-
通过捕集CO2减少温室气体排放量成为人们日益关注的焦点[1],捕集后的 CO2用于驱油可以大幅度提高采收率[2-11]。在CO2非混相驱过程中,由于低黏度和重力分异作用,CO2窜流现象比较严重,导致 CO2驱体积波及系数较低[11-20]。很多学者使用起泡剂形成泡沫来降低 CO2流度[21-24],但是一些关键问题还未得到完全解决。在一般油藏条件下,CO2处于超临界状态(温度大于 31.1℃,压力大于 7.38MPa),此时 CO2密度已经接近液体密度,称之为超临界CO2。泡沫类分散体系通过降低分散相的相对渗透率来控制其流度,而对连续相的相渗关系基本上没有影响[25-29]。目前,很少有学者研究裂缝性致密油藏条件下超临界 CO2泡沫的稳定性和渗流问题,为此,笔者通过研究超临界 CO2渗流和驱油特征,以期为改善裂缝性致密油藏 CO2驱效果提供理论和应用价值。
-
1 实验器材与方法
-
1.1 起泡剂评价
-
实验器材 起泡剂评价实验装置由高温高压可视PVT装置(容积为720 mL)、高压氮气瓶、CO2气瓶、中间容器和恒温控制箱等构成。实验用 8 种起泡剂,其中HY-2,FA-220,FA-330,BZ-1和BZ-2为阴离子型复合起泡剂,ZY-WP 和 ZY-GP 为生物起泡剂,OP-1为非离子型起泡剂。
-
评价方法 常规起泡剂性能主要通过起泡能力和稳定性进行评价,分别用起泡体积和半衰期表征。起泡剂性能的评价方法很多[30-34],笔者采用高温高压下的充气法研究起泡剂的起泡能力和稳定性。实验步骤主要包括:①测量可视化 PVT装置高度并标明刻度,测量装置截面积,用以估算体积。 ②向装置内注入100 mL质量分数为1%的起泡剂水溶液。③设定实验温度为80℃,恒温60 min。④向装置内高速充入 CO2至实验压力,记录泡沫体积。 ⑤记录泡沫体积变为初始体积一半时所经过的时间,即半衰期。
-
1.2 岩心渗流特征实验
-
实验器材 岩心渗流特征实验装置主要由高精度柱塞泵(驱替液体)、高精度柱塞泵(驱替气体)、压力变送器、回压阀、中间压力容器、岩心夹持器和恒温箱构成。实验用起泡剂为阴离子型复合起泡剂 HY-2。实验用油为新疆油田某致密油区块原油,其密度为 0.842 g/cm3,22 和 50℃黏度分别为 11.7和3.4 mPa·s。实验用水为模拟地层水,其由质量分数为 3% 的 NaCl 与 0.2% 的 CaCl2配制而成,密度为 1.05 g/cm3,22 和 50℃黏度分别为 1.09 和 0.59 mPa·s。实验用气为 CO2,其纯度为 99.9%。实验采用人工压制裂缝性岩心,数据如表1所示。
-
实验方法 岩心渗流特征实验方法包括:①将岩心放在 90℃的恒温箱中烘 5 h 后,放入干燥器中冷却,称量干重,再放入烘箱中继续干燥、称量,至两次称量的质量差小于 0.002 g。②采用水力切刀将人工岩心沿轴线方向切开,获得人工裂缝。③对岩心抽真空饱和水,计算孔隙度。④将岩心放入岩心夹持器中,设定围压为 10 MPa,向岩心中注入模拟地层水,通过测量流量和岩心两端压差,可计算出岩心基质的绝对渗透率;如果为驱油实验,则向岩心中注入模拟地层水来建立岩心中束缚水饱和度,记录从岩心中驱出的地层水的体积,即为饱和原油的体积。⑤在注入速度为 0.5 mL/min 的条件下,进行不同条件下的超临界CO2泡沫驱,并记录岩心两端压差及不同时刻岩心进口的压力和岩心出口的产液量和产油量。气液比不同:利用1号岩心,首先注入量为 1.0 PV 前为水驱阶段,然后注入不同气液比的超临界 CO2泡沫,气液比分别为 0.5,1.0和 2.0 [35],研究不同气液比下超临界 CO2泡沫的驱油规律。裂缝开度不同:利用 1—3 号岩心,在裂缝开度分别为39.80,48.74和82.67 μm的条件下,研究裂缝开度对超临界CO2泡沫封堵能力的影响规律[36]。注入方式不同:利用 4和 5号岩心,研究气液同时注入和交替注入两种注入方式对超临界CO2泡沫封堵能力的影响规律[37]。同时注入采用气液比为 1.0的超临界 CO2和起泡剂水溶液混合注入岩心的方式,交替注入采用0.5 PV超临界CO2和0.5 PV起泡剂水溶液先后交替注入岩心的方式。驱替方式不同:利用 6和7号岩心,在注入量小于3.0 PV以前分别进行水驱和气驱[38],然后均为超临界CO2泡沫驱,研究水驱和气驱后超临界CO2泡沫驱油提高采收率规律。
-
2 超临界CO2泡沫稳定性的影响因素
-
2.1 起泡剂种类
-
由于超临界 CO2的一些特殊性质,使得在该状态下的泡沫与常温常压(常规)条件下搅拌产生的泡沫状态不同。通过搅拌产生的常规CO2泡沫多呈白色细小气泡聚集体(图1a—1c),而超临界 CO2泡沫更多地为接近灰白色的乳状液状态(图1d—1f)。
-
图1 常规和超临界CO2泡沫宏观形态
-
Fig.1 Macro morphology of conventional and supercritical CO2 foam
-
由图2可知:相同条件下,不同起泡剂的起泡体积各不相同,各种起泡剂的起泡体积均在300 mL以上,除了起泡剂 ZY-WP 和 ZY-GP 的起泡体积较小外,其他 6 种起泡剂的起泡体积相差不大。而不同起泡剂的半衰期相差较大,半衰期越大,CO2泡沫越稳定。起泡剂 HY-2 的半衰期相对较高,泡沫稳定性较好。综合比较不同起泡剂 CO2泡沫的性能可知,起泡剂HY-2产生的CO2泡沫性能相对最好。故以下评价实验均采用HY-2起泡剂水溶液。
-
图2 不同起泡剂对CO2泡沫起泡体积和半衰期的影响
-
Fig.2 Effect of various foaming agents on foaming volume and half-life of CO2 foam
-
2.2 起泡剂质量分数
-
因油藏温度接近 80℃,故在实验温度为 80℃、实验压力为9 MPa的条件下测定起泡剂不同质量分数下的泡沫稳定性。结果(图3)表明,随着起泡剂质量分数的增加,CO2泡沫的起泡体积和半衰期均先迅速增加,在质量分数为 0.5% 时升至最大值,之后逐渐趋于稳定,故起泡剂 HY-2 的最佳质量分数为0.5%,以下实验中起泡剂质量分数均使用该值。
-
图3 起泡剂质量分数对CO2泡沫稳定性的影响
-
Fig.3 Change of foaming volume and half-life of CO2 foam with foaming agent concentration
-
2.3 压力
-
在温度为 80℃的条件下,不同压力下 CO2泡沫稳定性的评价结果(图4)表明:起泡体积随压力的增加整体呈下降趋势,压力为 5~9 MPa 时下降缓慢,压力为9~10 MPa时降幅增大;而半衰期随压力的增加而增大。可见CO2泡沫综合性能随压力的增加逐渐增强,且在压力为 9 MPa 时,CO2泡沫稳定性最好。
-
图4 压力对CO2泡沫稳定性的影响
-
Fig.4 Change of foaming volume and half-life of CO2 foam with pressure
-
2.4 温度
-
在压力为 9 MPa 的条件下,不同温度下 CO2泡沫稳定性的评价结果(图5)显示,起泡体积和半衰期均随着温度的升高而降低,故温度越高,CO2泡沫稳定性越差。
-
图5 温度对CO2泡沫稳定性的影响
-
Fig.5 Change of foaming volume and half-life of CO2 foam with temperature
-
2.5 矿化度
-
在压力为9 MPa、温度为80℃的条件下,由矿化度对CO2泡沫稳定性的影响结果(图6)可以看出:起泡体积随矿化度的升高先升高后降低,当矿化度为 20 g/L时,起泡体积达到最高,矿化度大于 20 g/L后起泡体积逐渐下降;而半衰期随矿化度的升高逐渐降低,矿化度为 20~40 g/L 的降幅小于 40~60 g/L 的,说明矿化度越大,CO2泡沫稳定性越差。
-
图6 矿化度对CO2泡沫稳定性的影响
-
Fig.6 Change of foaming volume and half-life of CO2 foam with mineralization
-
3 岩心渗流特征实验结果
-
3.1 气液比
-
在裂缝性致密油藏进行CO2驱过程中,CO2容易沿着裂缝等高渗透层形成窜流,导致 CO2驱波及体积低,驱油效果差。因此该类油藏进行CO2驱时,需要注入相应的泡沫,以减小CO2气体的流度,增大波及体积。
-
实验结果(图7)表明:在注入量为 1.0~1.5 PV时,由小到大 3 种气液比下的封堵压差分别由 1.0 PV时的 0.08,0.15和 0.15 MPa迅速增加到 1.5 PV时的 1.47,1.60 和 1.72 MPa,之后整体趋势虽也增加,但增幅变缓;超临界 CO2泡沫最终稳定封堵压差分别为 2.18,3.22 和 2.70 MPa,说明超临界 CO2泡沫对裂缝产生了有效封堵作用。气液比为 1.0 时,超临界 CO2泡沫对裂缝岩心的封堵压差达到最大,封堵效果最好。因此在超临界CO2泡沫驱油实验中选用气液比为1.0。
-
图7 气液比对超临界CO2泡沫封堵性能的影响
-
Fig.7 Effect of gas-liquid ratio on plugging performance of supercritical CO2 foam flooding
-
3.2 裂缝开度
-
从图8 可以看出,当注入量为 4 PV 时,在裂缝开度分别为39.80,48.74和82.67 μm的条件下,裂缝性岩心超临界CO2泡沫的封堵压差分别为2.92,1.70 和 1.16 MPa,最终封堵压差分别为 3.17,1.70和 1.58 MPa,裂缝开度的增加使得超临界 CO2泡沫的封堵压差逐渐降低。说明超临界CO2泡沫对具有一定开度的裂缝性岩心具有较好的封堵作用,对裂缝性油藏有较好的适用性。
-
图8 裂缝开度对超临界CO2泡沫封堵性能的影响
-
Fig.8 Effect of fracture openings on plugging performance of supercritical CO2 foam flooding
-
3.3 注入方式
-
实验结果(图9)表明:对于同时注入方式,当注入量为 0~1.0 PV 时,封堵压差由 0 MPa 缓慢增至 0.17 MPa,当注入量为 1.0~2.0 PV 时,封堵压差上升较快,最大封堵压差为 1.34 MPa,注入量大于 2.0PV 后,封堵压差在 1.34~1.50 MPa 范围内波动,相对稳定;而交替注入方式,当注入量增至 1.0 PV时,封堵压差迅速增至 0.35 MPa,当注入量为 1.0~1.5 PV 时,封堵压差先增至 0.43 MPa 后减至 0.23 MPa,当注入量大于 1.5 PV 后,与同时注入方式相比,封堵压差较低,在 0.15~0.85 MPa 范围内剧烈波动。从岩心出口流体状态可以看出,同时注入方式 CO2 产出较为平稳,而交替注入方式 CO2窜流现象较为严重,气体和液体分段产出。总体来说同时注入比交替注入封堵效果好。
-
图9 注入方式对超临界CO2泡沫封堵性能的影响
-
Fig.9 Effect of injection modes on plugging performance of supercritical CO2 foam flooding
-
3.4 超临界CO2泡沫驱油规律
-
由图10a可以看出,6号岩心水驱阶段,驱替压差先由 0 MPa 迅速上升至 0.10 MPa,然后随着原油逐渐被驱出岩心,驱替压差逐渐下降;在 0~1.0 PV 阶段,水驱采收率增加较快,之后水驱采收率增加缓慢,最终水驱采收率为17.7%,其产量主要是来自储存在裂缝中的原油。超临界 CO2泡沫驱阶段,驱替压差迅速上升,采收率也增加很快,说明泡沫在裂缝中的流动阻力增大,黏性力增强,从而可以使更多的 CO2 泡沫进入基质孔隙中;在注入量大于 5.0 PV后,驱替压差稳定在0.50 MPa左右,采收率增幅也变缓,最终采收率为 44.1%,采收率提高了 26.4%。
-
分析图10b 可以看出:气驱时,驱替压差很小,最大为0.11 MPa,气驱采收率在0~2.0 PV阶段稳步上升,在注入量为 2.0 PV后,气驱采收率增速变缓,最终气驱采收率为 18.2%,同样大部分的产量也来自裂缝中的原油。超临界 CO2泡沫驱阶段,驱替压差先迅速上升,之后增速变缓,最终稳定在 0.51 MPa,在注入量小于 5.0 PV 时,采收率增幅较大,之后增幅变缓,最终采收率为 44.3%,采收率提高了 26.1%。
-
超临界CO2泡沫在裂缝性岩心中的驱油实验结果表明:超临界 CO2泡沫能有效增加裂缝中的渗流阻力,控制流体在裂缝中的窜流,在水驱或气驱的基础上,超临界 CO2泡沫驱可以提高采收率达 20% 以上,适用于裂缝性致密油藏提高采收率。裂缝性致密油藏一般埋藏较深,地层温度和压力大于 CO2 临界参数(31.1℃,7.38 MPa),因此 CO2在裂缝性致密油藏中为超临界状态。超临界 CO2泡沫比常规 CO2泡沫稳定,但比氮气泡沫稳定性差,这是因为 CO2分子缺少永久偶极矩,并且范德华力弱,表面活性剂亲 CO2的一端在 CO2中的溶剂化作用通常较弱,使得表面活性剂更倾向于在液相中而非吸附在 CO2和水界面上[39]。
-
图10 6号和7号岩心水驱和气驱后超临界CO2泡沫驱油的驱替压差和采收率对比
-
Fig.10 Displacement pressure differences and recoveries of supercritical CO2 foam flooding after water flooding and gas flooding in core6 and7
-
4 结论
-
当 CO2在超临界状态时,质量分数为 0.5% 时,起泡剂 HY-2形成的 CO2泡沫稳定性最好;压力在 9 MPa时,CO2泡沫的稳定性最好;温度越高,CO2泡沫稳定性越差;矿化度越低,CO2泡沫稳定性越好。
-
气液比对超临界CO2泡沫的封窜效果有一定的影响,气液比为 1.0 时对裂缝性致密岩心封堵效果最好,对裂缝开度在39.80~82.67 μm时有较好的适应性,气液同时注入更有利于提高超临界 CO2泡沫封堵效果。超临界CO2泡沫能有效增加裂缝中的渗流阻力,控制流体在裂缝中的窜流,在水驱或气驱基础上,超临界 CO2泡沫驱可以提高采收率达 20% 以上,适用于裂缝性致密油藏提高采收率。
-
参考文献
-
[1] 高嘉.油藏二氧化碳驱提高采收率及埋存技术[J].中国石油石化,2017,20(5):29-30.GAO Jia.Enhanced oil recovery and storage technology by carbon dioxide flooding in reservoirs[J].China Petrochem,2017,20(5):29-30.
-
[2] KARAOGUZ Osman K,TOPGUDER N N,LANE R H.Improved sweep in Bati Raman heavy-oil CO2 flood:Bullhead flowing gel treatments plug natural fractures[C].SPE 89400,2007.
-
[3] SECAEDDIN S,ULKER K,DEMET C.Bati Raman field immisci⁃ ble CO2 application:status quo and future plans[C].SPE 106575,2008.
-
[4] LI Songyan,QIAO Chenyu,LI Zhaomin,et al.The effect of perme⁃ ability on supercritical CO2 diffusion coefficient and determina⁃ tion of diffusive tortuosity of porous media under reservoir condi⁃ tions[J].Journal of CO2 Utilization,2018,28:1-14.
-
[5] LI Songyan,ZHANG Kaiqiang,JIA Na,et al.Evaluation of four CO2 injection schemes for unlocking oils from low-permeability formations under immiscible conditions[J].Fuel,2018,234:814-823.
-
[6] 关振良,谢丛姣,齐冉,等.二氧化碳驱提高石油采收率数值模拟研究[J].天然气工业,2007,27(4):142-144.GUAN Zhenliang,XIE Congjiao,QI Ran,et al.Numerical simula⁃ tion study on enhancing recovery factory by CO2 displacement[J].Natural Gas Industry,2007,27(4):142-144.
-
[7] 路向伟,路佩丽.利用 CO2非混相驱提高采收率的机理及应用现状[J].石油地质与工程,2007,21(2):58-61.LU Xiangwei,LU Peili.Mechanism and application status of the technology on enhancing recovery by CO2 non-miscible flooding [J].Petroleum Geology and Engineering,2007,21(2):58-61.
-
[8] 沈平平,陈兴隆,秦积舜.CO2驱替实验压力变化特性[J].石油勘探与开发,2010,37(2):211-215.SHEN Pingping,CHEN Xinglong,QIN Jishun.Pressure character⁃ istics in CO2 flooding experiments[J].Petroleum Exploration and Development,2010,37(2):211-215.
-
[9] 高敬善,但顺华,杨涛,等.CO2在准噶尔盆地昌吉油田吉7井区稠油中的溶解性研究[J].中国石油勘探,2018,23(5):65-72.GAO Jingshan,DAN Shunhua,YANG Tao,et al.Study on CO2 sol⁃ ubility in heavy oil in Well Ji7,Changji oilfield,Junggar Basin [J].China Petroleum Exploration,2018,23(5):65-72.
-
[10] 章星,王珍珍,王帅,等.可视装置中 CO2与正戊烷或原油接触特征和表征方法[J].石油实验地质,2017,39(3):402-408.ZHANG Xing,WANG Zhenzhen,WANG Shuai,et al.Visual con⁃ tact characteristics and characterization of the CO2 and n-pen⁃ tane/crude oil interface[J].Petroleum Geology & Experiment,2017,39(3):402-408.
-
[11] 李士伦,汤勇,侯承希.注CO2提高采收率技术现状及发展趋势 [J].油气藏评价与开发,2019,9(3):1-8.LI Shilun,TANG Yong,HOU Chengxi.Present situation and de⁃ velopment trend of CO2 injection enhanced oil recovery technology [J].Reservoir Evaluation and Development,2019,9(3):1-8.
-
[12] 蒋永平.CO2复合驱油分子动力学模拟及微观机理研究[J].石油实验地质,2019,41(2):274-279.JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J].Petroleum Geology & Experiment,2019,41(2):274-279.
-
[13] 阎燕,李友全,于伟杰,等.低渗透油藏 CO2驱采油井试井模型 [J].断块油气田,2018,25(1):80-84.YAN Yan,LI Youquan,YU Weijie,et al.Well test model research for CO2 flooding production well in low permeability reservoirs[J].Fault-Block Oil and Gas Field,2018,25(1):80-84.
-
[14] 陈举民,李进,曹红燕,等.浅薄稠油油藏水平井 CO2吞吐机理及影响因素[J].断块油气田,2018,25(4):515-520.CHEN Jumin,LI Jin,CAO Hongyan,et al.Mechanism and influ⁃ ence factors for CO2 huff and puff of horizontal flooding in shallow and thin heavy oil reservoir[J].Fault-Block Oil and Gas Field,2018,25(4):515-520.
-
[15] 汤勇,赵雪梅,汪洋.CO2驱最小混相压力影响因素研究[J].油气藏评价与开发,2018,8(4):42-45.TANG Yong,ZHAO Xuemei,WANG Yang.Analysis of influence factor of minimum miscible pressure of CO2[J].Reservoir Evalua⁃ tion and Development,2018,8(4):42-45.
-
[16] SHYEH-YUNG J J,STADLER M P.Effect of injectant composi⁃ tion and pressure displacement of oil by enriched hydrocarbon gases[C].SPE 28624,1995.
-
[17] SIREGAR S,MARDISEWOJO P,KRISTANTO D,et al.Dynamic interaction between CO2 gas and crude oil in porous medium[C].SPE 57300,1999.
-
[18] 李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.
-
[19] BACHLL S,SHAW J C.Estimation of oil recovery and CO2 storage capacity in CO2 EOR incorporating the effect of underlying aqui⁃ fers[C].SPE 89340,2004.
-
[20] HELLER J P,DANDGE D K,CARD R J.Direct thickeners for mo⁃ bility control of CO2 floods[C].SPE 11789,1985.
-
[21] PENTLAND C H,IGLAUER S,EL-MAGHRABY R,et al.Mea⁃ surement of carbon dioxide capillary trapping in core analysis[C].SPE 138476,2010.
-
[22] YANG F,DENG J,XUE Y.Jiangsu oilfield’s carbon dioxide cy⁃ clic stimulation operations:lessons learned and experiences gained[C].SPE 139599,2010.
-
[23] UCHENNA O,ANUJ G.Optimization and design of carbon diox⁃ ide flooding[C].SPE 138684,2010.
-
[24] 王健,吴松芸,余恒,等.CO2泡沫改善吸水剖面实验评价研究 [J].油气藏评价与开发,2018,8(4):22-25.WANG Jian,WU Songyun,YU Heng,et al.Effect of CO2 foam on water absorption profile improvement[J].Reservoir Evaluation and Development,2018,8(4):22-25.
-
[25] 毕卫宇,张攀锋,章杨,等.低渗透油田用 CO2气溶性泡沫体系研发及性能评价[J].油气地质与采收率,2018,25(6):71-77.BI Weiyu,ZHANG Panfeng,ZHANG Yang,et al.Development and performance evaluation on CO2-soluble surfactant foam sys⁃ tem for low permeability reservoir[J].Petroleum Geology and Re⁃ covery Efficiency,2018,25(6):71-77.
-
[26] DICKSON J L,BINKS B P,JOHNSTON K P.Stabilization of car⁃ bon dioxide-in-water emulsions with silica nanoparticles[J].Langmuir,2004,20(19):7 976-7 983.
-
[27] JR LEE C T,PSATHAS P A,JOHNSTON K P,et al.Water-incarbon dioxide emulsions:formation and stability[J].Langmuir,1999,15(20):6 781-6 791.
-
[28] DA ROCHA S R P,HARRISON K L,JOHNSTON K P.Effect of surfactants on the interfacial tension and emulsion formation be⁃ tween water and carbon dioxide[J].Langmuir,1999,15(2):419-428.
-
[29] TAKEBAYASHI Y,SAGISAKA M,SUE K,et al.Near-infrared spectroscopic study of a water-in-supercritical CO2 microemul⁃ sion as a function of the water content[J].The Journal of physical Chemistry B,2011,115(19):6 111-6 118.
-
[30] LI Songyan,YANG Kang,LI Zhaomin,et al.Properties of CO2 foam stabilized by hydrophilic nanoparticle and nonionic surfac⁃ tant[J].Energy & Fuels,2019,33(6):5 043-5 054.
-
[31] LI Songyan,QIAO Chenyu,LI Zhaomin,et al.Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadec⁃ yl trimethyl ammonium bromide[J].Energy & Fuels,2017,31(2):1 478-1 488.
-
[32] 吕明明,王树众.二氧化碳泡沫稳定性及聚合物对其泡沫性能的影响[J].化工学报,2014,65(6):2 219-2 224.LÜ Mingming,WANG Shuzhong.Stability of carbon dioxide foam and effect of polymer on its foam properties[J].Journal of Chemi⁃ cal Industry and Engineering,2014,65(6):2 219-2 224.
-
[33] 杨兴利,郭平,何敏侠.空气泡沫驱高稳定性起泡剂的合成及性能评价[J].石油钻采工艺,2018,40(2):240-246.YANG Xingli,GUO Ping,HE Minxia.Synthesis and performance evaluation of high stability foaming agent for air foam flooding[J].Oil Drilling & Production Technology,2018,40(2):240-246.
-
[34] 陈洋,张行荣,尚衍波,等.起泡剂性能测试方法及影响泡沫稳定性的因素[J].中国矿业,2014,23(增刊2):230-234.CHEN Yang,ZHANG Xingrong,SHANG Yanbo,et al.Measure⁃ ment techniques of foam performance and influence factors of foam stability[J].China Mining Magazine,2014,23(Supple⁃ ment2):230-234.
-
[35] 牛保伦.边底水气藏注二氧化碳泡沫控水技术研究[J].特种油气藏,2018,25(3):126-129.NIU Baolun.Water control in the CO2 foal-flooding gas reservoir with bottom-edge aquifer[J].Special Oil & Gas Reservoirs,2018,25(3):126-129.
-
[36] 王杰祥,陈征,冯传明,等.低渗透油藏超临界二氧化碳泡沫封堵实验研究[J].科学技术与工程,2014,14(30):131-134.WANG Jiexiang,CHEN Zheng,FENG Chuanming,et al.Re⁃ search on supercritical carbon dioxide foam channeling preven⁃ tion in low permeability oilfield[J].Science Technology and Engi⁃ neering,2014,14(30):131-134.
-
[37] 张成明.高台子油层高封堵/高洗油氮气泡沫体系交替注入驱油效果[J].大庆石油地质与开发,2018,37(5):109-112.ZHANG Chengming.Oil displaced effects by the alternating injec⁃ tion of N2 foaming system with high-plugging/high-oil-washing in Gaotaizi reservoirs[J].Petroleum Geology & Oilfield Develop⁃ ment in Daqing,2018,37(5):109-112.
-
[38] 唐万举,邓学峰,卢瑜林,等.致密储层 CO2驱油实验[J].断块油气田,2018,25(6):757-760.TANG Wanju,DENG Xuefeng,LU Yulin,et al.Oil displacement experiment of CO2 flooding in tight reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):757-760.
-
[39] 王冠华.超临界 CO2泡沫调驱技术研究[D].青岛:中国石油大学(华东),2011.WANG Guanhua.Study on profile control and flooding technology of supercritical CO2 foam[D].Qingdao:China University of Petro⁃ leum(East China),2011.
-
摘要
超临界CO2泡沫可以有效降低CO2流度,提高封堵强度,抑制CO2在裂缝性致密油藏岩心中的窜流。在接近油藏条件下对 8 种起泡剂进行评价,优选出稳定性最好的起泡剂;研究不同气液比、裂缝开度及注入方式下超临界 CO2泡沫的岩心渗流特征,分析水驱和气驱后超临界 CO2泡沫驱油规律。结果表明:质量分数为 0.5% 时,起泡剂 HY-2稳定性最好;气液比为1.0时对裂缝性致密岩心封堵效果最好,对裂缝开度在39.80~82.67 μm时有较好的适应性,气液同时注入更有利于提高超临界 CO2泡沫封堵效果,在水驱或气驱基础上,超临界 CO2泡沫驱可使采收率提高20%以上。因此,一定条件下的超临界CO2泡沫驱对裂缝性致密油藏提高采收率有显著效果。
Abstract
The supercritical CO2 foam can effectively reduce the mobility of CO2,increase the plugging strength,and inhibit the channeling of CO2 in fractured tight cores. By evaluating eight kinds of foaming agents under conditions close to the res- ervoir,a foaming agent with the best stability is selected. The core percolation characteristics of the supercritical CO2 foam flooding under the different gas-liquid ratios,fracture openings and injection modes are studied,and the law of the super- critical CO2 foam flooding after water flooding and gas flooding are analyzed. The results show that the foaming agent HY-2 has the best stability when the mass fraction is 0.5%;when the gas-liquid ratio is equal to 1.0,it has the best plugging ef- fect on the fractured tight cores and the good adaptability to the cores with the fracture openings of 39.80-82.67 μm. The si- multaneous injection of gas and liquid is more conducive to improving the plugging effect of the supercritical CO2 foam flooding. There is an increase in oil recovery of more than 20% with supercritical CO2 foam flooding compared to water flooding or gas flooding. Therefore,the supercritical CO2 foam flooding under certain conditions has a significant effect on improving oil recovery of the fractured tight reservoirs.
Keywords
supercritical ; CO2 foam flooding ; fracture ; tight reservoirs ; percolation characteristics