en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王业飞(1968—),男,湖北天门人,教授,博导,从事油田化学与提高采收率的科研与教学工作。联系电话:(0532)86981709,E-mail:wangyf@upc.edu.cn。

中图分类号:TE357.46+1

文献标识码:A

文章编号:1009-9603(2019)06-0092-08

DOI:10.13673/j.cnki.cn37-1359/te.2019.06.012

参考文献 1
张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.
参考文献 2
刘顺生,周惠泽,杨玉珍,等.砾岩油藏地质综合描述技术—— 以新疆夏子街油田为例[J].石油学报,2000,21(5):109-114.LIU Shunsheng,ZHOU Huize,YANG Yuzhen,et al.Comprehen⁃ sive study on geology of conglomerate reservoir in Xiazijie Oilfield [J].Acta Petrolei Sinica,2000,21(5):109-114.
参考文献 3
刘顺生,胡复唐.影响砾岩油藏注水开发效果的地质因素[J].石油勘探与开发,1993,20(6):54-60.LIU Shunsheng,HU Futang.Geological factors affecting the devel⁃ opment of a conglomeratic reservoir by water injection[J].Petro⁃ leum Exploration and Development,1993,20(6):54-60.
参考文献 4
徐后伟,王海明,刘荣军,等.砾岩油藏聚合物驱储集层多参数精细评价及应用——以克拉玛依油田七东1区克拉玛依组下亚组砾岩油藏为例[J].新疆石油地质,2018,39(2):169-175.XU Houwei,WANG Haiming,LIU Rongjun,et al.Fine multipa⁃ rameter evaluation for polymer flooding in conglomerate reser⁃ voirs and its application:a case study from lower Karamay forma⁃ tion in District Qidong-1,Karamay oilfield[J].Xinjiang Petro⁃ leum Geology,2018,39(2):169-175.
参考文献 5
韩海水,李实,马德胜,等.全直径砾岩长岩心水驱后烟道气驱油与埋存实验[J].石油勘探与开发,2018,45(5):847-852.HAN Haishui,LI Shi,MA Desheng,et al.Investigation of flue gas displacement and storage after the water flooding in a full diame⁃ ter conglomerate long-core[J].Petroleum Exploration and Devel⁃ opment,2018,45(2):847-852.
参考文献 6
唐洪明,文鑫,张旭阳,等.层间非均质砾岩油藏水驱油模拟实验[J].西南石油大学学报:自然科学版,2014,36(5):129-135.TANG Hongming,WEN Xin,ZHANG Xuyang,et al.Water-oil displacing modeling experiment of interlayer heterogeneous con⁃ glomerate reservoir[J].Journal of Southwest Petroleum Universi⁃ ty:Science & Technology Edition,2014,36(5):129-135.
参考文献 7
万青山,袁恩来,侯军伟,等.新疆油田砾岩油藏调驱配方设计研究[J].特种油气藏,2017,24(4):106-111.WAN Qingshan,YUAN Enlai,HOU Junwei,et al.Research on profile control formula design for conglomerate reservoirs in Xinji⁃ ang Oil Field[J].Special Oil & Gas Reservoirs,2017,24(4):106-111.
参考文献 8
冯慧洁,聂小斌,徐国勇,等.砾岩油藏聚合物驱微观机理研究 [J].油田化学,2007,24(3):232-237.FENG Huijie,NIE Xiaobin,XU Guoyong,et al.Microscopic mech⁃ anisms of oil displacement by polymer solution for conglomerate reservoir[J].Oilfield Chemistry,2007,24(3):232-237.
参考文献 9
姜瑞忠,乔杰,孙辉,等.低渗透砂砾岩油藏储层分类方法[J].油气地质与采收率,2018,25(1):90-93.JIANG Ruizhong,QIAN Jie,SUN Hui,et al.Reservoir classifica⁃ tion method for low-permeability glutenite reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(1):90-93.
参考文献 10
印森林,吴胜和,冯文杰,等.冲积扇储集层内部隔夹层样式——以克拉玛依油田一中区克下组为例[J].石油勘探与开发,2013,40(6):757-763.YIN Senlin,WU Shenghe,FENG Wenjie,et al.Patterns of interlayers in the alluvial fan reservoirs:A case study on Triassic Low⁃ er Karamay Formation,Yizhong Area,Karamay Oilfield,NW Chi⁃na[J].Petroleum Exploration and Development,2013,40(6):757-763.
参考文献 11
宫清顺,刘占国,宋光永,等.柴达木盆地昆北油田冲积扇厚层砂砾岩储集层内部隔夹层[J].石油学报,2019,40(2):152-164.GONG Qingshun,LIU Zhanguo,SONG Guangyong,et al.Interlayers in alluvial-fan thick sandy conglomerate reservoir of Kun⁃ bei oilfield,Qaidam Basin[J].Acta Petrolei Sinica,2019,40(2):152-164.
参考文献 12
LIU Rinqiang,DUAN Yonggang,TAN Fengqi,et al.Evaluation on an original resistivity inversion method of water flooding a con⁃ glomerate reservoir based on petrophysical analysis[J].Journal of Geophysics & Engineering,2015,12(5):780-792.
参考文献 13
刘顺生,胡复唐.洪积扇砾岩储层非均质性及非均质模型[J].新疆石油地质,1993,14(4):350-356.LIU Shunsheng,HU Futang.Heterogeneity and heterogeneity mod⁃ els of pluvial conglomerate reservoirs[J].Xinjiang Petroleum Ge⁃ ology,1993,14(4):350-356.
参考文献 14
秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:A case study of the Baikouquan Formation in Bai21 Block,Baikouquan Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):1-10.
参考文献 15
杜洪凌,许江文,李峋,等.新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考 [J].中国石油勘探,2018,23(2):15-26.DU Hongling,XU Jiangwen,LI Xun,et al.Development and deep⁃ ening of profitable development of tight glutenite oil reservoirs in Xinjiang oilfield:application of geology-engineering integration in Mahu area and its enlightenment[J].China Petroleum Explora⁃ tion,2018,23(2):15-26.
参考文献 16
郝杰,周立发,袁义东,等.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J].石油实验地质,2018,40(5):632-638,649.HAO Jie,ZHOU Lifa,YUAN Yidong,et al.Diagenetic characteris⁃ tics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J].Petroleum Geology & Experiment,2018,40(5):632-638,649.
参考文献 17
TAN Fengqi,LI Hongqi,XU Changfu,et al.Quantitative evalua⁃ tion methods for waterflooded layers of conglomerate reservoir based on well logging data[J].Petroleum Science,2010,7(4):485-493.
参考文献 18
HUA Zhao,LIN Meiqin,GUO Jinru,et al.Study on plugging per⁃ formance of cross-linked polymer microspheres with reservoir pores[J].Journal of Petroleum Science and Engineering,2013,105:70-75.
参考文献 19
谭锋奇,许长福,王晓光,等.砾岩油藏水驱与聚合物驱微观渗流机理差异[J].石油学报,2016,37(11):1 414-1 427.TAN Fengqi,XU Changfu,WANG Xiaoguang,et al.Differences in microscopic porous flow mechanisms of water flooding and polymer flooding for conglomerate reservoir[J].Acta Petrolei Sini⁃ ca,2016,37(11):1 414-1 427.
参考文献 20
胡科,薛新生,康晓东,等.聚合物流变性对非均质油藏波及效率的影响[J].西南石油大学学报:自然科学版,2018,40(1):157-164.HU Ke,XUE Xinsheng,KANG Xiaodong,et al.Effects of polymer rheology on sweep efficiency of heterogeneous oil reserves[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(1):157-164.
参考文献 21
蒲万芬,赵帅,王亮亮,等.聚合物微球粒径与喉道匹配性研究 [J].油气地质与采收率,2018,25(4):100-105.PU Wanfen,ZHAO Shuai,WANG Liangliang,et al.Investigation into the matching between the size of polymer microspheres and pore throats[J].Petroleum Geology and Recovery Efficiency,2018,25(4):100-105.
目录contents

    摘要

    储层非均质性导致的驱替介质窜流是制约砾岩油藏注水、注聚合物开发的主要因素之一。根据克拉玛依砾岩油藏的非均质分布情况,针对油藏高渗区呈连通、零散及复合分布特征设计 3种可视化填砂模型。通过水驱和高、低2种质量浓度聚合物驱实验,分析不同非均质性分布下水驱窜流与聚合物驱窜流特征;选用弱凝胶和凝胶颗粒2种调驱剂来封堵窜流通道,探索不同类型非均质窜流的针对性治理方法。结果表明,高渗区之间的连通、零散及复合分布均易导致水驱窜流,中、低渗区及非主流线上的高渗区原油难以得到有效动用。不同非均质模型中聚合物驱窜流特征和治理方法不同:当高渗区连通或复合分布时,低质量浓度聚合物驱(1000 mg/L)仍窜流明显,增大聚合物质量浓度(2000 mg/L)能够扩大对非主流线上高渗区的波及,采收率大幅度提高,但中、低渗区原油仍未得到有效动用,凝胶颗粒调驱是治理聚合物驱窜流的最佳方法;当高渗区零散分布时,低质量浓度聚合物驱采收率增幅明显,而高质量浓度聚合物驱采收率难以大幅度提高,弱凝胶调驱是治理聚合物驱窜流的最佳方法。

    Abstract

    The crossflow of the displacement medium caused by the reservoir heterogeneity is one of the key issues that re- strict the water flooding and polymer flooding in the conglomerate oil reservoirs. According to the heterogeneous distribu- tion of Karamay conglomerate oil reservoir,three visualized sand packed models are designed for the connected,scattered and composite high-permeability areas respectively. Experiments of waterflooding and polymer flooding with high and low mass concentrations are carried out to analyze the crossflow characteristics of waterflooding and polymer flooding under dif- ferent heterogeneous distributions. Two kinds of profile control and flooding agents,weak gel and particle gel,are used to plug the crossflow channel to explore effective treatment methods for the crossflow of various kinds of heterogeneity. The re- sults show that the connected,scattered and composite distribution among the high-permeability zones in the reservoir are easy to cause crossflow during water flooding. It is difficult to effectively produce the crude oil from the medium and lowpermeability zones as well as the high-permeability zones distributed along non-main stream lines. The crossflow charac-teristics and treatment methods for the polymer flooding in various heterogeneous models are different. When the high-per- meability zone is connected or compositely distributed,crossflow is still obvious for the low-concentration polymer flooding (1000 mg/L),and the increase of polymer concentration(2000 mg/L)can expand the swept volume in high-permeability zones distributed along non-main stream lines. The recovery has been increased significantly,but the crude oil in the medi- um and low-permeability areas has not been effectively produced. Particle gel flooding is the best method for the treatment of crossflow. If the high-permeability area is scattered,the recovery of the low-concentration polymer flooding(1000 mg/L) is greatly increased. While recovery is difficult to be significantly increased by the high-concentration polymer flooding(2000 mg/L). Weak gel flooding is the best way to control crossflow.

  • 克拉玛依油田克下组砾岩油藏属于多物源、多水系的冲积扇沉积。沉积机制的交替更迭导致不同相带中储层的发育规模、分布样式复杂,非均质性十分严重。在相同的注水压力下,普遍存在层间或层内矛盾突出、剖面动用差异大、易发生多向窜流等特点,严重影响油藏注水和注聚合物开发效果[1-4]。目前关于砾岩油藏非均质性对注聚合物开发影响的室内研究,主要采取2种角度:基于一维纵向非均质岩心的驱替实验以及平面微观可视化驱替实验[5-8]。通过采用层状非均质岩心或玻璃刻蚀模型,分析宏观开发特征以及微观驱替动态。但上述模型难以针对砾岩油藏内部储集体的几何形态、规模以及分布样式等方面进行模拟。为此,针对克下组砾岩油藏高渗区不同分布的非均质形态[9],设计模拟砾岩油藏高渗区呈连通、零散和复合分布的3种可视化填砂模型,研究这3种非均质性情况下水驱窜流(简称水窜)和聚合物驱窜流(简称聚窜)特征,探讨各种非均质形态中窜流的治理方法。

  • 1 实验材料与方法

  • 1.1 实验材料

  • 实验用模拟油为白油与煤油按体积比为1∶1配制的混合油,其黏度为11mPa·s,将其用苏丹Ⅲ染色。所用聚合物为由新疆油田提供的部分水解聚丙烯酰胺(HPAM),相对分子质量为2 500 × 104,HPAM溶液用萘酚绿B染色。所用调驱剂包括:弱凝胶(由质量浓度为2 000mg/L的HPAM与质量分数为0.1%的无机铬交联剂构成)和凝胶颗粒(BPPG,50~150目)。实验用水为克下组模拟地层水,其总矿化度为11 106.9mg/L,K+ +Na+,Ca2+,Mg2+, SO4 2-,HCO3- 和Cl-的质量浓度分别为3 812.8,119.3, 18.9,158.4,2 318.1和4 679.4mg/L。

  • 1.2 实验方法

  • 1.2.1 实验模型

  • 根据克拉玛依克下组冲积扇储层的沉积微相及分区特征[10-12],设计并制作模拟砾岩油藏不同非均质形态的可视化填砂模型(一注一采)。模型尺寸为250mm×250mm×10mm。3个模型内砾石填充区域均占整个模型体积的35%,砾石与石英砂使用无色环氧树脂进行胶结,可以还原砾岩油藏的非均质分布形态。

  • 图1a为高渗区连通型模型。模型中高渗区呈连片状、条带状分布[13],由粒径为3~6mm的砾石填制,前后连通。高、中、低渗区呈层状叠置。中渗及低渗区分别用60~80和120~160目的石英砂填制,以模拟储层内的中、细砂岩层。此模型代表窜流通道发育、动用程度低、剩余油富集的储层,是下一步挖潜的主力方向。

  • 图1b为高渗区零散型模型。模型中的高渗区镶嵌在水道砂体之中,砾石区域均不连通,呈“透镜体”的形态存在于储层内部[14]。中渗区由60~80目石英砂填制,横向连续性较好。宏观上零散型模型渗透率低于连通型及复合型。

  • 图1 3种高渗区分布的可视化填砂模型

  • Fig.1 Visual sand packed models with three different distribution of high-permeability zones

  • 图1c为高渗区复合型模型。该模型既有连通的高渗区,也有分隔孤立的高渗区,中、低渗区分别由60~80和120~160目石英砂填制,所代表的地层大多以复合韵律为主,表现为稳定水道叠置分隔形成的复合水道单元,兼具连通型和零散型的特征,模型内部剩余油分布也更加复杂[15-17]

  • 3 种高渗区分布模型所采用填砂组合及物性如表1所示。

  • 表1 3种高渗区分布填砂模型物性基本参数

  • Table1 Basic physical properties of three sand packed models

  • 1.2.2 实验装置及方法

  • 可视化驱替实验装置由活塞式中间容器、平流泵、图像数据采集与处理器、电子天平、量筒和烧杯等组成(图2)。实验均在室温下进行,注入速度为0.25mL/min。实验方法如下:①填制模型、抽真空、饱和水后,注水测试模型渗透率。②油驱水的方式饱和模拟油。③水驱阶段。注入模拟地层水,水驱至含水率为98%。④聚合物驱阶段。先注入0.3PV质量浓度为1 000mg/L的HPAM,后续水驱至含水率为98%,再注入0.3PV质量浓度为2 000mg/L的HPAM,后续水驱至含水率为98%。⑤调驱阶段。先注入0.3PV弱凝胶,水驱至含水率为98%,再注入0.3PV凝胶颗粒,水驱至含水率为98%。⑥针对采收率较低的模型进行第2次调驱。连续注入0.15PV弱凝胶和0.15PV凝胶颗粒,后续水驱至含水率为98%。⑦根据各阶段产油量,计算原油采收率。

  • 图2 可视化驱替实验装置示意

  • Fig.2 Sketch map of visual displacement experimental device

  • 2 实验结果与分析

  • 2.1 水驱阶段特征

  • 当模拟地层水注入高渗区连通型模型后,由于渗流阻力的差异,注入水优先进入中部由较大尺寸砾石构成的高渗区(图3),主流线(图3b左图黄色框线区)剩余油饱和度明显降低。水线沿着砾石条带推进至采出端后,水相流动阻力明显降低。对比水驱前后油水分布(图3)可以看出,主流线以外的高、低渗区基本处于未动用状态。模型水驱至0.15PV时,采出端见水;水驱至0.30PV时,含水率已达到98%(图4)。中部高渗区的存在使得水驱过程提早进入无效循环阶段,水驱阶段采收率仅为19.4%。说明在高渗区连通的情况下,注入水沿高渗区窜流现象极为严重。

  • 图3 3种高渗区分布模型水驱后油水分布

  • Fig.3 Oil and water distributions after water flooding of three models with different distribution of high-permeability zones

  • 图4 3种高渗区分布模型水驱后采收率对比

  • Fig.4 Comparison of recoveries after water flooding of three models with different distribution of high-permeability zones

  • 高渗区零散型模型水驱后图像(图3b)显示,模型注入端的水驱前缘相对稳定,剩余油饱和度较低。模型内部,不同高渗区之间由一条或几条水线沟通。高渗区内的压力分布稳定,注入水在高渗区内波及效率较高,留下孤岛状的剩余油滴。零散型模型虽然发生了一定的“绕流”,但整体水驱无水采油期较长,水驱至0.21PV时,采出端见水,水驱至0.55PV时,含水率达到98%,水驱阶段采收率为33.2%(图4)。

  • 高渗区复合型模型的水驱剩余油分布类似于连通型。注入水优先沿着模型中部高渗区进行驱替,在模型出口见水后,高渗区即发生水窜,除主流线(图3b右图黄色框线区)之外的中、高渗区剩余油饱和度均没有降低(图3)。复合型模型水驱至0.28PV时,含水率即达98%,水驱阶段采收率仅为17.0%(图4),表现为严重的非均匀驱替。

  • 2.2 聚合物驱阶段特征

  • 高渗区连通型与复合型模型注入质量浓度为1 000mg/L的HPAM溶液后,聚合物几乎全部沿着高渗区窜流(图5a),两者采收率仅分别提高4.6%和5.0%(图6)。转注质量浓度为2 000mg/L的HPAM溶液后,由于高质量浓度聚合物改善流度比的能力更强,可以有效地提高窜流通道内的渗流阻力[18],在除主流线外的高渗区内开辟了新的渗流通道(图6b左图黄色框线区),从而将模型中非主流线高渗区内的原油驱出。在高质量浓度聚合物驱阶段中,高渗区连通型与复合型模型采收率分别提高12.2%和7.9%。说明注入高质量浓度聚合物可以有效提高高渗区连通型及复合型模型的原油采收率。

  • 高渗区零散型模型注入质量浓度为1 000mg/L的HPAM溶液后,驱替相波及体积明显增大,在注入端几乎没有剩余油。当聚合物突破高渗区后,仍有较宽的驱替前缘,缓解了水驱产生的“绕流”现象,波及面积呈“楔”形[19]。低质量浓度聚合物驱阶段提高采收率为11.7%。转注质量浓度为2 000mg/L的HPAM后,高质量浓度聚合物驱阶段比低质量浓度聚合物驱阶段采收率仅增加5.4%,增幅降低。通过将图6零散型模型中黄色框线部分局部放大 (图7)可以看出,高质量浓度聚合物对波及体积改善十分有限,波及范围没有进一步扩大。

  • 图5 3种高渗区分布模型不同质量浓度聚合物驱后油水分布

  • Fig.5 Oil and water distributions after polymer flooding with different concentrations based on three models with different distribution of high-permeability zones

  • 图6 3种高渗区分布模型聚合物驱后采收率变化

  • Fig.6 Comparison of recoveries after polymer flooding of three models with different distribution of high-permeability zones

  • 图7 高渗区零散型模型不同质量浓度聚合物驱局部放大

  • Fig.7 Partial enlargement of polymer flooding with different concentrations in scattered high-permeability zones

  • 聚合物驱阶段实验结果表明,不同非均质形态地层所适应的最佳聚合物注入质量浓度差异很大。对于高渗区连通型及复合型模型,聚合物主要通过改善流度将主流线以外的高渗区启动,此时注入高质量浓度聚合物可以更有效地调整吸水剖面。而对于零散型模型,低质量浓度聚合物提高原油采收率效果显著,增大聚合物质量浓度后提高采收率幅度反而下降,说明高渗区零散型模型注低质量浓度聚合物可以获得较大投入产出比。

  • 2.3 调驱阶段效果

  • 不同模型调驱后采收率变化曲线(图8)表明,2种调驱剂对3种高渗区分布模型的适应性不同。连通型模型在凝胶颗粒调驱阶段的采收率增幅 (14.6%)远高于弱凝胶调驱阶段(6.8%);而对于零散型模型,凝胶颗粒难以通过中渗基质进入砾石区域,而流动性较好的弱凝胶可以明显提高采收率 (10.2%);高渗区复合型第1轮注入2种调驱剂后,采收率仅分别增长了2.5%和6.6%。针对复合型模型进行第2轮调驱后,原油采收率在第1轮调驱基础上增幅明显(11.4%),说明单一调驱剂、单次调驱很难对高渗区分布模式复杂的砾岩储层产生有效封堵。

  • 图8 3种高渗区分布模型调驱后采收率变化

  • Fig.8 Comparison of recoveries after profile control of three models with different distribution of high-permeability zones

  • 2.3.1 弱凝胶调驱后油水分布特征

  • 连通型模型在注入弱凝胶后,高渗区内阻力增加,靠近高渗区的原油逐渐被剥离、携带至采出端,中渗区剩余油饱和度明显降低(图9)。但弱凝胶强度较差[20],随着弱凝胶呈碎片状被采出,中、低渗区没有更多的驱替相液体进入。

  • 对于高渗区零散型模型,由于弱凝胶的流动性较强,注入后可以通过中渗区抵达地层深部的砾石填充区域,使得驱替相波及面积继续扩大(图9)。各高渗区之间的中渗区剩余油饱和度明显降低。

  • 在复合型模型中,弱凝胶优先进入靠近注入端的高渗区内,高渗区外围剩余油饱和度降低,随着中部高渗区内弱凝胶被采出,后续注入水再次进入无效循环状态,中、低渗区动用情况依然较差(图9)。

  • 综上所述,由于弱凝胶具有良好的流动性,可以深入地层深部进行封堵,对于零散型模型调驱效果最佳;而对于高渗区连通型及复合型模型,弱凝胶对孔喉直径较大的窜流通道很难形成有效封堵。

  • 2.3.2 凝胶颗粒调驱后油水分布特征

  • 连通型模型中所注入的凝胶颗粒在进入高渗区后,凝胶颗粒吸水膨胀并通过架桥作用滞留在孔隙通道内[21],进而改变注入流体的流动方向。模型中、低渗区剩余油饱和度均明显降低(图10)。说明凝胶颗粒对连通型窜流具有良好的封堵能力。

  • 对于零散型模型,由于凝胶颗粒的尺寸限制,无法进入模型深部,因此没有在弱凝胶的基础上继续扩大波及面积(图10)。在弱凝胶调驱的基础上,凝胶颗粒调驱后采收率增幅仅为1.7%,说明弱凝胶对于零散分布非均质地层具有更好的适应性。

  • 图9 3种高渗区分布模型弱凝胶调驱前后油水分布

  • Fig.9 Oil and water distributions after weak gel flooding of three models with different distribution of high-permeability zones

  • 图10 3种高渗区分布模型凝胶颗粒调驱前后油水分布

  • Fig.10 Oil and water distributions after gel particle flooding of three models with different distribution of high-permeability zones

  • 凝胶颗粒注入复合型模型后,在高渗区内起到了封堵效果,模型下方的中渗区得到了一定程度的动用,凝胶颗粒调驱阶段提高采收率6.6%。但从整体上看,复合型模型在弱凝胶及凝胶颗粒调驱后,原油采收率最低,中、低渗区依旧存在大量的剩余油未被采出。因此需要对复合型模型进行第2轮调驱。

  • 2.3.3 复合型模型第2轮调驱后油水分布特征

  • 在第1轮调驱的基础上,连续注入凝胶颗粒0.15PV与弱凝胶0.15PV。凝胶颗粒优先进入高渗区后,弱凝胶则进入地层深部。2种调驱剂通过协同作用,封堵模型中不同尺度的窜流通道。模型中、低渗区的剩余油饱和度明显降低(图11),模型采收率提高了11.4%。因此,治理复合型储层内严重的窜流现象,需要多轮次、多种调驱剂的协同作用,单一调驱剂很难对强非均质的砾岩储层大孔道产生有效的封堵。

  • 图11 高渗区复合型第2次调驱后油水分布

  • Fig.11 Oil and water distributions after second-round profile control in composite high-permeability zone

  • 3 结论

  • 砾岩油藏高渗区呈连通、零散与复合分布情况下,均易发生水窜,水驱采收率较低,采出的原油主要来源于砾石充填的高渗区,中、低渗区和非主流线上的高渗区未被动用。

  • 聚合物对不同高渗区分布特征的地层驱油效果差异明显。高渗区呈零散分布,注入质量浓度为1 000mg/L的聚合物驱油效果较好,转注质量浓度为2 000mg/L的聚合物后采收率增幅减小。高渗区呈连通及复合分布状态时,只有注入质量浓度为2 000mg/L的聚合物后,主流线以外的高渗区才得到启动,但中、低渗区动用仍较差。

  • 高渗区呈连通分布,常规弱凝胶很难有效封堵砾石窜流通道,凝胶颗粒调驱是聚合物驱窜流治理的最佳方法;高渗区呈零散分布,弱凝胶调驱适应性良好,可以较大幅度提高采收率;高渗区呈复合分布,宜在凝胶颗粒调驱的基础上,采用多轮次调剖的方法,充分发挥多种调驱剂的协同作用,实现最大程度上的均匀驱替。

  • 参考文献

    • [1] 张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.

    • [2] 刘顺生,周惠泽,杨玉珍,等.砾岩油藏地质综合描述技术—— 以新疆夏子街油田为例[J].石油学报,2000,21(5):109-114.LIU Shunsheng,ZHOU Huize,YANG Yuzhen,et al.Comprehen⁃ sive study on geology of conglomerate reservoir in Xiazijie Oilfield [J].Acta Petrolei Sinica,2000,21(5):109-114.

    • [3] 刘顺生,胡复唐.影响砾岩油藏注水开发效果的地质因素[J].石油勘探与开发,1993,20(6):54-60.LIU Shunsheng,HU Futang.Geological factors affecting the devel⁃ opment of a conglomeratic reservoir by water injection[J].Petro⁃ leum Exploration and Development,1993,20(6):54-60.

    • [4] 徐后伟,王海明,刘荣军,等.砾岩油藏聚合物驱储集层多参数精细评价及应用——以克拉玛依油田七东1区克拉玛依组下亚组砾岩油藏为例[J].新疆石油地质,2018,39(2):169-175.XU Houwei,WANG Haiming,LIU Rongjun,et al.Fine multipa⁃ rameter evaluation for polymer flooding in conglomerate reser⁃ voirs and its application:a case study from lower Karamay forma⁃ tion in District Qidong-1,Karamay oilfield[J].Xinjiang Petro⁃ leum Geology,2018,39(2):169-175.

    • [5] 韩海水,李实,马德胜,等.全直径砾岩长岩心水驱后烟道气驱油与埋存实验[J].石油勘探与开发,2018,45(5):847-852.HAN Haishui,LI Shi,MA Desheng,et al.Investigation of flue gas displacement and storage after the water flooding in a full diame⁃ ter conglomerate long-core[J].Petroleum Exploration and Devel⁃ opment,2018,45(2):847-852.

    • [6] 唐洪明,文鑫,张旭阳,等.层间非均质砾岩油藏水驱油模拟实验[J].西南石油大学学报:自然科学版,2014,36(5):129-135.TANG Hongming,WEN Xin,ZHANG Xuyang,et al.Water-oil displacing modeling experiment of interlayer heterogeneous con⁃ glomerate reservoir[J].Journal of Southwest Petroleum Universi⁃ ty:Science & Technology Edition,2014,36(5):129-135.

    • [7] 万青山,袁恩来,侯军伟,等.新疆油田砾岩油藏调驱配方设计研究[J].特种油气藏,2017,24(4):106-111.WAN Qingshan,YUAN Enlai,HOU Junwei,et al.Research on profile control formula design for conglomerate reservoirs in Xinji⁃ ang Oil Field[J].Special Oil & Gas Reservoirs,2017,24(4):106-111.

    • [8] 冯慧洁,聂小斌,徐国勇,等.砾岩油藏聚合物驱微观机理研究 [J].油田化学,2007,24(3):232-237.FENG Huijie,NIE Xiaobin,XU Guoyong,et al.Microscopic mech⁃ anisms of oil displacement by polymer solution for conglomerate reservoir[J].Oilfield Chemistry,2007,24(3):232-237.

    • [9] 姜瑞忠,乔杰,孙辉,等.低渗透砂砾岩油藏储层分类方法[J].油气地质与采收率,2018,25(1):90-93.JIANG Ruizhong,QIAN Jie,SUN Hui,et al.Reservoir classifica⁃ tion method for low-permeability glutenite reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(1):90-93.

    • [10] 印森林,吴胜和,冯文杰,等.冲积扇储集层内部隔夹层样式——以克拉玛依油田一中区克下组为例[J].石油勘探与开发,2013,40(6):757-763.YIN Senlin,WU Shenghe,FENG Wenjie,et al.Patterns of interlayers in the alluvial fan reservoirs:A case study on Triassic Low⁃ er Karamay Formation,Yizhong Area,Karamay Oilfield,NW Chi⁃na[J].Petroleum Exploration and Development,2013,40(6):757-763.

    • [11] 宫清顺,刘占国,宋光永,等.柴达木盆地昆北油田冲积扇厚层砂砾岩储集层内部隔夹层[J].石油学报,2019,40(2):152-164.GONG Qingshun,LIU Zhanguo,SONG Guangyong,et al.Interlayers in alluvial-fan thick sandy conglomerate reservoir of Kun⁃ bei oilfield,Qaidam Basin[J].Acta Petrolei Sinica,2019,40(2):152-164.

    • [12] LIU Rinqiang,DUAN Yonggang,TAN Fengqi,et al.Evaluation on an original resistivity inversion method of water flooding a con⁃ glomerate reservoir based on petrophysical analysis[J].Journal of Geophysics & Engineering,2015,12(5):780-792.

    • [13] 刘顺生,胡复唐.洪积扇砾岩储层非均质性及非均质模型[J].新疆石油地质,1993,14(4):350-356.LIU Shunsheng,HU Futang.Heterogeneity and heterogeneity mod⁃ els of pluvial conglomerate reservoirs[J].Xinjiang Petroleum Ge⁃ ology,1993,14(4):350-356.

    • [14] 秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:A case study of the Baikouquan Formation in Bai21 Block,Baikouquan Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):1-10.

    • [15] 杜洪凌,许江文,李峋,等.新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考 [J].中国石油勘探,2018,23(2):15-26.DU Hongling,XU Jiangwen,LI Xun,et al.Development and deep⁃ ening of profitable development of tight glutenite oil reservoirs in Xinjiang oilfield:application of geology-engineering integration in Mahu area and its enlightenment[J].China Petroleum Explora⁃ tion,2018,23(2):15-26.

    • [16] 郝杰,周立发,袁义东,等.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J].石油实验地质,2018,40(5):632-638,649.HAO Jie,ZHOU Lifa,YUAN Yidong,et al.Diagenetic characteris⁃ tics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J].Petroleum Geology & Experiment,2018,40(5):632-638,649.

    • [17] TAN Fengqi,LI Hongqi,XU Changfu,et al.Quantitative evalua⁃ tion methods for waterflooded layers of conglomerate reservoir based on well logging data[J].Petroleum Science,2010,7(4):485-493.

    • [18] HUA Zhao,LIN Meiqin,GUO Jinru,et al.Study on plugging per⁃ formance of cross-linked polymer microspheres with reservoir pores[J].Journal of Petroleum Science and Engineering,2013,105:70-75.

    • [19] 谭锋奇,许长福,王晓光,等.砾岩油藏水驱与聚合物驱微观渗流机理差异[J].石油学报,2016,37(11):1 414-1 427.TAN Fengqi,XU Changfu,WANG Xiaoguang,et al.Differences in microscopic porous flow mechanisms of water flooding and polymer flooding for conglomerate reservoir[J].Acta Petrolei Sini⁃ ca,2016,37(11):1 414-1 427.

    • [20] 胡科,薛新生,康晓东,等.聚合物流变性对非均质油藏波及效率的影响[J].西南石油大学学报:自然科学版,2018,40(1):157-164.HU Ke,XUE Xinsheng,KANG Xiaodong,et al.Effects of polymer rheology on sweep efficiency of heterogeneous oil reserves[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(1):157-164.

    • [21] 蒲万芬,赵帅,王亮亮,等.聚合物微球粒径与喉道匹配性研究 [J].油气地质与采收率,2018,25(4):100-105.PU Wanfen,ZHAO Shuai,WANG Liangliang,et al.Investigation into the matching between the size of polymer microspheres and pore throats[J].Petroleum Geology and Recovery Efficiency,2018,25(4):100-105.

  • 参考文献

    • [1] 张晶晶.断陷湖盆致密砂砾岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(6):52-57.ZHANG Jingjing.Characteristics and their controlling factors for the tight conglomerate reservoir in the fault depression lake basin [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(6):52-57.

    • [2] 刘顺生,周惠泽,杨玉珍,等.砾岩油藏地质综合描述技术—— 以新疆夏子街油田为例[J].石油学报,2000,21(5):109-114.LIU Shunsheng,ZHOU Huize,YANG Yuzhen,et al.Comprehen⁃ sive study on geology of conglomerate reservoir in Xiazijie Oilfield [J].Acta Petrolei Sinica,2000,21(5):109-114.

    • [3] 刘顺生,胡复唐.影响砾岩油藏注水开发效果的地质因素[J].石油勘探与开发,1993,20(6):54-60.LIU Shunsheng,HU Futang.Geological factors affecting the devel⁃ opment of a conglomeratic reservoir by water injection[J].Petro⁃ leum Exploration and Development,1993,20(6):54-60.

    • [4] 徐后伟,王海明,刘荣军,等.砾岩油藏聚合物驱储集层多参数精细评价及应用——以克拉玛依油田七东1区克拉玛依组下亚组砾岩油藏为例[J].新疆石油地质,2018,39(2):169-175.XU Houwei,WANG Haiming,LIU Rongjun,et al.Fine multipa⁃ rameter evaluation for polymer flooding in conglomerate reser⁃ voirs and its application:a case study from lower Karamay forma⁃ tion in District Qidong-1,Karamay oilfield[J].Xinjiang Petro⁃ leum Geology,2018,39(2):169-175.

    • [5] 韩海水,李实,马德胜,等.全直径砾岩长岩心水驱后烟道气驱油与埋存实验[J].石油勘探与开发,2018,45(5):847-852.HAN Haishui,LI Shi,MA Desheng,et al.Investigation of flue gas displacement and storage after the water flooding in a full diame⁃ ter conglomerate long-core[J].Petroleum Exploration and Devel⁃ opment,2018,45(2):847-852.

    • [6] 唐洪明,文鑫,张旭阳,等.层间非均质砾岩油藏水驱油模拟实验[J].西南石油大学学报:自然科学版,2014,36(5):129-135.TANG Hongming,WEN Xin,ZHANG Xuyang,et al.Water-oil displacing modeling experiment of interlayer heterogeneous con⁃ glomerate reservoir[J].Journal of Southwest Petroleum Universi⁃ ty:Science & Technology Edition,2014,36(5):129-135.

    • [7] 万青山,袁恩来,侯军伟,等.新疆油田砾岩油藏调驱配方设计研究[J].特种油气藏,2017,24(4):106-111.WAN Qingshan,YUAN Enlai,HOU Junwei,et al.Research on profile control formula design for conglomerate reservoirs in Xinji⁃ ang Oil Field[J].Special Oil & Gas Reservoirs,2017,24(4):106-111.

    • [8] 冯慧洁,聂小斌,徐国勇,等.砾岩油藏聚合物驱微观机理研究 [J].油田化学,2007,24(3):232-237.FENG Huijie,NIE Xiaobin,XU Guoyong,et al.Microscopic mech⁃ anisms of oil displacement by polymer solution for conglomerate reservoir[J].Oilfield Chemistry,2007,24(3):232-237.

    • [9] 姜瑞忠,乔杰,孙辉,等.低渗透砂砾岩油藏储层分类方法[J].油气地质与采收率,2018,25(1):90-93.JIANG Ruizhong,QIAN Jie,SUN Hui,et al.Reservoir classifica⁃ tion method for low-permeability glutenite reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(1):90-93.

    • [10] 印森林,吴胜和,冯文杰,等.冲积扇储集层内部隔夹层样式——以克拉玛依油田一中区克下组为例[J].石油勘探与开发,2013,40(6):757-763.YIN Senlin,WU Shenghe,FENG Wenjie,et al.Patterns of interlayers in the alluvial fan reservoirs:A case study on Triassic Low⁃ er Karamay Formation,Yizhong Area,Karamay Oilfield,NW Chi⁃na[J].Petroleum Exploration and Development,2013,40(6):757-763.

    • [11] 宫清顺,刘占国,宋光永,等.柴达木盆地昆北油田冲积扇厚层砂砾岩储集层内部隔夹层[J].石油学报,2019,40(2):152-164.GONG Qingshun,LIU Zhanguo,SONG Guangyong,et al.Interlayers in alluvial-fan thick sandy conglomerate reservoir of Kun⁃ bei oilfield,Qaidam Basin[J].Acta Petrolei Sinica,2019,40(2):152-164.

    • [12] LIU Rinqiang,DUAN Yonggang,TAN Fengqi,et al.Evaluation on an original resistivity inversion method of water flooding a con⁃ glomerate reservoir based on petrophysical analysis[J].Journal of Geophysics & Engineering,2015,12(5):780-792.

    • [13] 刘顺生,胡复唐.洪积扇砾岩储层非均质性及非均质模型[J].新疆石油地质,1993,14(4):350-356.LIU Shunsheng,HU Futang.Heterogeneity and heterogeneity mod⁃ els of pluvial conglomerate reservoirs[J].Xinjiang Petroleum Ge⁃ ology,1993,14(4):350-356.

    • [14] 秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:A case study of the Baikouquan Formation in Bai21 Block,Baikouquan Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):1-10.

    • [15] 杜洪凌,许江文,李峋,等.新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考 [J].中国石油勘探,2018,23(2):15-26.DU Hongling,XU Jiangwen,LI Xun,et al.Development and deep⁃ ening of profitable development of tight glutenite oil reservoirs in Xinjiang oilfield:application of geology-engineering integration in Mahu area and its enlightenment[J].China Petroleum Explora⁃ tion,2018,23(2):15-26.

    • [16] 郝杰,周立发,袁义东,等.断陷湖盆致密砂砾岩储层成岩作用及其对孔隙演化的影响[J].石油实验地质,2018,40(5):632-638,649.HAO Jie,ZHOU Lifa,YUAN Yidong,et al.Diagenetic characteris⁃ tics and their control on porosity of sandy conglomerate reservoirs in faulted basins[J].Petroleum Geology & Experiment,2018,40(5):632-638,649.

    • [17] TAN Fengqi,LI Hongqi,XU Changfu,et al.Quantitative evalua⁃ tion methods for waterflooded layers of conglomerate reservoir based on well logging data[J].Petroleum Science,2010,7(4):485-493.

    • [18] HUA Zhao,LIN Meiqin,GUO Jinru,et al.Study on plugging per⁃ formance of cross-linked polymer microspheres with reservoir pores[J].Journal of Petroleum Science and Engineering,2013,105:70-75.

    • [19] 谭锋奇,许长福,王晓光,等.砾岩油藏水驱与聚合物驱微观渗流机理差异[J].石油学报,2016,37(11):1 414-1 427.TAN Fengqi,XU Changfu,WANG Xiaoguang,et al.Differences in microscopic porous flow mechanisms of water flooding and polymer flooding for conglomerate reservoir[J].Acta Petrolei Sini⁃ ca,2016,37(11):1 414-1 427.

    • [20] 胡科,薛新生,康晓东,等.聚合物流变性对非均质油藏波及效率的影响[J].西南石油大学学报:自然科学版,2018,40(1):157-164.HU Ke,XUE Xinsheng,KANG Xiaodong,et al.Effects of polymer rheology on sweep efficiency of heterogeneous oil reserves[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(1):157-164.

    • [21] 蒲万芬,赵帅,王亮亮,等.聚合物微球粒径与喉道匹配性研究 [J].油气地质与采收率,2018,25(4):100-105.PU Wanfen,ZHAO Shuai,WANG Liangliang,et al.Investigation into the matching between the size of polymer microspheres and pore throats[J].Petroleum Geology and Recovery Efficiency,2018,25(4):100-105.