en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

唐鹏飞(1977—),男,黑龙江肇东人,高级工程师,从事压裂增产改造技术研究与应用工作。联系电话:(0459)5960652,E-mail:tpf@petrochina.com.cn。

中图分类号:TE357.1

文献标识码:A

文章编号:1009-9603(2019)06-0046-07

DOI:10.13673/j.cnki.cn37-1359/te.2019.06.006

参考文献 1
郝杰,周立发,袁义东,等.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J].石油实验地质,2018,40(5):632-638,649.HAO Jie,ZHOU Lifa,YUAN Yidong,et al.Diagenetic characteris⁃ tics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J].Petroleum Geology & Experiment,2018,40(5):632-638,649.
参考文献 2
王静,张军华,谭明友,等.砂砾岩致密油藏地震预测技术综述 [J].特种油气藏,2019,26(1):7-11.WANG Jing,ZHANG Junhua,TAN Mingyou,et al.Seismic pre⁃ diction review for glutenite tight oil reservoir[J].Special Oil & Gas Reservoirs,2019,26(1):7-11.
参考文献 3
于腾飞.浅层近源扇三角洲砂砾岩沉积充填模式及其对储层分布的影响——以车排子凸起沙一段为例[J].油气地质与采收率,2018,25(4):54-60.YU Tengfei.Sedimentary models for near-source shallow glutenite fan delta and their effects on reservoir distribution:A case of the first member of Shawan Formation in Chepaizi Uplift[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(4):54-60.
参考文献 4
王晓莲.徐家围子断陷安达凹陷沙河子组层序四沉积相研究及勘探意义[J].大庆石油地质与开发,2015,34(3):47-52.WANG Xiaolian.Study on the sedimentary facies and its explor⁃ atory significance for Shahezi formation sequence SQ4 in Anda sag of Xujiaweizi fault depression[J].Petroleum Geology & Oil⁃ field Development in Daqing,2015,34(3):47-52.
参考文献 5
张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.
参考文献 6
刘涛,石善志,郑子君,等.地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J].中国石油勘探,2018,23(2):90-103.LIU Tao,SHI Shanzhi,ZHENG Zijun,et al.Application of geolo⁃ gy-engineering integration for developing tight oil in glutenite res⁃ ervoir by horizontal wells in Mahu sag[J].China Petroleum Explo⁃ ration,2018,23(2):90-103.
参考文献 7
张子麟,陈勇,张全胜,等.致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J].油气地质与采收率,2019,26(4):132-138.ZHANG Zilin,CHEN Yong,ZHANG Quansheng,et al.Numerical simulation on propagation mode of hydraulic fracture approaching gravels in tight glutenite[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(4):132-138.
参考文献 8
李庆辉,陈勉,WANG Fred P,等.工程因素对页岩气产量的影响——以北美Haynesville页岩气藏为例[J].天然气工业,2012,32(4):54-59.LI Qinghui,CHEN Mian,WANG Fred P,et al.Influences of engi⁃ neering factors on shale gas productivity:A case study from Haynesville shale gas reservoir in North America[J].Natural Gas Industry,2012,32(4):54-59.
参考文献 9
张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验 [J].石油学报,2014,35(3):496-503,518.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in nat⁃ ural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.
参考文献 10
马新仿,李宁,尹丛彬,等.页岩水力裂缝扩展形态与声发射解释——以四川盆地志留系龙马溪组页岩为例[J].石油勘探与开发,2017,44(6):974-981.MA Xinfang,LI Ning,YIN Congbin,et al.Hydraulic fracture prop⁃ agation geometry and acoustic emission interpretation:A case study of Silurian Longmaxi Formation shale in Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):974-981.
参考文献 11
ZOU Yushi,MA Xinfang,ZHOU Tong,et al.Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling[J].Rock Mechanics and Rock Engi⁃ neering,2017,50(9):2 381-2 395.
参考文献 12
MORLEY A.Strength of materials[M].London:Longman Green,1944:71-72.
参考文献 13
BISHOP A W.Progressive failure with special reference to the mechanism causing it[C].Oslo:Proceedings of the Geotechnical Conference,1967:142-150.
参考文献 14
JESSE V H.Glossary of geology and related sciences[M].Wash⁃ ington D C:American Geological Institute,1990:99-102.
参考文献 15
李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1 680-1 685.LI Qinghui,CHEN Mian,JIN Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1 680-1 685.
参考文献 16
AI Chi,ZHANG Jun,LI Yuwei,et al.Estimation criteria for rock brittleness based on energy analysis during the rupturing process [J].Rock Mechanics and Rock Engineering,2016,49(12):4 681-4 698.
参考文献 17
KIVI Iman Rahimzadeh,AMERI Mohammadjavad,MOLLA⁃ DAVOODI Hamed.Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J].Journal of Petroleum Science and Engineering,2018,167:1-19.
参考文献 18
张军,艾池,李玉伟,等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报,2017,36(6):1 326-1340.ZHANG Jun,AI Chi,LI Yuwei,et al.Brittleness evaluation index based on energy variation in the whole process of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(6):1 326-1 340.
参考文献 19
RICKMAN Rick,MULLEN Michael J,PETRE James Erik,et al.A practical use of shale petrophysics for stimulation design optimi⁃ zation:All shale plays are not clones of the Barnett Shale[R].Den⁃ ver:Society of Petroleum Engineers,2008:21-24.
参考文献 20
王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33(2):264-275.WANG Yu,LI Xiao,WU Yanfang,et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J].Chinese Journal of Rock Mechanics and Engi⁃ neering,2014,33(2):264-275.
参考文献 21
曾治平,刘震,马骥,等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报,2019,25(2):223-232.ZENG Zhiping,LIU Zhen,MA Ji,et al.A new method for fracrability evaluation in deep and tight sandstone reservoirs[J].Journal of Geomechanics,2019,25(2):223-232.
参考文献 22
HUCKA V,DAS B.Brittleness determination of rocks by different methods[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(10):389-392.
参考文献 23
HAJIABDOLMAJID Vahid,KAISER Peter.Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and Un⁃ derground Space Technology,2003,18(1):35-48.
参考文献 24
LEI Xinglin,KUSUNOSE Kinichiro,RAO M V M S,et al.Quasistatic fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J].Jour⁃ nal of Geophysical Research,2001,105(B3):6 127-6 139.
参考文献 25
LI Ning,ZHANG Shicheng,ZOU Yushi,et al.Experimental analy⁃ sis of hydraulic fracture growth and acoustic emission response in a layered formation[J].Rock Mechanics and Rock Engineering,2018,51(4):1 047-1 062.
参考文献 26
LI Ning,ZHANG Shicheng,ZOU Yushi,et al.Acoustic emission response of laboratory hydraulic fracturing in layered shale[J].Rock Mechanics and Rock Engineering,2018,51(11):3 395-3 406.
参考文献 27
LI Yuwei,JIA Dan,RUI Zhenhua,et al.Evaluation method of rock brittleness based on statistical constitutive relations for rock dam⁃ age[J].Journal of Petroleum Science and Engineering,2017,153:123-132.
参考文献 28
刘恩龙,沈珠江.岩土材料的脆性研究[J].岩石力学与工程学报,2005,24(19):3 449-3 453.LIU Enlong,SHEN Zhujiang.Study on brittleness of geomaterials [J].Chinese Journal of Rock Mechanics and Engineering,2005,24(19):3 449-3 453.
参考文献 29
LI Ning,ZOU Yushi,ZHANG Shicheng,et al.Rock brittleness evaluation based on energy dissipation under triaxial compression [J].Journal of Petroleum Science and Engineering,2019,183:1-10.
参考文献 30
MA Xinfang,ZOU Yushi,LI Ning,et al.Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir[J].Journal of Structural Geology,2017,97:37-47.
目录contents

    摘要

    以松北致密气藏砂砾岩储层为研究对象,通过三轴压缩实验,开展含不同粒径砾石的砂砾岩脆性特征研究。 在岩样破坏特征、偏应力-应变曲线特征分析的基础上,利用能量演化理论,研究不同粒径对砂砾岩力学性质和脆性特征的影响,并对岩样破坏过程中的声发射响应特征进行分析,结果表明:在三轴压缩实验中不同粒径砾石对砂砾岩岩样的破坏特征具有不同影响。相比于小粒径(< 1 mm)砾石为主的岩样,大粒径(2~6 mm)砾石为主的岩样在更低的围压下被剪切破坏,且破裂面倾角较小。由于大量弱胶结砾石界面的存在,大粒径砾石为主的岩样通常具有更低的抗压强度,形成的破裂面更复杂。破裂面凹凸不平导致岩样破坏过程中一部分能量耗散于破裂面的摩擦,因此,大粒径砾石为主的岩样脆性更低,在剪切事件中占比更高,岩样破坏过程中以剪切破坏占主导。

    Abstract

    Taking the glutenite formation in tight gas reservoir of Songbei area as an example,the brittleness characteristics of glutenite containing different gravel size are studied by performing tri-axial compression tests. Based on the theory of en- ergy evolution,the influence of gravel size on the mechanical properties and brittleness of glutenite is analyzed according to the investigation of the characteristics of broken rock and deviator stress-strain curve. Additionally,the acoustic emission response during the rock being broken process is analyzed. The experimental results of tri-axial compression test show that gravel size has a significant influence on the characteristics of broken rock samples. Compared with small size(< 1 mm) gravel-dominated rock samples,large size(2-6 mm)gravel-dominated glutenite samples are sheared and broken at lower confining pressures with a smaller dip angle of fracture plane. Because of the existence of a large number of weak cemented gravel interfaces,the rock samples with larger size gravel are usually of lower compressive strength,while the broken pat- tern is more complex. In addition,the unevenness of the fracture surface leads to a part of the energy dissipated by the fric- tion of the fracture surface during the failure process of the rock sample. Consequently,the brittleness of the gravel with larger gravels is lower. Moreover,the interpretation results of acoustic emission show that the proportion of shear events is higher in small size gravel-dominated rock samples,indicating shear failure tended to be dominant.

  • 随着中国能源需求的日益增加,砂砾岩油气藏备受关注[1-7]。松北致密气藏资源潜力巨大,水力压裂改造是形成经济产能的有效手段。砂砾岩储层具有岩性变化复杂、砾石含量高、非均质性强等特点,且压裂过程中水力裂缝的扩展规律认识不清,压裂施工难度较大。储层岩石脆性是评估压裂改造效果的关键因素之一。在致密储层中,为形成复杂的裂缝网络,压裂改造选井选层时,通常将高脆性作为优选有利区块或井段的标准之一[8-11]。因此,研究岩石脆性特征对于储层压裂增产改造具有十分重要的意义。

  • 关于脆性的定义,尚没有统一的观点。MOR⁃ LEY认为脆性是岩石塑性的丧失[12]。BISHOP将脆性定义为岩石破坏后承载力的严重丧失[13],峰值强度和残余强度之间差值越大,岩石脆性越强。JES⁃ SE认为材料的强脆性表现为破坏前无明显的塑性变形[14]。李庆辉等认为脆性是材料的一种综合力学性质[15]。基于不同的研究背景,相继提出一系列的脆性指标,其研究方法大致包括矿物学、力学强度、变形特征和能量演化等[16-20]。张军等提出表征裂纹扩展能力和自我维持断裂能力的脆性指数来综合评价岩石脆性[18]。曾治平等将脆性指数定义为脆性矿物与总矿物含量的比值[21]。HUCKA等利用抗压强度和抗张强度来评价材料的脆性高低[22]。还有学者将脆性指数定义为峰值应变和残余应变的函数[23]

  • 松北砂砾岩储层形成于扇三角洲和辫状河三角洲沉积环境,由于近物源沉积,颗粒分选较差,主力层段发育粒径大小不一的砾石。由于砾石基质弱胶结面的存在,导致岩石的力学性质和脆性特征变化较大。目前,关于砂砾岩脆性特征的实验研究相对较少,粒径对于砂砾岩破坏机理和脆性特征的影响规律认识不足。为此,以松北致密气藏砂砾岩储层为例,对含有不同粒径砾石砂砾岩的2组岩样进行三轴压缩实验和声发射监测。结合岩样的偏应力-应变曲线特征、破坏形态以及声发射定位与震源解释结果,分析不同粒径砾石对砂砾岩力学性质和破裂形态的影响,以期为砂砾岩储层岩石脆性评价提供依据。

  • 1 实验器材与方法

  • 1.1 实验器材

  • 实验装置主要包括TAW-1000深水孔隙压力伺服实验系统和PAC公司生产的Nano探头。其中,深水孔隙压力伺服实验系统最大加载载荷为1 000kN,最大围压为60MPa,并通过2组位移传感器分别对轴向和径向的变形过程进行监测;Nano探头数量为8个,均匀布置在岩样的表面,带宽为50~750kHz,主频为150kHz。

  • 实验岩样共有24块,取自松北致密气藏砂砾岩储层岩心,取样深度约为3 700m。砾石岩性以凝灰岩砾、硅质岩砾为主,泥砾次之,少量石英砾,砂质胶结,较致密,分选较差,次圆状磨圆;孔隙度为3.5%~6.4%,渗透率为0.03~1.48mD。由全直径岩心照片(图1)可以看出,岩心上部为小粒径的粉砂质砾岩,下部为含有大粒径砾石的砂砾岩。

  • 图1 全直径岩心照片

  • Fig.1 Images of full-diameter core sample

  • 岩样为标准圆柱体,尺寸为25.4mm×50mm,且两侧端面具有较高的平行度。根据粒径的分布特征将岩样分为A和B组。A组岩样的砾石粒径较小,主体砾石粒径小于1mm,且分选较好;B组岩样的砾石粒径较大,主体砾石粒径为2~6mm,最大粒径可达10mm以上。

  • 1.2 实验方法

  • 在三轴压缩及岩石的声发射实验中,将每组岩样的围压分别设定为0,10,20和40MPa,位移加载速率为0.06mm/min,整个实验系统均由计算机控制。实验时,首先将围压设置为设定值。随后,采用恒定的位移加载速率施加轴向应力,应力施加过程中软件将自动记录2组位移传感器的应力-应变数据。在应力-应变过程中,声发射定位解释系统将对岩样整个破裂过程中的声发射响应特征进行监测。其中,声发射信号的采集由声发射检测系统完成,该系统由声发射软件控制,并能够实时显示数据,如声发射事件数、剪切事件占比等[24-26]

  • 2 实验结果与分析

  • 2.1 岩样破坏特征

  • 从2组岩样中分别选取4块岩样,编号依次为A-1—A-4,B-1—B-4。在三轴压缩条件下,A-1岩样表现为明显的贯穿式拉张破坏。当围压为10MPa时,A-2岩样仍为拉张破坏,但裂缝未贯穿整个岩样且裂缝开度较小。当围压分别增加至20和40MPa时,A-3和A-4岩样表现为破裂面与岩样轴线斜交的剪切破坏,且岩样表面的裂缝迹线较为平滑。破裂面与岩样轴线的夹角约为30°。B组岩样的破坏形态与A组明显不同。三轴压缩条件下,B1岩样表面可观察到多条裂缝迹线。通常而言,砾石界面的强度低于砾石本体,因此裂缝主要发生绕砾扩展,导致裂缝破裂面弯曲。当遇到强度较低的砾石时,发生穿砾扩展或砾内裂隙的偏转。当围压为10MPa时,B-2岩样呈现明显的剪切破坏,破裂面与岩样轴线夹角约为30°。随围压的进一步增加,剪切破裂面与岩样轴线的夹角略有增加。当围压分别增加至20和40MPa时,破裂面与轴线夹角分别为36°和40°。此外,岩样破坏过程中裂缝发生绕砾扩展,裂缝迹线呈锯齿状(图2)。

  • 图2 不同粒径的2组岩样在三轴压缩实验中的破坏形态

  • Fig.2 Broken pattern of two core sample groups with different gravel sizes in tri-axial compression test

  • 2.2 偏应力-应变曲线特征

  • 在轴向载荷加载过程中,岩样的轴向应变曲线首先呈线性增加,输入能量以弹性能的形式存储在岩石中,在达到峰值应力前出现明显的非线性阶段,说明岩样内部产生微裂纹和扩展成核;峰后承载力逐渐降低,储存的能量逐渐释放[27]。A组岩样峰后的偏应力-应变曲线较为陡峭(图3a),说明岩样破坏过程中承载力迅速降低,主要依赖内部弹性能的释放;而B组岩样的峰后偏应力-应变曲线较为平缓(图3b),说明岩样破坏过程中需要外部能量的持续输入。尤其是在三轴压缩条件下,B-1岩样的偏应力-应变曲线具有明显的残余阶段(图3b),且残余偏应力与峰值偏应力差别不大。因此,偏应力-应变曲线特征说明B组岩样的塑性高于A组岩样。

  • 图3 不同围压下2组岩样在三轴压缩实验中偏应力-应变曲线关系

  • Fig.3 Deviator stress-strain curves of two core sample groups in typical tri-axial compression tests at different confining pressures

  • 软化模量用来表征峰后岩石承载力丧失的快慢,可以通过峰后应力-应变曲线斜率的绝对值确定。该绝对值越大,岩石脆性越强。由不同围压下2组岩样的岩石力学参数(表1)可知,随围压增加,2组岩样的抗压强度和弹性模量整体呈上升趋势,软化模量整体呈下降趋势。且相同围压条件下,A组岩样的力学强度普遍低于B组岩样。这主要是因为大量胶结较弱的砾石界面的发育降低了B组岩样的最大承载力,但相同围压条件下,A组岩样的软化模量绝对值明显高于B组岩样。大粒径砾石的存在加剧了破裂面的粗糙程度,从而在一定程度上抵抗峰后岩石承载力的丧失。因此,需要更多的能量输入来维持B组岩样的破坏过程。

  • 2.3 脆性特征

  • 为定量表征不同粒径砾石对于岩石脆性特征的影响,分别采用基于岩石力学参数和基于能量演化的脆性指数计算方法,分析不同粒径砾石砂砾岩岩样的脆性特征。

  • 表1 不同围压下2组岩样的岩石力学参数

  • Table1 Rock mechanical parameters of two core sample groups at different confining pressures

  • 2.3.1 基于岩石力学参数的脆性指数计算

  • RICKMAN提出用杨氏模量和泊松比来计算脆性指数的方法。利用无因次的弹性模量和泊松比的平均值来定量表征其脆性强弱。其计算公式[21] 为:

  • ED=E-EminEmax-Emin
    (1)
  • μD=μmax-μμmax-μmin
    (2)
  • BI1=ED+μD2
    (3)
  • 2.3.2 基于能量演化的脆性指数计算

  • 岩石脆性越强,越能够依靠自身弹性应变能的释放来维持峰后的破坏过程[28-29]。因此,可以通过计算峰后破坏过程中的能量来源,定量分析岩石的脆性特征。图4为岩石变形和破坏过程中能量演化分析的示意图。根据能量演化理论,岩石峰后释放的弹性应变能为 B 点处峰值弹性应变能(图4中 △ABF 的面积)和 C 点处残余弹性应变能(图4中 △CEG的面积)的差值,即:

  • ΔUe=Upe-Ure=12Eσp2-σr2
    (4)
  • 岩样峰后破坏过程中输入的外部能量(图4中梯形BFGC的面积)可以表示为:

  • W=12σp+σrεar-εap=-12Mσp2+σr2
    (5)
  • 图4 岩石变形破坏过程中的能量演化示意图

  • Fig.4 Schematic of energy evolution during rock deformation and broken processes

  • 因此,岩石脆性指数与 ΔUe/W(或-M/E)呈正相关。ΔUe/W值越大,越能够依靠自身弹性应变能的释放来维持自身破坏,脆性越高;反之,岩石的破坏需要依赖外部能量的持续输入,塑性越强。为归一化定量表征不同粒径砾石对岩石脆性的影响,采用刘恩龙等提出的脆性指数 BI 2 对2组岩样的脆性进行定量分析,其公式[28] 为:

  • BI2=1-expME
    (6)
  • 2.3.3 脆性指数对比

  • 由不同围压2组岩样的脆性指数计算结果(图5)可知,相同围压下,BI 1BI 2的计算结果均说明B组岩样的脆性指数普遍低于A组岩样。但基于岩石力学参数的 BI 1不能反映岩石脆性随围压升高而降低的趋势(图5a)。这主要是因为岩石弹性模量随着围压的升高而升高,但弹性模量更多的是反映岩石变形过程中的特征,无法反映岩石的破坏过程。因此,在脆性评价过程中可能得到相反的结论。

  • 随围压增加,2组岩样的BI 2值均减小。说明基于能量演化的脆性评价方法能够反映随围压增加,岩石由脆性向塑性转变的特征。整体来看,低围压条件下,A组岩样脆性变化较小。围压由0MPa增加到20MPa时,BI 2值仅由0.89下降至0.80,仍表现为强脆性特征。当围压增加至40MPa时,BI 2 值降低至0.64,属于中等脆性。而B组岩样的脆性在低围压条件下明显降低。当围压由0MPa增加至20MPa时,BI 2值由0.87线性下降至0.27。当围压高于20MPa后,岩样的脆性变化不大(图5b)。脆性指数的计算结果与岩样的破坏特征和偏应力-应变曲线特征一致。这主要是因为大粒径砾石界面在B组岩样的整个破坏过程中起主导作用。因此,采用基于能量演化的 BI 2能够更加准确地反映砂砾岩的力学特性。

  • 图5 不同围压下2组岩样脆性指数计算结果

  • Fig.5 Brittleness index calculation results of two core sample groups at different confining pressures

  • 尽管脆性评价的结果表明大粒径砾石会降低砂砾岩的脆性,但从岩样破坏形态来看,大粒径砾石为主的岩样在三轴条件下破坏更彻底,裂缝形态更加复杂。这主要是因为砾石界面的存在使裂缝在扩展过程中发生偏转和(或)分叉,从而显著增加裂缝的复杂程度。MA等在砂砾岩室内压裂物理模拟实验中也发现,大粒径砾石为主的岩样压裂时易形成复杂缝网;而小粒径砾石为主的岩样易形成单一主裂缝。这说明在砂砾岩储层中,砾石界面对于岩石可压性的影响要更加显著[30]

  • 2.4 声发射响应特征

  • 岩石破坏过程中,由于弹性能的释放,会产生大量的声发射事件[25-26]。分析不同围压条件下,2组岩样在三轴压缩实验中声发射事件的定位结果 (图6)与岩样破裂形态发现,声发射事件的分布能够很好地反映岩石的破坏特征。A组岩样在0和10MPa的围压下,产生纵向拉张破坏,破裂面相对较多,声发射事件的空间分布较为离散;围压增加至20和40MPa时,产生单斜面剪切破坏,声发射事件主要沿倾斜的破裂面集中分布。B组岩样仅在三轴条件下产生拉张破坏,大量声发射事件分布于整个岩样范围内,离散程度更大;三轴压缩条件下,声发射沿单斜破坏面分布密集。三轴压缩条件下,由于岩样脆性较高、破裂面较多,2组岩样破坏过程中诱发的声发射事件数量也相对较多;施加围压后,破裂面数量减少,声发射事件的数量也明显减少(图7a)。低围压条件下,剪切事件占比相对较少;高围压条件下,剪切事件占比显著增加。同时,由于大粒径砾石的存在,相同围压条件下,B组岩样中剪切事件占比明显高于A组岩样。这说明大粒径砾石砂砾岩中,剪切破坏占主导(图7b)。

  • 图6 不同围压下2组岩样声发射定位结果

  • Fig.6 Acoustic emission location results of two core sample groups at different confining pressures

  • 4 结论

  • 针对松北致密气藏砂砾岩储层开展三轴压缩实验,研究不同粒径砾石对砂砾岩力学性质和脆性特征的影响。实验结果表明,不同粒径砾石对砂砾岩岩样的破坏特征、脆性特征及声发射响应特征具有不同程度的影响。大粒径砾石为主的岩样由于存在大量弱胶结的砾石界面,比小粒径砾石为主的岩样力学强度更低,峰后偏应力-应变曲线更平缓,峰后软化模量的绝对值更小。基于能量演化的脆性指数计算结果表明,大粒径砾石为主的岩样脆性指数低于小粒径砾石为主的岩样。但从破坏形态和声发射响应特征来看,由于砾石界面的存在,岩样在破裂过程中容易发生裂缝的偏转和(或)分叉,形成的裂缝形态更复杂,声发射事件以剪切事件为主且呈离散分布,大粒径砾石有利于提高裂缝的复杂程度。因此,在砂砾岩压裂改造的选井选层过程中,应当综合考虑岩石脆性和砾石粒径特征的影响。

  • 图7 不同围压下2组岩样声发射事件统计结果

  • Fig.7 Statistical results of acoustic emission events of two core sample groups at different confining pressures

  • 符号解释

  • E D——无因次弹性模量;E ——弹性模量,GPa;μD—— 无因次泊松比;μ ——泊松比;BI 1——基于岩石力学参数的脆性指数;ΔUe ——岩石峰后释放弹性应变能,J/m3Ue p—— 峰值弹性应变能,J/m3Ue r——残余弹性应变能,J/m3σp—— 峰值偏应力,MPa;σr ——残余偏应力或残余抗压强度,MPa; W ——峰后破坏过程中的外部输入能量,J/m3εar ——残余点 C处的轴向应变;εap——峰值点B处的峰值轴向应变;M —— 软化模量,MPa;BI 2——基于能量演化的脆性指数。

  • 参考文献

    • [1] 郝杰,周立发,袁义东,等.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J].石油实验地质,2018,40(5):632-638,649.HAO Jie,ZHOU Lifa,YUAN Yidong,et al.Diagenetic characteris⁃ tics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J].Petroleum Geology & Experiment,2018,40(5):632-638,649.

    • [2] 王静,张军华,谭明友,等.砂砾岩致密油藏地震预测技术综述 [J].特种油气藏,2019,26(1):7-11.WANG Jing,ZHANG Junhua,TAN Mingyou,et al.Seismic pre⁃ diction review for glutenite tight oil reservoir[J].Special Oil & Gas Reservoirs,2019,26(1):7-11.

    • [3] 于腾飞.浅层近源扇三角洲砂砾岩沉积充填模式及其对储层分布的影响——以车排子凸起沙一段为例[J].油气地质与采收率,2018,25(4):54-60.YU Tengfei.Sedimentary models for near-source shallow glutenite fan delta and their effects on reservoir distribution:A case of the first member of Shawan Formation in Chepaizi Uplift[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(4):54-60.

    • [4] 王晓莲.徐家围子断陷安达凹陷沙河子组层序四沉积相研究及勘探意义[J].大庆石油地质与开发,2015,34(3):47-52.WANG Xiaolian.Study on the sedimentary facies and its explor⁃ atory significance for Shahezi formation sequence SQ4 in Anda sag of Xujiaweizi fault depression[J].Petroleum Geology & Oil⁃ field Development in Daqing,2015,34(3):47-52.

    • [5] 张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.

    • [6] 刘涛,石善志,郑子君,等.地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J].中国石油勘探,2018,23(2):90-103.LIU Tao,SHI Shanzhi,ZHENG Zijun,et al.Application of geolo⁃ gy-engineering integration for developing tight oil in glutenite res⁃ ervoir by horizontal wells in Mahu sag[J].China Petroleum Explo⁃ ration,2018,23(2):90-103.

    • [7] 张子麟,陈勇,张全胜,等.致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J].油气地质与采收率,2019,26(4):132-138.ZHANG Zilin,CHEN Yong,ZHANG Quansheng,et al.Numerical simulation on propagation mode of hydraulic fracture approaching gravels in tight glutenite[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(4):132-138.

    • [8] 李庆辉,陈勉,WANG Fred P,等.工程因素对页岩气产量的影响——以北美Haynesville页岩气藏为例[J].天然气工业,2012,32(4):54-59.LI Qinghui,CHEN Mian,WANG Fred P,et al.Influences of engi⁃ neering factors on shale gas productivity:A case study from Haynesville shale gas reservoir in North America[J].Natural Gas Industry,2012,32(4):54-59.

    • [9] 张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验 [J].石油学报,2014,35(3):496-503,518.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in nat⁃ ural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.

    • [10] 马新仿,李宁,尹丛彬,等.页岩水力裂缝扩展形态与声发射解释——以四川盆地志留系龙马溪组页岩为例[J].石油勘探与开发,2017,44(6):974-981.MA Xinfang,LI Ning,YIN Congbin,et al.Hydraulic fracture prop⁃ agation geometry and acoustic emission interpretation:A case study of Silurian Longmaxi Formation shale in Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):974-981.

    • [11] ZOU Yushi,MA Xinfang,ZHOU Tong,et al.Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling[J].Rock Mechanics and Rock Engi⁃ neering,2017,50(9):2 381-2 395.

    • [12] MORLEY A.Strength of materials[M].London:Longman Green,1944:71-72.

    • [13] BISHOP A W.Progressive failure with special reference to the mechanism causing it[C].Oslo:Proceedings of the Geotechnical Conference,1967:142-150.

    • [14] JESSE V H.Glossary of geology and related sciences[M].Wash⁃ ington D C:American Geological Institute,1990:99-102.

    • [15] 李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1 680-1 685.LI Qinghui,CHEN Mian,JIN Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1 680-1 685.

    • [16] AI Chi,ZHANG Jun,LI Yuwei,et al.Estimation criteria for rock brittleness based on energy analysis during the rupturing process [J].Rock Mechanics and Rock Engineering,2016,49(12):4 681-4 698.

    • [17] KIVI Iman Rahimzadeh,AMERI Mohammadjavad,MOLLA⁃ DAVOODI Hamed.Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J].Journal of Petroleum Science and Engineering,2018,167:1-19.

    • [18] 张军,艾池,李玉伟,等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报,2017,36(6):1 326-1340.ZHANG Jun,AI Chi,LI Yuwei,et al.Brittleness evaluation index based on energy variation in the whole process of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(6):1 326-1 340.

    • [19] RICKMAN Rick,MULLEN Michael J,PETRE James Erik,et al.A practical use of shale petrophysics for stimulation design optimi⁃ zation:All shale plays are not clones of the Barnett Shale[R].Den⁃ ver:Society of Petroleum Engineers,2008:21-24.

    • [20] 王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33(2):264-275.WANG Yu,LI Xiao,WU Yanfang,et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J].Chinese Journal of Rock Mechanics and Engi⁃ neering,2014,33(2):264-275.

    • [21] 曾治平,刘震,马骥,等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报,2019,25(2):223-232.ZENG Zhiping,LIU Zhen,MA Ji,et al.A new method for fracrability evaluation in deep and tight sandstone reservoirs[J].Journal of Geomechanics,2019,25(2):223-232.

    • [22] HUCKA V,DAS B.Brittleness determination of rocks by different methods[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(10):389-392.

    • [23] HAJIABDOLMAJID Vahid,KAISER Peter.Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and Un⁃ derground Space Technology,2003,18(1):35-48.

    • [24] LEI Xinglin,KUSUNOSE Kinichiro,RAO M V M S,et al.Quasistatic fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J].Jour⁃ nal of Geophysical Research,2001,105(B3):6 127-6 139.

    • [25] LI Ning,ZHANG Shicheng,ZOU Yushi,et al.Experimental analy⁃ sis of hydraulic fracture growth and acoustic emission response in a layered formation[J].Rock Mechanics and Rock Engineering,2018,51(4):1 047-1 062.

    • [26] LI Ning,ZHANG Shicheng,ZOU Yushi,et al.Acoustic emission response of laboratory hydraulic fracturing in layered shale[J].Rock Mechanics and Rock Engineering,2018,51(11):3 395-3 406.

    • [27] LI Yuwei,JIA Dan,RUI Zhenhua,et al.Evaluation method of rock brittleness based on statistical constitutive relations for rock dam⁃ age[J].Journal of Petroleum Science and Engineering,2017,153:123-132.

    • [28] 刘恩龙,沈珠江.岩土材料的脆性研究[J].岩石力学与工程学报,2005,24(19):3 449-3 453.LIU Enlong,SHEN Zhujiang.Study on brittleness of geomaterials [J].Chinese Journal of Rock Mechanics and Engineering,2005,24(19):3 449-3 453.

    • [29] LI Ning,ZOU Yushi,ZHANG Shicheng,et al.Rock brittleness evaluation based on energy dissipation under triaxial compression [J].Journal of Petroleum Science and Engineering,2019,183:1-10.

    • [30] MA Xinfang,ZOU Yushi,LI Ning,et al.Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir[J].Journal of Structural Geology,2017,97:37-47.

  • 参考文献

    • [1] 郝杰,周立发,袁义东,等.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J].石油实验地质,2018,40(5):632-638,649.HAO Jie,ZHOU Lifa,YUAN Yidong,et al.Diagenetic characteris⁃ tics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J].Petroleum Geology & Experiment,2018,40(5):632-638,649.

    • [2] 王静,张军华,谭明友,等.砂砾岩致密油藏地震预测技术综述 [J].特种油气藏,2019,26(1):7-11.WANG Jing,ZHANG Junhua,TAN Mingyou,et al.Seismic pre⁃ diction review for glutenite tight oil reservoir[J].Special Oil & Gas Reservoirs,2019,26(1):7-11.

    • [3] 于腾飞.浅层近源扇三角洲砂砾岩沉积充填模式及其对储层分布的影响——以车排子凸起沙一段为例[J].油气地质与采收率,2018,25(4):54-60.YU Tengfei.Sedimentary models for near-source shallow glutenite fan delta and their effects on reservoir distribution:A case of the first member of Shawan Formation in Chepaizi Uplift[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(4):54-60.

    • [4] 王晓莲.徐家围子断陷安达凹陷沙河子组层序四沉积相研究及勘探意义[J].大庆石油地质与开发,2015,34(3):47-52.WANG Xiaolian.Study on the sedimentary facies and its explor⁃ atory significance for Shahezi formation sequence SQ4 in Anda sag of Xujiaweizi fault depression[J].Petroleum Geology & Oil⁃ field Development in Daqing,2015,34(3):47-52.

    • [5] 张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.

    • [6] 刘涛,石善志,郑子君,等.地质工程一体化在玛湖凹陷致密砂砾岩水平井开发中的实践[J].中国石油勘探,2018,23(2):90-103.LIU Tao,SHI Shanzhi,ZHENG Zijun,et al.Application of geolo⁃ gy-engineering integration for developing tight oil in glutenite res⁃ ervoir by horizontal wells in Mahu sag[J].China Petroleum Explo⁃ ration,2018,23(2):90-103.

    • [7] 张子麟,陈勇,张全胜,等.致密砂砾岩压裂裂缝遇砾扩展模式的数值模拟研究[J].油气地质与采收率,2019,26(4):132-138.ZHANG Zilin,CHEN Yong,ZHANG Quansheng,et al.Numerical simulation on propagation mode of hydraulic fracture approaching gravels in tight glutenite[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(4):132-138.

    • [8] 李庆辉,陈勉,WANG Fred P,等.工程因素对页岩气产量的影响——以北美Haynesville页岩气藏为例[J].天然气工业,2012,32(4):54-59.LI Qinghui,CHEN Mian,WANG Fred P,et al.Influences of engi⁃ neering factors on shale gas productivity:A case study from Haynesville shale gas reservoir in North America[J].Natural Gas Industry,2012,32(4):54-59.

    • [9] 张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验 [J].石油学报,2014,35(3):496-503,518.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in nat⁃ ural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.

    • [10] 马新仿,李宁,尹丛彬,等.页岩水力裂缝扩展形态与声发射解释——以四川盆地志留系龙马溪组页岩为例[J].石油勘探与开发,2017,44(6):974-981.MA Xinfang,LI Ning,YIN Congbin,et al.Hydraulic fracture prop⁃ agation geometry and acoustic emission interpretation:A case study of Silurian Longmaxi Formation shale in Sichuan Basin,SW China[J].Petroleum Exploration and Development,2017,44(6):974-981.

    • [11] ZOU Yushi,MA Xinfang,ZHOU Tong,et al.Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling[J].Rock Mechanics and Rock Engi⁃ neering,2017,50(9):2 381-2 395.

    • [12] MORLEY A.Strength of materials[M].London:Longman Green,1944:71-72.

    • [13] BISHOP A W.Progressive failure with special reference to the mechanism causing it[C].Oslo:Proceedings of the Geotechnical Conference,1967:142-150.

    • [14] JESSE V H.Glossary of geology and related sciences[M].Wash⁃ ington D C:American Geological Institute,1990:99-102.

    • [15] 李庆辉,陈勉,金衍,等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报,2012,31(8):1 680-1 685.LI Qinghui,CHEN Mian,JIN Yan,et al.Indoor evaluation method for shale brittleness and improvement[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1 680-1 685.

    • [16] AI Chi,ZHANG Jun,LI Yuwei,et al.Estimation criteria for rock brittleness based on energy analysis during the rupturing process [J].Rock Mechanics and Rock Engineering,2016,49(12):4 681-4 698.

    • [17] KIVI Iman Rahimzadeh,AMERI Mohammadjavad,MOLLA⁃ DAVOODI Hamed.Shale brittleness evaluation based on energy balance analysis of stress-strain curves[J].Journal of Petroleum Science and Engineering,2018,167:1-19.

    • [18] 张军,艾池,李玉伟,等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报,2017,36(6):1 326-1340.ZHANG Jun,AI Chi,LI Yuwei,et al.Brittleness evaluation index based on energy variation in the whole process of rock failure[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(6):1 326-1 340.

    • [19] RICKMAN Rick,MULLEN Michael J,PETRE James Erik,et al.A practical use of shale petrophysics for stimulation design optimi⁃ zation:All shale plays are not clones of the Barnett Shale[R].Den⁃ ver:Society of Petroleum Engineers,2008:21-24.

    • [20] 王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33(2):264-275.WANG Yu,LI Xiao,WU Yanfang,et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J].Chinese Journal of Rock Mechanics and Engi⁃ neering,2014,33(2):264-275.

    • [21] 曾治平,刘震,马骥,等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报,2019,25(2):223-232.ZENG Zhiping,LIU Zhen,MA Ji,et al.A new method for fracrability evaluation in deep and tight sandstone reservoirs[J].Journal of Geomechanics,2019,25(2):223-232.

    • [22] HUCKA V,DAS B.Brittleness determination of rocks by different methods[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1974,11(10):389-392.

    • [23] HAJIABDOLMAJID Vahid,KAISER Peter.Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and Un⁃ derground Space Technology,2003,18(1):35-48.

    • [24] LEI Xinglin,KUSUNOSE Kinichiro,RAO M V M S,et al.Quasistatic fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring[J].Jour⁃ nal of Geophysical Research,2001,105(B3):6 127-6 139.

    • [25] LI Ning,ZHANG Shicheng,ZOU Yushi,et al.Experimental analy⁃ sis of hydraulic fracture growth and acoustic emission response in a layered formation[J].Rock Mechanics and Rock Engineering,2018,51(4):1 047-1 062.

    • [26] LI Ning,ZHANG Shicheng,ZOU Yushi,et al.Acoustic emission response of laboratory hydraulic fracturing in layered shale[J].Rock Mechanics and Rock Engineering,2018,51(11):3 395-3 406.

    • [27] LI Yuwei,JIA Dan,RUI Zhenhua,et al.Evaluation method of rock brittleness based on statistical constitutive relations for rock dam⁃ age[J].Journal of Petroleum Science and Engineering,2017,153:123-132.

    • [28] 刘恩龙,沈珠江.岩土材料的脆性研究[J].岩石力学与工程学报,2005,24(19):3 449-3 453.LIU Enlong,SHEN Zhujiang.Study on brittleness of geomaterials [J].Chinese Journal of Rock Mechanics and Engineering,2005,24(19):3 449-3 453.

    • [29] LI Ning,ZOU Yushi,ZHANG Shicheng,et al.Rock brittleness evaluation based on energy dissipation under triaxial compression [J].Journal of Petroleum Science and Engineering,2019,183:1-10.

    • [30] MA Xinfang,ZOU Yushi,LI Ning,et al.Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir[J].Journal of Structural Geology,2017,97:37-47.