en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王海栋(1991—),男,吉林通化人,在读博士研究生,从事油气田稳油控水开发及渗流机理研究。联系电话:15765966676,E-mail:nepupetroleum@163.com。

中图分类号:TE357.1

文献标识码:A

文章编号:1009-9603(2019)06-0136-07

DOI:10.13673/j.cnki.cn37-1359/te.2019.06.018

参考文献 1
高月刚,刘新菊,王学生.安塞特低渗透油田水平井加密动用剩余油研究及实践[J].石油化工高等学校学报,2018,31(2):42-47.GAO Yuegang,LIU Xinju,WANG Xuesheng.Research and prac⁃ tice on remaining oil of horizontal well encryption of Ansai spe⁃ cial low permeability reservoir[J].Journal of Petrochemical Uni⁃ versities,2018,31(2):42-47.
参考文献 2
王展旭,戚丽丽.丹佛乃贝侞(Niobrara)页岩油气田水平井加密数模研究[J].青岛科技大学学报:自然科学版,2018,39(增刊1):116-120.WANG Zhanxu,QI Lili.Study on the encryption mathematical model of horizontal wells in the shale oil and gas field of Denver Niobrara[J].Journal of Qingdao University of Science and Tech⁃ nology:Natural Science Edition,2018,39(Supplement1):116-120.
参考文献 3
吴丛文,石国新,路建国,等.准噶尔盆地陆梁油田超薄层低阻油藏水平井开发技术[J].特种油气藏,2018,25(4):164-169.WU Congwen,SHI Guoxin,LU Jianguo,et al.Development of ul⁃ tra-thin low-resistance reservoirs through horizontal wells in Lu⁃ liang oilfield,Junggar Basin[J].Special Oil & Gas Reservoirs,2018,25(4):164-169.
参考文献 4
杨兆中,陈倩,李小刚,等.鄂尔多斯盆地低渗透致密砂岩气藏水平井分段多簇压裂布缝优化研究[J].油气地质与采收率,2019,26(2):120-126.YANG Zhaozhong,CHEN Qian,LI Xiaogang,et al.Optimization of multi-cluster staged fracturing for horizontal well in low-per⁃ meability tight sandstone gas reservoir,Ordos Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2019,26(2):120-126.
参考文献 5
邓民敏,刘俊燕,张传新.克拉玛依砾岩油藏开发后期稳油控水综合治理研究[J].石油学报,1997,18(4):89-94.DENG Minmin,LIU Junyan,ZHANG Chuanxin.Comprehensive treatment on the matured Karamay conglomerate reservoir with the measures of stabilizing oil production and controlling watercut[J].Acta Petrolei Sinica,1997,18(4):89-94.
参考文献 6
聂彬,刘月田,杨海宁.欢17块底水油藏水锥起降规律影响因素研究[J].特种油气藏,2012,19(4):84-87.NIE Bin,LIU Yuetian,YANG Haining.Investigation on influenc⁃ ing factors on water coning pattern in the bottom water reservoir of the Huan17 block[J].Special Oil & Gas Reservoirs,2012,19(4):84-87.
参考文献 7
姚军朋,令狐松,常琳,等.LC砂砾岩油藏出水类型及控水对策研究[J].长江大学学报:自科版,2016,13(5):62-66.YAO Junpeng,LINGHU Song,CHANG Lin,et al.Study on pro⁃ duced water type and countermeasures for its controlling in LC glutenite reservoir[J].Journal of Yangtze University:Natural Sci⁃ ence Edition,2016,13(5):62-66.
参考文献 8
房柳杉,周丹苹,陈红举,等.塔河油田碳酸盐岩油藏开发特征和稳油控水措施[J].云南化工,2018,45(4):166.FANG Liubin,ZHOU Danping,CHEN Hongju,et al.Development characteristics and measures for stable production and water con⁃ trol in carbonate reservoirs of Tahe Oilfield[J].Yunnan Chemical Technology,2018,45(4):166.
参考文献 9
何逸凡,石洪福,张吉磊,等.底水油藏水平井层内干扰定量表征及挖潜策略[J].特种油气藏,2018,25(2):85-89.HE Yifan,SHI Hongfu,ZHANG Jilei,et al.Quantitative character⁃ ization and recovery measures of horizontal-well in-layer interfer⁃ ence in bottom-aquifer oil reservoir[J].Special Oil & Gas Reser⁃ voirs,2018,25(2):85-89.
参考文献 10
谭承军,刘明高,李浩,等.碳酸盐岩油藏稳油控水措施——以塔河A区油藏为例[J].新疆石油地质,2004,25(5):509-511.TAN Chengjun,LIU Minggao,LI Hao,et al.The measures for sta⁃ ble production and water control in carbonate reservoir-an exam⁃ ple of District A reservoir in Tahe field,Tarim basin[J].Xinjiang Petroleum Geology,2004,25(5):509-511.
参考文献 11
刘广为,周代余,姜汉桥,等.塔里木盆地海相砂岩油藏水平井水淹规律及其模式[J].石油勘探与开发,2018,45(1):128-135.LIU Guangwei,ZHOU Daiyu,JIANG Hanqiao,et al.Water-out performance and pattern of horizontal wells for marine sandstone reservoirs in Tarim Basin,NW China[J].Petroleum Exploration and Development,2018,45(1):128-135.
参考文献 12
王鹏,赵凤兰,侯吉瑞,等.氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J].油气地质与采收率,2018,25(5):110-115.WANG Peng,ZHAO Fenglan,HOU Jirui,et al.An experimental study of horizontal bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(5):110-115.
参考文献 13
冷悦山,余黎明.石油压裂支撑剂材料开发应用前景分析[J].新材料产业,2018,11(8):46-49.LENG Yueshan,YU Liming.Development and application pros⁃ pect of proppant materials for oil fracturing[J].Advanced Materi⁃ als Industry,2018,11(8):46-49.
参考文献 14
刘春亭,李明忠,郝丽华,等.水力裂缝内支撑剂输送沉降行为数值仿真[J].大庆石油地质与开发,2018,37(5):86-93.LIU Chunting,LI Mingzhong,HAO Lihua,et al.Numerical simula⁃ tion of the proppant transportation and setting in the hydraulic fracture[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(5):86-93.
参考文献 15
赵梦云,苏建政,苏长明,等.CN103131406:一种超疏水支撑剂及制备方法[P].2013-06-05.ZHAO Mengyun,SU Jianzheng,SU Changming,et al.CN103131406:A super-hydrophobic proppant and its prepara⁃ tion method[P].2013-06-05.
参考文献 16
李小刚,廖梓佳,杨兆中,等.压裂用支撑剂应用现状和研究进展[J].硅酸盐通报,2018,37(6):1 920-1 923.LI Xiaogang,LIAO Zijia,YANG Zhaozhong,et al.Application and development of fracturing proppant[J].Bulletin of the Chi⁃ nese Ceramic Society,2018,37(6):1 920-1 923.
参考文献 17
张伟民,陈丽,任国平,等.预固化树脂覆膜砂的研究[J].石油学报:石油加工,2006,22(2):75-80.ZHANG Weimin,CHEN Li,REN Guoping,et al.Study on pre⁃ cured resin coated sands[J].Acta Petrolei Sinica:Petroleum Pro⁃ cessing Section,2006,22(2):75-80.
参考文献 18
王会杰.超疏水功能界面的制备及应用[D].合肥:中国科学技术大学,2015.WANG Huijie.Preparation and application of superhydrophobic functional interfaces[D].Hefei:University of Science and Tech⁃ nology of China,2015.
参考文献 19
WANG Huaiyuan,WANG Rui,TAO Ruifeng,et al.Fabrication of superhydrophobic fiber fabric/epoxy composites coating on alumi⁃ num substrate with long-lived wear resistance[J].RSC Advances,2016,6(98):95 556-95 563.
参考文献 20
袁菁华.松辽盆地北部致密油体积压裂裂缝形成机理及控制方法[J].大庆石油地质与开发,2017,36(2):167-170.YUAN Jinghua.Forming mechanism and controlling method of the fractures for the tight-oil-reservoir volume fracturing in North Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(2):167-170.
参考文献 21
刘欣颖,胡平,胡静.分段射孔水平井开发底水油藏的实验研究[J].特种油气藏,2013,20(3):108-110.LIU Xinying,HU Ping,HU Jing.Experimental study on develop⁃ ing bottom water reservoir with sectionally perforated horizontal well[J].Special Oil & Gas Reservoirs,2013,20(3):108-110.
目录contents

    摘要

    压裂裂缝内的支撑剂通常用于防止裂缝闭合,而通过拓展附加功能的覆膜支撑剂增加了透油阻水能力,通过 “荷叶原理”利用疏水材料在支撑剂表面覆膜制备一种新型控水增油支撑剂,该覆膜支撑剂充填到压裂裂缝内使其具有水相低导流能力和油相高导流能力。研究先利用填砂模型对覆膜支撑剂层的透油阻水能力进行测试实验,再利用大型的 3D 驱油设备进行水平井压裂裂缝内分别充填常规支撑剂和覆膜支撑剂的水驱油开发实验。结果表明:覆膜支撑剂层的透油阻水能力皆优于常规支撑剂层;当驱替压差小于0.4 MPa时,透油阻水能力略有提高且阻水效果增加超过10%;此外,压裂裂缝内充填覆膜支撑剂的3D驱油开发实验最终采收率比充填常规支撑剂的提高 3.95%。

    Abstract

    The proppants in fractures are usually used to prevent fracture closure. The membrane covering proppant with new functions is developed to enhance the hydrophobic-lipophilic capability. The proppants with function of controlling wa- ter cut to increase oil production is developed by using hydrophobic material to cover the surface of proppants according to the lotus leaf principle. The coated proppants are packed into the fractures to make the fracture have low flow conductivity for water phase and high flow conductivity for oil phase. The capacity of oil permeability and water plugging of the coated proppants layer are tested using sand-packed model. Then,the experiments of water flooding are carried out in the frac- tures filled with conventional proppants and coated proppants respectively by using the large-scale 3D flooding equipment. Results show that the hydrophobic-lipophilic capability of the layer filled with coated proppants is better than that of the layer filled with conventional proppants;when the displacement pressure difference is lower than 0.4 MPa,the hydropho- bic-lipophilic capability becomes little higher and the hydrophobic performance is enhanced more than 10%. In addition, the oil recovery of fractures filled with coated proppants is 3.95% higher than that of the fractures filled with conventional proppants.

  • 新疆油田老区新建产能措施主要采用直井加密模式,但是压裂后经济效益普遍较低;而水平井加密具有控制面积大、综合成本低、可有效提高采收率等特点[1-2]。2018年新疆油田八区及莫北2井区累积实施水平井压裂14口,完成新建产能2.5× 104 t,鉴于老区长期注水开发,次生水体发育,水平井压裂后含水率较高,产能均未达到预期效果[3]。 2019—2020年新疆油田八区乌尔禾组和莫北2井区三工河组共计划部署水平井34口,预计新建产能为18.1×104 t。为有效控制水平井压裂后高含水率问题,进一步推动新疆油田老区产能建设,亟需对剩余部署拟压裂井进行控水增油提效工艺措施研究,为新疆油田老区水平井开发模式提供技术支撑[4-12]

  • 根据上述问题,以投入产出高、作业实操性强,后期尽可能维护少以及不增添复杂控水装置为目的,通过改变原压裂支撑剂性能,拓展支撑剂除阻止裂缝闭合功能外的附加功能——透油阻水能力,使压裂后裂缝能够具有水相低导流能力和油相高导流能力。2003年有关研究人员提出了覆膜支撑剂概念,但出发点是为制备低密度支撑剂[13];2009年,此类支撑剂在辽河腰英台油田得到广泛应用,切实起到了降低支撑剂密度、减少压裂液用量、减轻支撑剂嵌入、提高裂缝导流能力以及延长压裂有效期的目的,但其并未有明显增加水流阻力的控水增油作用[14];2013年中国专利公布了一种利用喷涂法制备覆膜疏水支撑剂的方法,但并未对该类型覆膜疏水支撑剂的真实透油阻水能力以及提高采收率效果进行研究[15];2014—2018年相关学者对覆膜支撑剂做了许多覆膜方法与膜性能的研究,但多数研究出发点仍是降低支撑剂密度以及对膜的抗压耐磨损性能进行升级[16-17]。为此,笔者在自主研发的覆膜支撑剂能降低或保持原油流动阻力的基础上,增加水相的流动阻力,使压裂裂缝对水相有抑制作用而对油相起到导流作用;此外,压裂裂缝内充填透油阻水支撑剂技术无需预知储层的精细渗透率分布状况,其具有自发性的水来堵水功能,能够进一步提高剩余油采出程度,延长油井生产时间。

  • 1 实验器材与方法

  • 1.1 实验器材

  • 实验仪器主要包括:大型三维模拟实验装置与数控系统、ESCO泵、接触角测量仪、气瓶、活塞容器、填砂管、岩心夹持器、回压阀、气体流量计等。实验材料主要包括:40目数的覆膜支撑剂(自制)、质量分数为5‰ 的盐水、石英砂、模拟井与人造裂缝。

  • 1.2 实验方法

  • 1.2.1 透油阻水支撑剂的研制

  • 制备一种使水平井压裂裂缝具有阻水不阻油的特殊导流能力的透油阻水支撑剂。制备原理是以荷叶表面疏水微纳结构出发,建立具有低表面能和微尺度粗糙结构的单体支撑剂[18-19]。制备步骤主要包括:将质量为1 000g的环氧E44(大连齐化化工有限公司)溶解在体积为5 000mL的乙酸乙酯溶液 (沈阳华东试剂厂)中,然后向混合物中加入体积占比为25%的可溶性聚四氟乙烯(简称PFA,美国杜邦公司),加入体积占比为3%的疏水SiO2纳米粒子构筑微纳结构(阿拉丁试剂有限公司,平均直径为40nm),加入体积占比为40%的常规支撑剂颗粒。为提高涂层的耐磨性能,超声搅拌1.2h后再向混合物中加入体积占比为19%的聚氨酯粉末(简称PU,阿拉丁试剂有限公司),继续超声搅拌20min,然后放进温度为90℃的鼓风干燥箱中微震动固化3h,制得覆膜支撑剂颗粒(图1a—1c)。

  • 图1 覆膜支撑剂及其应用机理

  • Fig.1 Coated proppant and its application mechanism

  • 1.2.2 透油阻水能力实验

  • 以覆膜支撑剂代替常规支撑剂来控水增油的技术(图1d)关键在于掌握支撑剂充填后的透油阻水能力,是老区水平井压裂控水增油技术的前提。因此,应用该技术首先要测试覆膜支撑剂层是否具有透油阻水能力;实验基础是对比具有相等气测渗透能力支撑剂层在不同压力、不同渗透率条件下的透油阻水性能。实验步骤主要包括:①将目数为40目的常规支撑剂装入填砂模型中,按实验流程(图2)连接相应设备与器件。②先以一定压差进行恒压注气,待出气量稳定后再记录下每分钟出气量。③对气测后的充填支撑剂层进行恒压注水实验(恒定压差分别为0.2,0.3,···,6MPa),记录不同压差下对应的稳定产水速度。④用气体驱填砂管至完全气窜,然后将填砂管放入温度为90℃的烘箱内烘干填砂管内束缚水,继续对填砂管进行恒压注油实验,记录不同压差下对应的产油速度。⑤将填砂管内的常规支撑剂换为覆膜支撑剂。先将等体积、等目数的覆膜支撑剂装入填砂管中,以一定压差进行恒压注气,根据记录的稳定产气速度及时调整充填工艺,直到产气速度与步骤②中稳定产气速度相等时,再开展对应的恒压注水及注油实验,并记录不同压差下的产水与产油速度,最后按此实验流程测定其他实验条件对应的支撑剂层透油阻水能力。

  • 图2 透油阻水能力测试实验流程示意

  • Fig.2 Schematic diagram of hydrophobic-lipophilic capacity testing

  • 1.2.3 透油阻水支撑剂控水增油效果实验

  • 通过三维大型模拟装置(釜体有效体积为500mm×500mm×500mm,内部设置电极探针为25组,共125个测点)对不同开采方式条件下的油藏含水饱和度三维场变化进行实时监测,进而揭示控水增油措施效果[20-21]。实验步骤(图3)主要包括:①水平井与裂缝(分别充填常规与覆膜2种支撑剂)同层位布置(井长为30cm,井筒直径为6mm,井筒沿程射孔密度为4孔/cm,射开面积占井筒圆周面积的30%,模拟缝长为15cm)。布井后使用石英砂填满釜体,装填平均渗透率为1 500mD,然后设置水体隔断层,距底部10cm段为水体层。②饱和水并测得模型砂体的孔隙体积为31.6L。③饱和油同时建立束缚水饱和度,其值为0.23,实验用原油表观黏度为9mPa·s,产水速度通过回压阀控制为7~30mL/min。④对水体隔断层供给恒定压力为0.4MPa,生产压差为0.2MPa,对其进行恒压水驱水平井压裂产油实验。⑤记录产油、产水实验数据,同时观察数据采集系统时反演的水体波及状况,实验直至含水率为98%时结束。

  • 图3 控水增油实验装置流程

  • Fig.3 Flow chart of experiment device for controlling water cut to increase oil production

  • 2 实验结果与分析

  • 2.1 覆膜支撑剂透油阻水能力与机理

  • 对具有等充填厚度(20cm)、等气测渗透率条件下的覆膜支撑剂层与常规支撑剂层进行不同驱替压差条件下的透油阻水能力测试实验,绘制驱替压差与产油、产水速度关系曲线(图4a,4b)。覆膜支撑剂充填层的透油及阻水能力增幅计算公式分别为:

  • δo=Q(o,pp1)-Q(o,cp2)Q(o,cp1)×100%
    (1)
  • δw=Q(w,cp1)-Q(w,cp2)Q(w,cp1)×100%
    (2)
  • 从不同充填物性条件下驱替压差与透油能力的关系曲线可知,覆膜支撑剂充填层比常规支撑剂充填层的透油能力高,但都小于10%;随着驱替压差增大,覆膜支撑剂充填层的透油能力增幅整体呈下降趋势,其原因是受界面张力影响的流动阻力与渐大的驱替压差驱动力相比越来越接近于无穷小,但覆膜支撑剂层对原油的透过能力整体来看仍有促进作用,并未增大原油流过的阻力,这有利于提高采收率。支撑剂充填层的渗透率本身对阻水能力就能产生一定影响,阻水能力增幅随充填支撑剂层渗透率的增大而增大,这说明储层渗透能力越小越适用于该技术;对于具有相等透油能力的不同充填支撑剂层,阻水能力受驱替压差影响较大,随驱替压差的逐渐增大,阻水能力逐渐下降。从透油阻水能力受驱替压差影响的增幅分级(表1)可以看出,当驱替压差小于0.6MPa时,覆膜支撑剂层既能保证良好的产油能力,又能起到比常规支撑剂层至少增加10%的阻水效果。

  • 常压可视条件下,在实验台上分别铺设一层40目、厚度为0.4cm的普通支撑剂与覆膜支撑剂,然后在支撑剂层表面进行滴水(图1)。实验结果表明,水滴会以一定的流速进入常规覆膜支撑剂层(图1b);而水滴会以水珠的形态停置在覆膜支撑剂层外无法渗过(图1d),这说明覆膜支撑剂层具有阻水能力;同时,当水珠与支撑剂层表面接触角较大时,支撑剂颗粒层表面显示疏水特性,水滴在其表面保持球形状,这致使球形水滴的流动直径较大,迫使其需要先受挤压、再变形,才能流入颗粒孔隙,而挤压变形需要消耗额外能量,增加的额外流动阻力是起到阻水作用的关键(图1e)。根据图1e分析水体流入孔隙过程的受力情况,即合外力由岩石骨架支撑阻力、毛管力、重力与摩擦力组成,其中重力影响与水体流动方向有关,毛管力影响受接触角影响,摩擦力与骨架支撑力始终表现为阻力:

  • 图4 不同驱替压差条件下的透油阻水能力测试实验结果

  • Fig.4 Experimental results of hydrophobic-lipophilic capacity under different displacement pressure differences

  • 表1 不同驱替压差对透油阻水能力的影响

  • Table1 Influence of displacement pressure difference on hydrophobic-lipophilic capacity

  • F=pc+FN1α1+FN2α2+ρgV+f
    (3)
  • 其中:

  • pc=2σcosθr
    (4)
  • 2.2 覆膜支撑剂控水增油效果

  • 为进一步说明覆膜支撑剂的透油阻水能力能有效提高油田老区控水增油效果,继续开展相应的3D驱油模拟开发实验(图5)。

  • 图5a—5h为水平井压裂裂缝内充填常规支撑剂开发至含水率为98%时的最终三维油水分布实验结果。结果表明,与水体层的距离越近,同层位的整体波及程度越高;与水平井层位越接近,同层位的波及空间占比越小,但油藏全区的周边部位仍存在未波及区。从图5e—5h可见,水平井井筒正下方及裂缝正下方垂向覆盖区域的水体波及程度较高,发生了油水界面前缘优先脊进现象。这是由于垂直辐射区流动能量比环绕辐射区的流动能量高,导致直射区水体流动更迅速。整体来看,过早的水淹导致油藏全区剩余油较多,说明水平井压裂裂缝内充填常规支撑剂的波及程度仍有提升空间。

  • 图5 3D驱油模拟开发实验

  • Fig.5 Simulation experiment of 3D oil displacement

  • 图5i—5p为水平井压裂裂缝内充填覆膜支撑剂开发至含水率为98%时的实验结果。截取与水平井压裂裂缝内充填常规支撑剂开发实验相同部位的剖面对比可知(图5a与图5i),波及规律基本相近,说明油藏外围动用程度相差无几,即裂缝内充填覆膜支撑剂与常规支撑剂对油藏外围改善效果不显著;对比图5b与图5j可知,水平井压裂裂缝内充填常规支撑剂开发实验中仅水平井跟部存在小面积水淹区,而充填覆膜支撑剂开发实验中的水平井跟部水淹区则扩大到了趾端,波及体积明显增加;对比图5c,5d与图5k,5l可知,油藏整体的外部波及区略有增加但面积较小,水体依然沿已有通道推进但优势推进区逐渐转化为水平井趾端下方辐射区,这表明水平井趾端下方的波及程度得以改善;对比图5e与图5m可知,水平井跟部正下方的波及程度略有增加,但增幅较小;对比图5f,5g,5h与图5n,5o,5p可知,靠近水平井跟部的裂缝1下方水淹区几乎无变化,但裂缝2和裂缝3下方的水侵前缘均上升,波及程度增大;这表明水平井压裂裂缝内充填覆膜支撑剂后,当水体前缘推进至裂缝1或裂缝任意点M处后,由于覆膜支撑剂的阻水能力,使M处允许水体前缘通过并进入裂缝内或井筒内的能力减弱,从而降低水平井井筒内含水率上升速度,使已形成的水窜优势通道(水体层至裂缝1或M点)中的水相流动能力变差,迫使其他区域(图5o, 5p)的裂缝2和裂缝3下方水相优先推进,从而增大剩余油的动用程度。

  • 动用研究区水平井压裂裂缝内充填覆膜和常规2种支撑剂的开发方式所对应的生产结果(图6) 表明,当含水率为98%时,水平井压裂裂缝内充填覆膜支撑剂的最终采收率比充填常规支撑剂的高3.95%,增加期主要表现在见水后油水两相流动期; 见水前2种开发方式的生产数据基本相同,见水后水平井压裂裂缝内充填覆膜支撑剂的含水率上升速度较慢,进一步说明覆膜支撑剂起作用时机为水头前缘到达裂缝层位后,水头未至裂缝层位前油藏内的油水流动规律与裂缝内充填常规支撑剂的油水流动规律基本一致,而对于充填覆膜支撑剂的裂缝,当水头前缘到达裂缝的任意点M处时,由于裂缝内的覆膜支撑剂层对水相能自发产生附加渗流阻力,从而降低水相通过能力,迫使该水窜优势通道变为相对的惰性条带,进而使水相剖面反转波及剩余油区,从而提高采收率。

  • 图6 水平井压裂裂缝内充填覆膜和常规支撑剂的开发方式所对应的生产结果

  • Fig.6 Development result of horizontal wells with fractures filled with coated proppants and conventional proppants respectively

  • 3 结论

  • 在低驱替压差生产条件下,水平井压裂裂缝内充填覆膜支撑剂具有良好的透气、透油和阻水效果,其更适用于低渗透储层。覆膜支撑剂堆叠厚度为20cm时所对应的阻水最佳驱替压差为0.2MPa,驱替压差小于0.4MPa时阻水效果良好,驱替压差大于0.6MPa后阻水性能与常规支撑剂的基本一致。

  • 水平井压裂裂缝内充填覆膜支撑剂比充填常规支撑剂具有抑制见水后含水率上升速率和弱化优势流道的效果,会形成部分剖面反转效应,从而延长生产时机、增大未波及区动用程度,开发至含水率为98%时,前者比后者采收率增加3.95%。水平井压裂裂缝内充填覆膜支撑剂的阻水机理是覆膜支撑剂表面疏水涂层使水滴在其表面力图保持球形特征,当球形水滴进入颗粒孔隙间狭窄入口处时需要消耗额外附加阻力,从而降低水相流动能力。

  • 符号解释

  • δo——透油能力增幅,%;δw——阻水能力增幅,%; Q( o, cp1) ——充填常规支撑剂时不同压力对应的产油速度,mL/min;Q( o, cp2) ——充填覆膜支撑剂时不同压力对应的产油速度,mL/min;Q( w, cp1) ——充填常规支撑剂时不同压力对应的产水速度,mL/min;Q( w, cp2) ——充填覆膜支撑剂时不同压力对应的产水速度,mL/min;F ——合外力,N;p C ——毛管力,N/m2F N1——岩石骨架左侧接触壁面的支撑阻力,N;F N2—— 岩石骨架右侧接触壁面的支撑阻力,N;α1——岩石骨架左侧与水珠外壁的夹角,(°);α2——岩石骨架右侧与水珠外壁夹角,(°);ρ ——水相密度,kg/m3g ——重力加速度,m/s2V ——水珠体积,m3f ——摩擦力,N;σ ——界面张力,N/m; θ ——接触角,(°);r ——支撑剂粒间孔隙半径,m。

  • 参考文献

    • [1] 高月刚,刘新菊,王学生.安塞特低渗透油田水平井加密动用剩余油研究及实践[J].石油化工高等学校学报,2018,31(2):42-47.GAO Yuegang,LIU Xinju,WANG Xuesheng.Research and prac⁃ tice on remaining oil of horizontal well encryption of Ansai spe⁃ cial low permeability reservoir[J].Journal of Petrochemical Uni⁃ versities,2018,31(2):42-47.

    • [2] 王展旭,戚丽丽.丹佛乃贝侞(Niobrara)页岩油气田水平井加密数模研究[J].青岛科技大学学报:自然科学版,2018,39(增刊1):116-120.WANG Zhanxu,QI Lili.Study on the encryption mathematical model of horizontal wells in the shale oil and gas field of Denver Niobrara[J].Journal of Qingdao University of Science and Tech⁃ nology:Natural Science Edition,2018,39(Supplement1):116-120.

    • [3] 吴丛文,石国新,路建国,等.准噶尔盆地陆梁油田超薄层低阻油藏水平井开发技术[J].特种油气藏,2018,25(4):164-169.WU Congwen,SHI Guoxin,LU Jianguo,et al.Development of ul⁃ tra-thin low-resistance reservoirs through horizontal wells in Lu⁃ liang oilfield,Junggar Basin[J].Special Oil & Gas Reservoirs,2018,25(4):164-169.

    • [4] 杨兆中,陈倩,李小刚,等.鄂尔多斯盆地低渗透致密砂岩气藏水平井分段多簇压裂布缝优化研究[J].油气地质与采收率,2019,26(2):120-126.YANG Zhaozhong,CHEN Qian,LI Xiaogang,et al.Optimization of multi-cluster staged fracturing for horizontal well in low-per⁃ meability tight sandstone gas reservoir,Ordos Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2019,26(2):120-126.

    • [5] 邓民敏,刘俊燕,张传新.克拉玛依砾岩油藏开发后期稳油控水综合治理研究[J].石油学报,1997,18(4):89-94.DENG Minmin,LIU Junyan,ZHANG Chuanxin.Comprehensive treatment on the matured Karamay conglomerate reservoir with the measures of stabilizing oil production and controlling watercut[J].Acta Petrolei Sinica,1997,18(4):89-94.

    • [6] 聂彬,刘月田,杨海宁.欢17块底水油藏水锥起降规律影响因素研究[J].特种油气藏,2012,19(4):84-87.NIE Bin,LIU Yuetian,YANG Haining.Investigation on influenc⁃ ing factors on water coning pattern in the bottom water reservoir of the Huan17 block[J].Special Oil & Gas Reservoirs,2012,19(4):84-87.

    • [7] 姚军朋,令狐松,常琳,等.LC砂砾岩油藏出水类型及控水对策研究[J].长江大学学报:自科版,2016,13(5):62-66.YAO Junpeng,LINGHU Song,CHANG Lin,et al.Study on pro⁃ duced water type and countermeasures for its controlling in LC glutenite reservoir[J].Journal of Yangtze University:Natural Sci⁃ ence Edition,2016,13(5):62-66.

    • [8] 房柳杉,周丹苹,陈红举,等.塔河油田碳酸盐岩油藏开发特征和稳油控水措施[J].云南化工,2018,45(4):166.FANG Liubin,ZHOU Danping,CHEN Hongju,et al.Development characteristics and measures for stable production and water con⁃ trol in carbonate reservoirs of Tahe Oilfield[J].Yunnan Chemical Technology,2018,45(4):166.

    • [9] 何逸凡,石洪福,张吉磊,等.底水油藏水平井层内干扰定量表征及挖潜策略[J].特种油气藏,2018,25(2):85-89.HE Yifan,SHI Hongfu,ZHANG Jilei,et al.Quantitative character⁃ ization and recovery measures of horizontal-well in-layer interfer⁃ ence in bottom-aquifer oil reservoir[J].Special Oil & Gas Reser⁃ voirs,2018,25(2):85-89.

    • [10] 谭承军,刘明高,李浩,等.碳酸盐岩油藏稳油控水措施——以塔河A区油藏为例[J].新疆石油地质,2004,25(5):509-511.TAN Chengjun,LIU Minggao,LI Hao,et al.The measures for sta⁃ ble production and water control in carbonate reservoir-an exam⁃ ple of District A reservoir in Tahe field,Tarim basin[J].Xinjiang Petroleum Geology,2004,25(5):509-511.

    • [11] 刘广为,周代余,姜汉桥,等.塔里木盆地海相砂岩油藏水平井水淹规律及其模式[J].石油勘探与开发,2018,45(1):128-135.LIU Guangwei,ZHOU Daiyu,JIANG Hanqiao,et al.Water-out performance and pattern of horizontal wells for marine sandstone reservoirs in Tarim Basin,NW China[J].Petroleum Exploration and Development,2018,45(1):128-135.

    • [12] 王鹏,赵凤兰,侯吉瑞,等.氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J].油气地质与采收率,2018,25(5):110-115.WANG Peng,ZHAO Fenglan,HOU Jirui,et al.An experimental study of horizontal bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(5):110-115.

    • [13] 冷悦山,余黎明.石油压裂支撑剂材料开发应用前景分析[J].新材料产业,2018,11(8):46-49.LENG Yueshan,YU Liming.Development and application pros⁃ pect of proppant materials for oil fracturing[J].Advanced Materi⁃ als Industry,2018,11(8):46-49.

    • [14] 刘春亭,李明忠,郝丽华,等.水力裂缝内支撑剂输送沉降行为数值仿真[J].大庆石油地质与开发,2018,37(5):86-93.LIU Chunting,LI Mingzhong,HAO Lihua,et al.Numerical simula⁃ tion of the proppant transportation and setting in the hydraulic fracture[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(5):86-93.

    • [15] 赵梦云,苏建政,苏长明,等.CN103131406:一种超疏水支撑剂及制备方法[P].2013-06-05.ZHAO Mengyun,SU Jianzheng,SU Changming,et al.CN103131406:A super-hydrophobic proppant and its prepara⁃ tion method[P].2013-06-05.

    • [16] 李小刚,廖梓佳,杨兆中,等.压裂用支撑剂应用现状和研究进展[J].硅酸盐通报,2018,37(6):1 920-1 923.LI Xiaogang,LIAO Zijia,YANG Zhaozhong,et al.Application and development of fracturing proppant[J].Bulletin of the Chi⁃ nese Ceramic Society,2018,37(6):1 920-1 923.

    • [17] 张伟民,陈丽,任国平,等.预固化树脂覆膜砂的研究[J].石油学报:石油加工,2006,22(2):75-80.ZHANG Weimin,CHEN Li,REN Guoping,et al.Study on pre⁃ cured resin coated sands[J].Acta Petrolei Sinica:Petroleum Pro⁃ cessing Section,2006,22(2):75-80.

    • [18] 王会杰.超疏水功能界面的制备及应用[D].合肥:中国科学技术大学,2015.WANG Huijie.Preparation and application of superhydrophobic functional interfaces[D].Hefei:University of Science and Tech⁃ nology of China,2015.

    • [19] WANG Huaiyuan,WANG Rui,TAO Ruifeng,et al.Fabrication of superhydrophobic fiber fabric/epoxy composites coating on alumi⁃ num substrate with long-lived wear resistance[J].RSC Advances,2016,6(98):95 556-95 563.

    • [20] 袁菁华.松辽盆地北部致密油体积压裂裂缝形成机理及控制方法[J].大庆石油地质与开发,2017,36(2):167-170.YUAN Jinghua.Forming mechanism and controlling method of the fractures for the tight-oil-reservoir volume fracturing in North Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(2):167-170.

    • [21] 刘欣颖,胡平,胡静.分段射孔水平井开发底水油藏的实验研究[J].特种油气藏,2013,20(3):108-110.LIU Xinying,HU Ping,HU Jing.Experimental study on develop⁃ ing bottom water reservoir with sectionally perforated horizontal well[J].Special Oil & Gas Reservoirs,2013,20(3):108-110.

  • 参考文献

    • [1] 高月刚,刘新菊,王学生.安塞特低渗透油田水平井加密动用剩余油研究及实践[J].石油化工高等学校学报,2018,31(2):42-47.GAO Yuegang,LIU Xinju,WANG Xuesheng.Research and prac⁃ tice on remaining oil of horizontal well encryption of Ansai spe⁃ cial low permeability reservoir[J].Journal of Petrochemical Uni⁃ versities,2018,31(2):42-47.

    • [2] 王展旭,戚丽丽.丹佛乃贝侞(Niobrara)页岩油气田水平井加密数模研究[J].青岛科技大学学报:自然科学版,2018,39(增刊1):116-120.WANG Zhanxu,QI Lili.Study on the encryption mathematical model of horizontal wells in the shale oil and gas field of Denver Niobrara[J].Journal of Qingdao University of Science and Tech⁃ nology:Natural Science Edition,2018,39(Supplement1):116-120.

    • [3] 吴丛文,石国新,路建国,等.准噶尔盆地陆梁油田超薄层低阻油藏水平井开发技术[J].特种油气藏,2018,25(4):164-169.WU Congwen,SHI Guoxin,LU Jianguo,et al.Development of ul⁃ tra-thin low-resistance reservoirs through horizontal wells in Lu⁃ liang oilfield,Junggar Basin[J].Special Oil & Gas Reservoirs,2018,25(4):164-169.

    • [4] 杨兆中,陈倩,李小刚,等.鄂尔多斯盆地低渗透致密砂岩气藏水平井分段多簇压裂布缝优化研究[J].油气地质与采收率,2019,26(2):120-126.YANG Zhaozhong,CHEN Qian,LI Xiaogang,et al.Optimization of multi-cluster staged fracturing for horizontal well in low-per⁃ meability tight sandstone gas reservoir,Ordos Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2019,26(2):120-126.

    • [5] 邓民敏,刘俊燕,张传新.克拉玛依砾岩油藏开发后期稳油控水综合治理研究[J].石油学报,1997,18(4):89-94.DENG Minmin,LIU Junyan,ZHANG Chuanxin.Comprehensive treatment on the matured Karamay conglomerate reservoir with the measures of stabilizing oil production and controlling watercut[J].Acta Petrolei Sinica,1997,18(4):89-94.

    • [6] 聂彬,刘月田,杨海宁.欢17块底水油藏水锥起降规律影响因素研究[J].特种油气藏,2012,19(4):84-87.NIE Bin,LIU Yuetian,YANG Haining.Investigation on influenc⁃ ing factors on water coning pattern in the bottom water reservoir of the Huan17 block[J].Special Oil & Gas Reservoirs,2012,19(4):84-87.

    • [7] 姚军朋,令狐松,常琳,等.LC砂砾岩油藏出水类型及控水对策研究[J].长江大学学报:自科版,2016,13(5):62-66.YAO Junpeng,LINGHU Song,CHANG Lin,et al.Study on pro⁃ duced water type and countermeasures for its controlling in LC glutenite reservoir[J].Journal of Yangtze University:Natural Sci⁃ ence Edition,2016,13(5):62-66.

    • [8] 房柳杉,周丹苹,陈红举,等.塔河油田碳酸盐岩油藏开发特征和稳油控水措施[J].云南化工,2018,45(4):166.FANG Liubin,ZHOU Danping,CHEN Hongju,et al.Development characteristics and measures for stable production and water con⁃ trol in carbonate reservoirs of Tahe Oilfield[J].Yunnan Chemical Technology,2018,45(4):166.

    • [9] 何逸凡,石洪福,张吉磊,等.底水油藏水平井层内干扰定量表征及挖潜策略[J].特种油气藏,2018,25(2):85-89.HE Yifan,SHI Hongfu,ZHANG Jilei,et al.Quantitative character⁃ ization and recovery measures of horizontal-well in-layer interfer⁃ ence in bottom-aquifer oil reservoir[J].Special Oil & Gas Reser⁃ voirs,2018,25(2):85-89.

    • [10] 谭承军,刘明高,李浩,等.碳酸盐岩油藏稳油控水措施——以塔河A区油藏为例[J].新疆石油地质,2004,25(5):509-511.TAN Chengjun,LIU Minggao,LI Hao,et al.The measures for sta⁃ ble production and water control in carbonate reservoir-an exam⁃ ple of District A reservoir in Tahe field,Tarim basin[J].Xinjiang Petroleum Geology,2004,25(5):509-511.

    • [11] 刘广为,周代余,姜汉桥,等.塔里木盆地海相砂岩油藏水平井水淹规律及其模式[J].石油勘探与开发,2018,45(1):128-135.LIU Guangwei,ZHOU Daiyu,JIANG Hanqiao,et al.Water-out performance and pattern of horizontal wells for marine sandstone reservoirs in Tarim Basin,NW China[J].Petroleum Exploration and Development,2018,45(1):128-135.

    • [12] 王鹏,赵凤兰,侯吉瑞,等.氮气泡沫吞吐抑制潜山底水油藏水平井底水锥进实验研究[J].油气地质与采收率,2018,25(5):110-115.WANG Peng,ZHAO Fenglan,HOU Jirui,et al.An experimental study of horizontal bottom water coning control with nitrogen foam huff and puff in buried-hill reservoirs[J].Petroleum Geology and Recovery Efficiency,2018,25(5):110-115.

    • [13] 冷悦山,余黎明.石油压裂支撑剂材料开发应用前景分析[J].新材料产业,2018,11(8):46-49.LENG Yueshan,YU Liming.Development and application pros⁃ pect of proppant materials for oil fracturing[J].Advanced Materi⁃ als Industry,2018,11(8):46-49.

    • [14] 刘春亭,李明忠,郝丽华,等.水力裂缝内支撑剂输送沉降行为数值仿真[J].大庆石油地质与开发,2018,37(5):86-93.LIU Chunting,LI Mingzhong,HAO Lihua,et al.Numerical simula⁃ tion of the proppant transportation and setting in the hydraulic fracture[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(5):86-93.

    • [15] 赵梦云,苏建政,苏长明,等.CN103131406:一种超疏水支撑剂及制备方法[P].2013-06-05.ZHAO Mengyun,SU Jianzheng,SU Changming,et al.CN103131406:A super-hydrophobic proppant and its prepara⁃ tion method[P].2013-06-05.

    • [16] 李小刚,廖梓佳,杨兆中,等.压裂用支撑剂应用现状和研究进展[J].硅酸盐通报,2018,37(6):1 920-1 923.LI Xiaogang,LIAO Zijia,YANG Zhaozhong,et al.Application and development of fracturing proppant[J].Bulletin of the Chi⁃ nese Ceramic Society,2018,37(6):1 920-1 923.

    • [17] 张伟民,陈丽,任国平,等.预固化树脂覆膜砂的研究[J].石油学报:石油加工,2006,22(2):75-80.ZHANG Weimin,CHEN Li,REN Guoping,et al.Study on pre⁃ cured resin coated sands[J].Acta Petrolei Sinica:Petroleum Pro⁃ cessing Section,2006,22(2):75-80.

    • [18] 王会杰.超疏水功能界面的制备及应用[D].合肥:中国科学技术大学,2015.WANG Huijie.Preparation and application of superhydrophobic functional interfaces[D].Hefei:University of Science and Tech⁃ nology of China,2015.

    • [19] WANG Huaiyuan,WANG Rui,TAO Ruifeng,et al.Fabrication of superhydrophobic fiber fabric/epoxy composites coating on alumi⁃ num substrate with long-lived wear resistance[J].RSC Advances,2016,6(98):95 556-95 563.

    • [20] 袁菁华.松辽盆地北部致密油体积压裂裂缝形成机理及控制方法[J].大庆石油地质与开发,2017,36(2):167-170.YUAN Jinghua.Forming mechanism and controlling method of the fractures for the tight-oil-reservoir volume fracturing in North Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(2):167-170.

    • [21] 刘欣颖,胡平,胡静.分段射孔水平井开发底水油藏的实验研究[J].特种油气藏,2013,20(3):108-110.LIU Xinying,HU Ping,HU Jing.Experimental study on develop⁃ ing bottom water reservoir with sectionally perforated horizontal well[J].Special Oil & Gas Reservoirs,2013,20(3):108-110.