-
水驱是油田开发最重要的开发方式[1-5]。在胜利油区利用水驱开发的石油地质储量占总储量的81.9%;但目前胜利油区的综合含水率已达90.9%,其中已进入特高含水开发阶段的石油地质储量占总储量的47.3%。特高含水期油田的产量递减快[6]、稳产难度增加[7],对其剩余油进行主控因素分析、分布规律及预测技术研究已成为当务之急。前人已经认识到,储层的沉积模式及其非均质性控制了剩余油的形成[9-10],断层、夹层及储层构型样式等因素影响剩余油的分布[8,11-13],总结出正韵律顶部[14-15]、砂体边部[16-17]、注水波及弱的区域[14,18-20] 是剩余油富集区,油藏描述、数值模拟、油藏动态分析以及多学科综合分析已成为剩余油预测主流技术[8]。但随着油田开采程度不断深入,油藏内油水分布更加复杂,已有剩余油认识难以满足特高含水期井网调整、流线转变等油田生产调整需求。为此,以孤岛油田中一区馆上段第三砂组(Ng 上3)聚合物驱后井网调整非均相复合驱先导试验区为例,通过系统分析研究区3口密闭取心井资料,对特高含水期油藏剩余油分布特征及富集规律进行研究,并通过17口新钻井分析和矿场生产动态实践对剩余油新认识进行验证,以期突破对特高含水期油藏剩余油高度分散、局部富集的固有认识。
-
1 研究区概况
-
孤岛油田中一区位于孤岛油田中部,即孤岛潜山披覆背斜构造的顶部,构造简单平缓,倾角为1°~2°。中一区的含油储层为馆上段(Ng 上),沉积类型为河流相,自上而下共发育Ng 上1—6共6个砂组,其中Ng 上3和Ng 上4砂组为曲流河沉积。Ng 上 3储层物性好,平均孔隙度为33.5%,渗透率为1 800~3 500mD,为曲流河沉积的疏松砂岩正韵律储层[18];地层水总矿化度为7 547mg/L,原油黏度为400~800mPa·s。Ng 上3砂体厚度大,平均有效厚度达到10.2m,自上而下可细分为Ng 上31 —35 共5个小层,其中Ng 上 33 —35 是主力含油小层。Ng 上 3于1971年10月投产,1974年9月投入注水开发,Ng 上 3与Ng 上 4合注开采。1992年10月开展了聚合物先导试验,1994年12月进行扩大聚合物驱,1997年3月转后续水驱,至2006年12月聚合物驱失效,重新恢复水驱开发,为270m ×300m的行列井网,综合含水率为98.1%,采出程度已高达55.1%,平均单井日产油量仅为1.2t/d。
-
2 剩余可动油普遍分布
-
2.1 密闭取心井资料分析
-
为认识现阶段剩余油分布规律,在孤岛油田中一区选取研究区面积为0.2km2,分别在油井排、水井排和油水井排间各钻探1口密闭取心井:中13-斜检9井、中14-斜检11井和中14-检10井(图1)。3口密闭取心井总进尺为135.4m,岩心总长度为121.4m,收获油砂累积厚度为56.78m,选取436块样品进行了剩余油饱和度分析。实验分析的油、水饱和度之和多为60%~85%,由于降压脱气流体外溢、现场的油水挥发等原因,造成了饱和度损失,使得实验室测量的饱和度与地下油藏真实的饱和度存在较大误差,需进行饱和度校正。采用不密闭样品侵入校正、降压脱气校正和数理统计校正[21],进行实验分析饱和度校正,校正后的剩余油饱和度为13.4%~59.9%,其中93.8%的样品剩余油饱和度大于实验室测量的残余油饱和度(由23条相渗曲线得到残余油饱和度为16.6%~30.5%,平均为22.98%),表明尽管油藏含水率已高达98.1%,采出程度超过50%,剩余可动油仍普遍分布(图2)。
-
图1 孤岛油田中一区3口密闭取心井井位分布
-
Fig.1 Well locations of three sealed coring wells in Zhongyi area,Gudao Oilfield
-
平面上,3口密闭取心井中14-斜检11、中14-检10和中13-斜检9的剩余油饱和度分别为35.9%, 39.3%和36.3%,均超过35%。纵向上,Ng 上 33 —35 各小层含油饱和度分别为:38.85%,37.99%和30.04%(图3),且各小层均有10%以上的可动剩余油存在。从岩心观察来看,储层以深棕色油侵粉砂岩和浅棕色泥质粉砂岩为主,岩石微污手,具有浓重油气味道;滴水缓渗,呈半球状,表明储层中含有剩余油。不仅油层顶部存在剩余可动油,油层的中、下部也有相当的剩余可动油存在。中14-斜检11井的钻探结果表明,油层顶部的剩余油饱和度多为40%左右,油层中、下部的剩余油饱和度超过28%,部分韵律段可高达37%。因此,密闭取心井研究证实,特高含水期孤岛油田中一区Ng 上 3油藏的剩余可动油是普遍分布的。
-
图2 孤岛油田中一区Ng 上3油藏剩余油饱和度分布
-
Fig.2 Remaining oil saturation distribution of Upper Ng3sand group of Zhongyi area,Gudao Oilfield
-
从含油薄片分析来看,普遍分布的剩余油的含油级别为油侵-油斑。剩余油以珠状、浸染状分布为主(图4),占比为40%~60%;其次为凝块状,部分样品中占比可达10%以上。其中,油珠直径一般小于0.10mm,分布于粒间孔中,含量约为5%。随着岩石水洗程度的加强,含油性由油侵变为油斑,赋存形态由珠状逐渐向浸染状过渡。即使在含油饱和度低于20%样品的含油薄片中,也有一定量剩余油存在;剩余油主要分布于泥质杂基、泥质岩屑的微孔隙中。含油薄片证实,特高含水期孤岛油田中一区Ng 上3油藏的剩余可动油是普遍分布的。
-
图3 孤岛油田中一区Ng 上3密闭取心井剩余油综合分析结果
-
Fig.3 Comprehensive analysis results of remaining oil in sealed coring wells in Upper Ng3sand group of Zhongyi area,Gudao Oilfield
-
图4 孤岛油田中一区Ng 上3剩余油普遍分布区含油薄片
-
Fig.4 Oil-bearing thin section of remaining oil area in Upper Ng3sand group of Zhongyi area,Gudao Oilfield
-
2.2 新钻井资料分析
-
新钻井是指孤岛油田在中一区3口密闭取心井完钻后陆续完钻的17口新井,这17口井集中在开发初期反9点井网的一个井组内。从新井的测井曲线上来看,Ng 上 3含油砂岩段所对应的感应电导率多集中在60~240mS/m,其中小于150mS/m砂岩厚度比例达36.9%;对应的4m梯度电阻率多集中在3~11 Ω · m,其中大于6 Ω · m砂岩厚度比例达34.8%。对17口新井的含油饱和度进行了精细测井二次解释,其剩余油饱和度主要为30%~50%,平均为39.6%,其中大于22.98%的砂岩厚度达82.9%。因此,Ng 上 3超过80%的含油层段存在可动剩余油 (表1)。
-
平面上,不同井网位置的新钻井均有剩余可动油存在。原行列井网的排间有10口新钻井,剩余油饱和度主要为35%~46%,平均为40.4%。位于原水井排上的新钻井有4口,平均剩余油饱和度为38.5%,单井平均剩余油饱和度最高达44.7%(中9-斜3009井)(图5a)。位于原油井排的新钻井有3口,平均剩余油饱和度为39.5%,单井平均剩余油饱和度最低为36.3%(中13-斜3311井)(图5b)。
-
纵向上,17口新钻井的各小层剩余油饱和度主要集中在30%~50%,Ng 上 33 —35 剩余油饱和度平均值分别为42.4%,37.0%和38.7%,均高于残余油饱和度。其中,剩余油饱和度大于残余油饱和度的储层厚度分别占储层总厚度的83.6%,80.9%和83.4%,因此Ng 上 3主力小层80%的砂岩中存在可动剩余油。
-
无论是在油井排上,还是在水井排或油水井排间,无论是上部的Ng 上 33小层,还是下部Ng 上 35小层,17口新钻井的测井资料都证实存在可动剩余油,进一步表明特高含水期孤岛油田中一区Ng 上 3的剩余油是普遍分布的。
-
2.3 矿场生产动态验证
-
17口新钻井相继投产,其中8口为油井,9口为水井。4口油井位于原水井排上,4口油井位于油水井排间。纵向上Ng 上 3各小层均有射开井段,其中Ng 上 33 小层的射开厚度最大。新油井投产初期的日产油量多为2~9t/d,平均为5.5t/d,最高为13.9t/d; 含水率为60%~95%,平均为80.8%,最低为31.6%(表2)。8口油井产油量已累积超过8.9×104 t,生产动态进一步验证了特高含水期油藏的剩余可动油是普遍分布的。
-
图5 孤岛油田中一区Ng 上3新钻井剩余油综合分析结果
-
Fig.5 Comprehensive analysis results of remaining oil of newly drilled wells of Upper Ng3sand group in Zhongyi area,Gudao Oilfield
-
3 剩余可动油局部富集
-
3.1 密闭取心井资料分析
-
油藏分流量计算和矿场生产实践表明,在孤岛油田中一区Ng 上 3油藏,当剩余油饱和度大于50%,即为剩余油富集。在3口密闭取心井中,剩余油富集段厚度为3.5m,占储层总厚度的6.2%,表明存在剩余油富集区。其中,中14-斜检11井储层厚度累积为1.9m的含油饱和度均大于50%(图3a)。剩余油富集段的储层渗透率为800~2 500mD,其物性相对较差,计算驱油效率为25%~32%,对应水淹级别为见水。
-
分析密闭取心井资料表明受层内夹层和韵律性等因素影响,层内剩余油在纵向上具有分段性,主要位于油层顶部和夹层附近[22-26]。中13-斜检9井Ng 上 33 小层可细分为2个正韵律段,每个韵律段的顶部均有剩余油富集,剩余油饱和度超过50%,其中剩余油饱和度大于50%的储层厚度占比为6.8%(图3c)。中14-斜检11井Ng 上 33 小层顶部和Ng 上 35 小层顶部均存在剩余油富集段,剩余油饱和度分别为45.2%和42.87%,厚度分别为4.8和1.3m(图3a)。研究区Ng 上 3油藏的储层为曲流河沉积,具有正韵律特点[21],在韵律性和重力双重作用下,储层中、下部动用程度高于上部的,从而导致油层顶部的剩余油较为富集[22-24] (图3)。
-
通常层间剩余油分布受各层的有效厚度(H)及渗透率(K)的控制,本文采用两者乘积(KH)来研究对层间剩余油分布的影响。利用物理模拟、数值模拟评价层间 KH的控油作用,随着层间 KH比值的增加,KH 较低层的采出程度逐渐降低,剩余油饱和度增大。当层间KH比值大于6时,采收程度相差13% 以上,当层间KH比值达到50时,采出程度相差25%以上,KH较低层的剩余油富集。
-
从含油薄片分析来看,局部富集的剩余油的含油级别为油侵。剩余油主要分布于原生粒间孔中,呈斑块状或网状(图6),占比高达60%以上;少量剩余油呈浸染状分布泥质微孔隙中。岩石水洗程度较低,剩余油在原生粒间孔中连续分布。含油薄片证实,特高含水期Ng 上 3油藏的剩余可动油是局部富集的。
-
3.2 新钻井资料分析
-
新钻井测井精细二次解释表明,其剩余油饱和度大于50%的储层有89.4m,占储层总厚度的2 2.1%;且垂向上,剩余油富集段主要分布于油层的顶部和夹层附近(图7)。
-
图6 孤岛油田中一区Ng 上3剩余油局部富集区含油薄片
-
Fig.6 Oil-bearing slice of a local enrichment area of remaining oil in Upper Ng3sand group of Zhongyi area,Gudao Oilfield
-
正韵律储层顶部剩余油富集 中11-斜3009井位于原水井排上,其Ng 上33 小层为一套正韵律储层,砂体厚度为7.8m,渗透率级差为4.5。在Ng 上 33 小层顶部(井深为1 180~1 183m)剩余油富集,剩余油饱和度平均为55.4%;而中、下段的剩余油饱和度平均仅为31.8%(图7a)。其原因为研究区Ng 上 33 小层中、下部的渗透性明显高于顶部[13],其级差可达3~5,加上重力的作用[22-25],造成Ng 上 33 小层顶部剩余油富集。
-
夹层附近剩余油富集 中12-斜3012井位于原井网的油水井排间,在Ng 上 35 小层中部井深为1 225.4m处发育1个物性夹层,其厚度为0.4m,面积大于300m×270m。夹层上部剩余油富集,剩余油饱和度为59.7%;而夹层下部剩余油饱和度仅为33.2%(图7b)。由于夹层的分割作用[5],使夹层上部动用程度变差,剩余油较为富集[26-28]。
-
3.3 矿场生产动态验证
-
投产的8口油井中5口新钻井的含水率低于90%,产油量平均为8.2t/d(表2)。其中,中12-斜3012井的平均日产油量最高,为13.9t/d,含水率仅为49.6%,最高日产油量达34.2t/d,45个月的日产油量均超过8t/d,累积产油量为33 723t。中10-斜3010井和中9-斜3009井投产初期的日产油量也较高,平均超过7.5t/d,含水率均低于70%,最高日产油量分别达到21.1和9.8t/d,累积产油量分别为13 542和11 337t。研究区新钻井较好的生产效果表明特高含水期孤岛中一区Ng 上 3油藏的剩余油是局部富集的。
-
图7 孤岛油田中一区Ng 上3剩余油垂向富集典型实例
-
Fig.7 Typical cases of vertical enrichment of remaining oil in Upper Ng3sand group of Zhongyi area,Gudao Oilfield
-
4 剩余油局部富集模式
-
在井网完善区域,剩余油分布主要受夹层的控制[11,23,29]。根据夹层分布状况及其韵律性,建立研究区河流相储层的剩余油局部富集模式,共分为全遮挡型、半遮挡型和韵律型3大类(图8)。其中,全遮挡型是指在注采井网上,油水井同时钻遇同一夹层,形成全遮挡型剩余油局部富集模式(图8a)。半遮挡型是指夹层发育范围有限,形成半遮挡型剩余油局部富集模式,可进一步分为油井遮挡型、水井遮挡型和井间遮挡型3小类(图8b)。韵律型是指夹层不发育、单依靠韵律性控制的剩余油局部富集模式,可进一步分为正韵律型和均匀型2小类(图8c)。正韵律型和均匀型剩余油局部富集模式均受重力作用控制,顶部剩余油更富集。由于正韵律储层的发育,中下部储层物性更好,储层物性与重力双重作用,加剧了层内动用差异,使特高含水期注入水更易沿着正韵律储层中下部渗流。因此,同样注采条件、开发程度下,正韵律型剩余油富集规模大于均匀型。河流相储层各种剩余油局部富集模式均表现为顶部富集油气的特征[30-31],且夹层发育范围控制剩余油富集区的规模及其富集程度[5,26-27]。
-
孤岛油田中一区Ng 上 3油藏的剩余油局部富集模式以半遮挡型为主,占比为61.3%(表3)。韵律型剩余油局部富集模式共有8口井发育,占比为25.8%。全遮挡型剩余油局部富集模式发育的比例最少,仅为12.9%。这是由于研究区Ng 上 3油藏的夹层较发育[26,29],但其规模均较小,仅能形成局部遮挡,在夹层上部形成剩余油富集区。
-
图8 特高含水期油藏河流相储层剩余油局部富集模式
-
Fig.8 Local enrichment patterns of remaining oil in fluvial reservoirs at extra-high water-cut stage
-
5 结束语
-
密闭取心井、新钻井资料及矿场生产动态实践均证实,孤岛油田中一区Ng 上 3油藏特高含水期油藏的剩余可动油具有普遍分布、局部富集的特点,先后经历了水驱、聚合物驱,含水率为98.1%、采出程度为55.1%的情况下,仍具有继续深入开发的潜力,突破了高度分散、局部集中的特高含水期剩余油传统认识。通过研究建立了全遮挡型、半遮挡型和韵律型3大类剩余油局部富集模式,其中,半遮挡型剩余油局部富集模式可进一步分为油井遮挡型、水井遮挡型和井间遮挡型3小类,韵律型剩余油局部富集模式可进一步分为正韵律型和均匀型2小类。该认识说明特高含水期油田开发的关注点仍然是普遍分布的剩余油,虽然其含油饱和度相对较低,但剩余可动用地质储量仍然较高,对剩余油富集区的挖潜措施,应以不伤害开发层系井网的统一、完整性为前提。
-
参考文献
-
[1] 韩大匡.深度开发高含水油田提高采收率问题的探讨[J].石油勘探与开发,1995,22(5):47-55,98.HAN Dakuang.An approach to deep development of high watercut oil fields to improve oil recovery[J].Petroleum Exploration and Development,1995,22(5):47-55,98.
-
[2] 李阳.陆相高含水油藏提高水驱采收率实践[J].石油学报,2009,30(3):396-399.LI Yang.Study on enhancing oil recovery of continental reservoir by water drive technology[J].Acta Petrolei Sinica,2009,30(3):396-399.
-
[3] 冯其红,韩晓冬,王守磊,等.水驱砂岩油藏储层参数变化三维网络模拟[J].油气地质与采收率,2013,20(4):79-82.FENG Qihong,HAN Xiaodong,WANG Shoulei,et al.3D network simulation study on formation parameter variation in sand ⁃ stone reservoir during waterflooding process[J].Petroleum Geology and Recovery Efficiency,2013,20(4):79-82.
-
[4] 岳登台.综述老油田改善开发效果及提高采收率技术[J].石油学报,1998,19(3):46-51.YUE Dengtai.Summary on improving the effect of developing ma⁃ turing oilfields and IOR techniques[J].Acta Petrolei Sinica,1998,19(3):46-51.
-
[5] 李阳,王端平,刘建民.陆相水驱油藏剩余油富集区研究[J].石油勘探与开发,2005,32(3):91-96.LI Yang,WANG Duanping,LIU Jianmin.Remaining oil enrich⁃ ment areas in continental waterflooding reservoirs[J].Petroleum Exploration and Development,2005,32(3):91-96.
-
[6] 彭仕宓,周恒涛,李海燕,等.分阶段流动单元模型的建立及剩余油预测——以别古庄油田京11断块为例[J].石油勘探与开发,2007,34(2):216-221,251.PENG Shimi,ZHOU Hengtao,LI Haiyan,et al.Phased flow unit model establishment and remaining oil prediction:An example from Jing11 block in Bieguzhuang Oilfield[J].Petroleum Explora⁃ tion and Development,2007,34(2):216-221,251.
-
[7] 韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究[J].石油学报,2007,28(2):73-78.HAN Dakuang.Precisely predicting abundant remaining oil and improving the secondary recovery of mature oilfields[J].Acta Petrolei Sinica,2007,28(2):73-78.
-
[8] 刘宝珺,谢俊,张金亮.我国剩余油技术研究现状与进展[J].西北地质,2004,37(4):1-6.LIU Baojun,XIE Jun,ZHANG Jinliang.Present situation and ad⁃ vance of remaining oil research technology in China[J].North⁃ western Geology,2004,37(4):1-6.
-
[9] 刘建民,徐守余.河流相储层沉积模式及对剩余油分布的控制 [J].石油学报,2003,24(1):58-62.LIU Jianmin,XU Shouyu.Reservoir sedimentary model of fluvial facies and it’s control to remaining oil distribution[J].Acta Petro⁃ lei Sinica,2003,24(1):58-62.
-
[10] 窦之林,董春梅,林承焰.孤东油田七区中馆4—馆6砂层组储层非均质性及其对剩余油分布的控制作用[J].石油大学学报:自然科学版,2002,26(1):8-15.DOU Zhilin,DONG Chunmei,LIN Chengyan.Controlling function of reservoir heterogeneity for remaining oil distribution in Guan4-6 sand bed set in the center of seventh district of Gudong oilfield [J].Journal of the University of Petroleum,China:Edition of Natu⁃ ral Science,2002,26(1):8-15.
-
[11] 王鸣川,朱维耀,董卫宏,等.曲流河点坝型厚油层内部构型及其对剩余油分布的影响[J].油气地质与采收率,2013,20(3):14-17.WANG Mingchuan,ZHU Weiyao,DONG Weihong,et al.Study on distribution and influence factors of remaining oil in point bar of meandering river[J].Petroleum Geology and Recovery Efficiency,2013,20(3):14-17.
-
[12] 单敬福,纪友亮,史榕.曲流点坝薄夹层构形对驱油效率及剩余油形成与分布的影响[J].海洋地质动态,2006,22(4):21-25.SHAN Jingfu,JI Youliang,SHI Rong,et al.Effects of thin mean⁃ der dot dam interbeds on flushing efficiency and on formation and distribution of residual oil[J].Marine Geology Letters,2006,22(4):21-25.
-
[13] 束青林.河道砂侧积砂体对剩余油分布的影响——以孤岛油田馆上段 3~4 砂组高弯度曲流河为例[J].油气地质与采收率,2005,12(2):45-48.SHU Qinglin.Effect of lateral accretion sandbodies of channel sands on the distribution of remaining oil-taking high-sinuosity meandering river of 3-4 sand groups in upper Ng of Gudao oil⁃ field as example[J].Petroleum Geology and Recovery Efficiency,2005,12(2):45-48.
-
[14] 俞启泰.注水油藏大尺度未波及剩余油的三大富集区[J].石油学报,2000,21(2):45-50.YU Qitai.Three major rich areas of“large scale”unswept remain⁃ ing oil in water flooded bedded sandstone reservoirs[J].Acta Petrolei Sinica,2000,21(2):45-50.
-
[15] LI Yang,LIU Jianmin.Occurrence and distribution of remaining oil in fluvial facies reservoirs in Guantao Formation in Gudao and Gudong Oil Fields[J].Scientia Geologica Sinica,1999,8(4):525-534.
-
[16] 陈程,贾爱林,孙义梅.厚油层内部相结构模式及其剩余油分布特征[J].石油学报,2000,21(5):99-102.CHEN Cheng,JIA Ailin,SUN Yimei.Microfacies architecture pat⁃ terns and the distribution of the remaining oil within thick pays [J].Acta Petrolei Sinica,2000,21(5):99-102.
-
[17] 陈岑,胡望水,徐博,等.高集油田高6块阜宁组剩余油分布规律[J].油气地质与采收率,2013,20(4):88-90.CHEN Cen,HU Wangshui,XU Bo,et al.Research of remaining oil distribution rule of Funing formation,the sixth block of Gaoji oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(4):88-90.
-
[18] 陈烨菲,彭仕宓,宋桂茹.流动单元的井间预测及剩余油分布规律研究[J].石油学报,2003,24(3):74-77.CHEN Yefei,PENG Shimi,SONG Guiru.Inter-well prediction of flow units and remaining oil distribution[J].Acta Petrolei Sinica,2003,24(3):74-77.
-
[19] 王正波,叶银珠,王强,等.面积劈分—叠加法预测聚合物驱后剩余油分布[J].油气地质与采收率,2012,19(5):57-60.WANG Zhengbo,YE Yinzhu,WANG Qiang,et al.Forecast of re⁃ maining oil distribution after polymer flooding by area-split and superposition method[J].Petroleum Geology and Recovery Effi⁃ ciency,2012,19(5):57-60.
-
[20] 李双应,李忠,王忠诚,等.胜利油区孤岛油田馆上段沉积模式研究[J].沉积学报,2001,19(3):386-393.LI Shuangying,LI Zhong,WANG Zhongcheng,et al.The study of depositional model in the upper Member of Guantao formation in Gudao Oilfield of the Shengli petroleum province[J].Acta Sedi⁃ mentologica Sinica,2001,19(3):386-393.
-
[21] 谭锋奇,杨长春,李洪奇,等.密闭取心井油水饱和度校正方法 [J].地球科学——中国地质大学学报,2013,38(3):592-598.TAN Fengqi,YANG Changchun,LI Hongqi,et al.Study on oilwater saturation correction from sealed core wells[J].Earth sci⁃ ence-Journal of China University of Geosciences,2013,38(3):592-598.
-
[22] ABBOTSF V,VANKUIJK A D.Using 3D geological modelling and connectivity analysis to locate remaining oil targets in the Brent Reservoir of the mature Brent Field[R].SPE 38473,1997:107-114.
-
[23] 岳大力,吴胜和,刘建民.曲流河点坝地下储层构型精细解剖方法[J].石油学报,2007,28(4):99-103.YUE Dali,WU Shenghe,LIU Jianmin.An accurate method for anatomizing architecture of subsurface reservoir in point bar of meaning river[J].Acta Petrolei Sinica,2007,28(4):99-103.
-
[24] LIU Bing,SUI Xingguang,ZHAO Minjiao,et al.Horizontal wells drilling in vertical lateral beddings successfully tap the upside re⁃ maining oil in heavy flooded sandy zones[R].SPE 99551,2006:1-6.
-
[25] 付国民,董冬,王锋,等.河流相储层剩余油成因类型及分布模式[J].成都理工大学学报:自然科学版,2008,35(5):502-507.FU Guomin,DONG Dong,WANG Feng,et al.Genetic type and distribution mode of the remaining oil in the fluvial reservoirs[J].Journal of Chengdu University of Technology:Science & Technol⁃ ogy Edition,2008,35(5):502-507.
-
[26] 束青林.孤岛油田馆陶组河流相储层隔夹层成因研究[J].石油学报,2006,27(4):100-103.SHU Qinglin.Interlayer characterization of fluvial reservoir in Guantao formation of Gudao Oilfield[J].Acta Petrolei Sinica,2006,27(3):100-103.
-
[27] 兰丽凤,白振强,于德水.曲流河砂体三维构型地质建模及应用[J].西南石油大学学报:自然科学版,2010,32(4):20-25.LAN Lifeng,BAI Zhenqiang,YU Deshui,et al.Study on geologi⁃ cal 3D reservoir architecture modeling of meandering reservoir and its application[J].Journal of Southwest Petroleum University:Science & Technology Edition,2010,32(4):20-25.
-
[28] 郭长春,李阳.河流相储层中夹层的发育规律及预测[J].石油天然气学报,2006,28(4):200-203.GUO Changchun,LI Yang.Intercalation distribution regulation and prediction in the fluvial reservoir[J].Journal of Oil and Gas Technology,2006,28(4):200-203.
-
[29] 王健,徐守余,仲维苹.河流相储层隔夹层成因及其分布特征 [J].地质科技情报,2010,29(4):84-88.WANG Jian,XU Shouyu,Zhong Weiping.Genesis and distribu⁃ tion of interlayer in fluvial reservoir[J].Geological Science and Technology Information,2010,29(4):84-88.
-
[30] 黄石岩.河流和三角洲储层剩余油分布模式——以渤海湾盆地胜坨油田为例[J].石油实验地质,2007,29(2):167-171.HUANG Shiyan.Distribution mode of remaining oil of fluvial and delta reservoir-taking the Shengtuo Oilfield of the Bohai Bay ba⁃ sin as an example[J].Petroleum Geology & Experiment,2007,29(2):167-171.
-
[31] 束青林,张本华,徐守余.孤岛油田河道砂储集层油藏动态模型及剩余油研究[J].石油学报,2005,26(3):64-67,73.SHU Qinglin,ZHANG Benhua,XU Shouyu.Dynamic model and remaining oil distribution of fluvial reservoir in Gudao Oilfield[J].Acta Petrolei Sinica,2005,26(3):64-67,73.
-
摘要
特高含水期是陆相油藏开发的重要阶段,而剩余油研究是特高含水期油藏提高采收率的基础。根据孤岛油田中一区特高含水期的3口密闭取心井和17口新钻井资料,从平面、层间和层内对剩余油的分布特征和富集规律进行分析。结果表明,特高含水期剩余可动油在研究区普遍分布、局部富集,矿场生产动态实践也验证了该认识的正确性。根据研究区夹层分布规律及储层韵律性建立了全遮挡型、半遮挡型和韵律型3大类剩余油局部富集模式, 其中,半遮挡型剩余油局部富集模式可进一步分为油井遮挡型、水井遮挡型和井间遮挡型3小类,韵律型剩余油局部富集模式可进一步分为正韵律型和均匀型2小类。新认识突破了特高含水期剩余油高度分散、局部集中的传统认识,对河流相老油田的剩余油挖潜具有重要意义。
Abstract
Extra-high water-cut stage is an important period of continental reservoir development. Study on remaining oil is the basis of enhanced oil recovery in the oil reservoirs at extra-high water-cut stage. Based on data of three sealed coring wells and 17 newly drilled wells at extra-high water-cut stage in Zhongyi area of Gudao Oilfield,the distribution character- istics and enrichment regularities of the remaining oil are analyzed from plane,interlamination and interlayer. The results show that remaining movable oil distributes broadly and enriches locally at extra-high water-cut stage,which is also veri- fied by the dynamic production behaviors of the oilfield. Based on interlayer distribution pattern and rhythm of the reser- voir,three local enrichment modes of the remaining oil are established,including whole-barrier type,half-barrier type and rhythm type. The half-barrier type may be further classified into oil well barrier type,water well barrier type and cross-well barrier type. The rhythm type can be further classified into positive rhythm type and uniform type. The new results change the traditional understandings of high dispersion and local enrichment of the remaining oil at extra-high water-cut stage, which has important significance on tapping the potential of remaining oil in fluvial facies of old oilfields.