岩矿鉴定和地化分析,阐明了地表水和热液流体对断层附近碎裂岩、角砾岩的溶蚀情况,认为油气成藏期地表水对断层破碎带形成储集体起到了控制作用。这种新型储集体的预测和评价,有助于查明潜山内幕储集空间及油气分布特征,也有利于复杂潜山内幕油藏的高效开发。
Abstract
Hydrocarbon-bearing reservoirs found in buried hills are important targets with abundant reserves in Eastern China,but the reservoir space in buried hills is very complicated because of lithology changing,fault activity and fluid ero- sion. After observing cores from Chengdao buried hills composed of Ordovician carbonates,it is found that fractured carbon- ates(fracture density<10 fractures / m),cataclasites(fracture density>10 fractures / m)and breccias(2-8 cm gravels)are formed because of fault activity,among which breccias and cataclasites are clearly dissolved and rich in oil,but the frac- tured carbonates and ordinary carbonates are poor in oil. According to well logging and seismic interpretation,five assem- bles(fault frature zones)of fractured carbonates,cataclasites,and breccias are proposed,and the distribution of a new-type of reservoir body that mainly composed of breccias and cataclasites in buried hills is predicted. According to rock-mineral and geochemistry analysis,the dissolution of minerals with ground waters and thermal fluids flowing through the faults in the breccias and cataclasites is clarified,and it is believed that ground water plays a dominant role in the formation of reser- voirs in fault frature zones during hydrocarbon accumulation. The prediction and evaluation of this new type of reservoir body is helpful to predict reservoir spaces and oil distributions in complicated buried hills,as well as to efficiently produce oil from the buried hills.
Keywords
fault frature zone ; cataclasite ; breccias ; dissolution ; new reservoir-body ; internal buried hill