-
CO2驱是一项久经验证的提高石油采收率技术。近年来,随着全球气候变暖,如何减少CO2等温室气体的排放并实现资源化利用备受关注[1-5]。CO2 驱不仅可以提高石油采收率,还能封存注入油藏的 CO2,从而实现温室气体减排并带来可观的环保效益[6-8]。在高温高压状态下,CO2在油藏中通常处于超临界状态,既具有与气体相当的高扩散系数和低黏度,又具有与液体相近的密度和良好的溶解能力,低黏度、高扩散性的特点利于溶解在其中的物质扩散和向固体基质的渗透。当CO2与原油发生作用后,可有效降低原油黏度,膨胀原油体积,改善流度比,从而与原油发生混相作用,提高石油采收率。研究表明,CO2驱可将采收率提高 8%~15%,开采期延长约12~20 a [9-17]。落实油田CO2驱可行性研究的第一步是进行筛选,对 CO2注入效果和性能进行合理评估。符合筛选条件的油田需要进一步开展细管实验以评估CO2驱最小混相压力(MMP)。
-
细管实验是行业通用的获得驱替流体和原油之间MMP的标准方法。除升泡法、界面张力消失法等实验外,MMP 还可以通过经验公式法[18-22]、状态方程法[23-24]、系线法[25-27]和混合单元网格法[28-32]等方法获得。虽然相关文献给出的 MMP 预测值与实验值之间具有较高的吻合度,但对其可靠性仍然存在疑虑[33]。原油和 CO2间的混溶性主要受油藏温度、压力和原油性质等因素影响[34-37]。若注入 CO2 中含有CH4或N2等杂质气体会增加MMP,而H2S,C2 和C3等气体增加会显著降低MMP[38-41]。YELLIG等研究发现,对于饱和油藏即使油藏温度恒定,气油比在不同区域的变化也会导致CO2驱MMP变化[42]。尽管已经认识到地层原油组分和注入流体对 MMP 具有较大影响,但原油中溶解气是如何影响MMP的专门研究鲜有报道。油藏发生脱气后,特定油样 MMP 的研究更是少之又少[43-44]。当油藏压力低至原始饱和压力后,溶解在原油中的溶解气会部分脱出,此时根据原始地层流体测试获得的MMP是不准确的。
-
为此,根据储层物性和原油性质等从中国西部某油田筛选出 8 个典型区块作为研究对象,编号依次为S1—S8,结合高压物性分析、细管实验、多相多组分数值模拟,研究不同油藏压力下的MMP变化规律,以期为该油田 CO2提高采收率机理和 CO2混相驱应用潜力提供理论依据,为持续推广 CO2混相驱技术,保持目标油田持续稳产及 CO2混相驱技术整体布局提供技术支撑。
-
1 实验器材与方法
-
1.1 实验器材
-
实验器材主要包括地层流体配样仪、PVT 分析仪和 HA-IV 型油气藏动态监测反演系统装置。 HA-IV 型油气藏动态监测反演系统装置包括 Tele⁃ dyne ISCO100DX 型恒压恒速泵、中间容器、细管模型、高温高压观察窗、回压调节器、油气分离器、数据采集系统、气量计、高压管线及阀门若干。
-
细管模型为内部均匀充填一定粒径范围且经压实的石英砂的不锈钢细管,长度均为20.0 m,渗透率为 3 850~4 100 mD。实验所用的 CO2气体由北京永圣气体技术有限公司提供,纯度为99.95%。细管实验装置流程如图1所示。
-
图1 细管实验流程
-
Fig.1 Flow chart of slim tube experiment
-
1.2 实验方法
-
1.2.1 地层流体配制
-
原油样品为井口取样,按照各样品产出气组成配置标准气与相应原油进行复配获得地层油样品,经检验样品均合格,各样品井流物组分全烃分析结果如图2所示。
-
图2 8个典型区块各样品井流物组分构成
-
Fig.2 Composition of well effluents of oil samples from eight typical blocks
-
全烃分析结果表明,各地层油样品中 CH4摩尔含量为 31.12%~51.69%,平均为 43.25%,高于其他油田;而中间组分平均摩尔含量仅为11.3%,在所调研的油田中处于较低水平(图3)。
-
图3 典型油田原油三元拟组分
-
Fig.3 Ternary pseudo-component of oil samples from typical oilfields
-
1.2.2 高压物性测试
-
采用法国 ST 公司生产的无汞全透明活塞式高压 PVT分析仪,对所配置的地层油样品进行高压物性实验,该设备可实现在高温高压(200℃,150 MPa)下测试、可视、实时地记录实验过程并自动采集测试数据(表1)。
-
通过单次脱气、恒质膨胀、多次脱气和黏度测试等实验获得各典型区块油藏样品在高温高压下的物性参数,并使用Eclipse软件校正拟组分临界参数和状态方程参数,为获得连续性的状态方程参数提供实验依据。通过多次脱气实验获得闪蒸油样品,以代表不同压力下脱出部分溶解气的地层原油,即具有不同饱和压力的地层原油。
-
1.3 不同油藏压力下CO2驱最小混相压力实验
-
在一定温度条件下,给定地层原油和 CO2间形成混相所需的最低压力即为 CO2驱 MMP。CO2驱细管实验均在各样品地层温度下开展,每个地层油样品共设置 6 组不同驱替压力,当注入 CO2量达到 1.2 PV 时,停止实验,并绘制驱替压力与驱油效率的关系曲线(图4),根据曲线的拐点来确定 MMP。细管实验测得的各典型区块原始地层油 CO2驱 MMP 如表1所示。
-
图4 各地层油样品CO2驱的驱替压力与驱油效率关系
-
Fig.4 Relationship between displacement pressure and displacement efficiency of oil samples from various formations during CO2 flooding
-
1.4 不同油藏压力下 CO2驱最小混相压力评价实验
-
通过高压物性分析开展的多次脱气实验,可以获得不同油藏压力(各级脱气压力)下的地层原油样品和脱出气体。由于在多次脱气实验过程中,有一定量的溶解气从原始地层油中脱出,导致剩余地层原油的组分构成比例发生变化,这一过程与开发过程中油藏压力的下降导致溶解气析出并使油相 (气油比小于原始气油比)的组分构成比例发生变化一致。将不同脱气压力下剩余地层油用来模拟不同油藏压力下的地层油样品。
-
考虑到细管实验的耗时性,仅对S7样品开展不同油藏压力下油藏流体组分发生变化后的CO2驱细管实验,用以验证数值模拟研究的可靠性。S7样品实验温度为90℃,原始饱和压力为23.63 MPa,通过多次脱气实验,获得 20,15和 10 MPa下油相流体样品,分别用于细管实验,测试相应的MMP(图5)。当油藏压力依次降低至 20,15和 10 MPa时,油藏压力下降造成的溶解气脱出使相同驱替压力下脱气油的采出程度高于原始地层油。相应的MMP从33.10 MPa下降至31.86 MPa。
-
图5 S7和脱气S7样品的驱替压力与驱油效率关系曲线
-
Fig.5 Relationship between displacement pressure and displacement efficiency of S7 and degassed S7 samples
-
2 数值模拟研究及讨论
-
2.1 数值模拟模型的建立
-
数值模拟方法是混相驱效果评价和混相驱设计的重要方法。在高压物性实验的基础上,建立考虑多组分的一维数值模拟模型对细管实验进行仿真。将细管模型理想化为一维网格且仅沿水平方向等分,截面为 0.386 cm×0.386 cm 的正方形,其他模型参数与实际细管模型相同。在第1个网格内设置 1 个注入量恒定的注入井,在最后 1 个网格内设置1个压力恒定的生产井。在储层条件下进行细管实验的数值模拟研究。
-
2.2 不同油藏压力下最小混相压力变化规律
-
各样品的数值模拟值与细管实验值相对误差为 0.29%~1.92%,拟合效果较好(图6)。将原始地层油样品的数值模拟模型对细管实验值历史拟合达到要求后,再开展不同油藏压力下的MMP数值模拟研究。结果表明,S7样品在不同油藏压力下的数值模拟MMP与实验测得的MMP平均相对误差仅为 0.43%,数值模拟预测效果与实验研究一致。
-
图6 不同饱和压力下各地层油样品的MMP变化规律
-
Fig.6 MMP variation of oil samples from various formations at different saturation pressures
-
数值模拟结果表明,当油藏压力低于原始饱和压力后,在饱和压力随着油藏压力下降而不断减小的过程中,MMP 主要呈缓慢降低的趋势,整体下降幅度较小;仅 S1 样品 MMP 先上升后下降。研究区地层油组分中溶解气主要以C1为主,当油藏压力低于原始饱和压力后,溶解气脱出是MMP降低的原因之一。
-
2.3 不同油藏压力下地层油组分变化规律
-
不同油藏压力下地层油拟组分变化规律如图7 所示,当油藏压力从原始饱和压力(p b)依次降至一级饱和压力(p 1)、二级饱和压力(p 2)和三级饱和压力 (p 3)时,各样品均呈轻组分摩尔含量减少、重组分摩尔含量增加的变化趋势。
-
各拟组分变化规律表明,C1N2呈大幅递减趋势; C7 + 和C24 + 呈递增趋势;而C2和C3 + 变化较小。混相驱研究表明CH4含量的减少将会使MMP降低,而重组分,如 C24 + 摩尔含量的增加,使 MMP 增加,若 CH4摩尔含量降低的影响大于重组分摩尔含量增加的影响,最终使研究区不同油藏压力下的地层油样品 CO2驱 MMP 主要呈小幅度下降的趋势,有待开展进一步的针对性研究。
-
2.4 不同油藏压力下脱出气组分变化规律
-
分析脱出气组分色谱(图8)表明,当油藏压力从 p b依次降至 p 1,p 2,p 3和四级饱和压力(p 4)时,脱出气组分以 CH4为主,中间组分摩尔含量低于其在产出气中的占比。只有当油藏压力降至 0.1 MPa 时,中间组分烃类才会大量脱出,并远高于其在产出气中的占比。
-
图7 不同油藏压力下地层油拟组分变化规律
-
Fig.7 Pseudo-composition variation of formation oil at different reservoir pressures
-
图8 不同油藏压力下脱出气组分变化规律
-
Fig.8 Degassing composition variation at different reservoir pressures
-
2.5 CO2-原油混相带特征
-
CO2驱细管实验数值模拟不仅可以通过采出程度与压力的关系曲线确定 MMP,还可以通过 Floviz 模块可视化界面观察CO2驱细管模拟过程中界面张力的变化,并可以进一步分析 CO2驱混相带的发展和演变特征。在数值模拟中,可以根据油气的摩尔密度、摩尔分数和等渗体积计算界面张力[45]。
-
当模拟压力大于地层油 MMP 时,CO2与原油形成多次接触混相,被混相带驱扫过的区域剩余油饱和度极低(图9)。
-
图9 不同注入量下含油饱和度分布
-
Fig.9 Oil saturation distribution with different injection pore volumes of CO2
-
结合图9 和图10 分析,可以观察到油气混合带,混合带前缘前端界面张力没有降低至 10-3 mN/ m,表明 CO2与原油未形成一次接触混相。界面张力沿前缘前端向注入端逐渐减小,CO2与原油混合并抽提其中的轻组分后进入油气混合带的后缘,继续与新鲜的CO2进行传质;界面张力逐渐降低,当前缘前端到达第 46 个网格时界面张力降低至小于 10-3 mN/m 并趋近于 0,最终形成具有一定宽度的混相带。混相带随着驱替的进行而缓慢向产出端推进,混相带宽度逐渐增大,并在细管模型出口端消失。
-
图10 不同注入量下界面张力分布
-
Fig.10 Interfacial tension distribution with different injection pore volumes of CO2
-
3 结论
-
不同油藏压力下 MMP 实验测试和数值模拟研究表明,当油藏压力低于原始饱和压力后,相应油样的 CO2驱 MMP 呈小幅度递减的趋势。MMP 的数值模拟计算值与实验值平均相对误差仅为 0.43%,数值模拟模型的精度高。
-
随着油藏压力降低和溶解气脱出,各样品拟组分中,CH4摩尔含量降低幅度较大,C2和C3 + 的摩尔含量变化较小,C7 + 组分摩尔含量呈较大幅度的增加, C24 + 组分摩尔含量增加幅度较为平缓;脱出气组分中,以CH4为主,只有当压力充分降低并趋于大气压时,C2和C3 + 拟组分的摩尔含量才会大幅增加。
-
CO2与原油发生混相后,混相带出现在注入CO2 波及前缘稍靠后的位置,混相带界面张力小于 10-3 mN/m并迅速趋于0;混相带随着驱替过程的进行而向产出端移动,其宽度逐渐增大,并在模型出口端消失。
-
参考文献
-
[1] 赵永攀,赵习森,李剑,等.特低渗透油藏 CO2驱油室内实验与矿场应用[J].大庆石油地质与开发,2018,37(1):128-133.ZHAO Yongpan,ZHAO Xisen,LI Jian,et al.Indoor experiment and field application of CO2 flooding in ultra-low permeability oil reservoirs[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):128-133.
-
[2] 章星,王珍珍,王帅,等.可视装置中 CO2与正戊烷或原油接触特征和表征方法[J].石油实验地质,2017,39(3):402-408.ZHANG Xing,WANG Zhenzhen,WANG Shuai,et al.Visual con⁃ tact characteristics and characterization of the CO2 and n-pen⁃ tane/crude oil interface[J].Petroleum Geology & Experiment,2017,39(3):402-408.
-
[3] 蒋永平.CO2复合驱油分子动力学模拟及微观机理研究[J].石油实验地质,2019,41(2):274-279.JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J].Petroleum Geology & Experiment,2019,41(2):274-279.
-
[4] 杨远,肖传桃,李永臣,等.基于ICP技术的天然气水合物开采方案[J].中国石油勘探,2017,22(5):111-118.YANG Yuan,XIAO Chuantao,LI Yongchen,et al.Exploitation of natural gas hydrate based on ICP technology[J].China Petroleum Exploration,2017,22(5):111-118.
-
[5] 高敬善,但顺华,杨涛,等.CO2在准噶尔盆地昌吉油田吉7井区稠油中的溶解性研究[J].中国石油勘探,2018,23(5):65-72.GAO Jingshan,DAN Shunhua,YANG Tao,et al.Study on CO2 sol⁃ ubility in heavy oil in Well Ji7,Changji oilfield,Junggar Basin [J].China Petroleum Exploration,2018,23(5):65-72.
-
[6] 沈平平,廖新维,刘庆杰.二氧化碳在油藏中埋存量计算方法[J].石油勘探与开发,2009,36(2):216-220.SHEN Pingping,LIAO Xinwei,LIU Qingjie.Methodology for esti⁃ mation of CO2 storage capacity in reservoirs[J].Petroleum Explo⁃ ration and Development,2009,36(2):216-220.
-
[7] 沈平平,江怀友,陈永武,等.CO2注入技术提高采收率研究[J].特种油气藏,2007,14(3):1-4,11.SHEN Pingping,JIANG Huaiyou,CHEN Yongwu,et al.EOR study of CO2 injection[J].Special Oil & Gas Reservoirs,2007,14(3):1-4,11.
-
[8] 王欢,廖新维,赵晓亮,等.新疆油田 CO2驱提高原油采收率与地质埋存潜力评价[J].陕西科技大学学报:自然科学版,2013,31(2):74-79.WANG Huan,LIAO Xinwei,ZHAO Xiaoliang,et al.Potential evaluation of CO2 flooding enhanced oil recovery and geological sequestration in Xinjiang oilfield[J].Journal of Shaanxi Universi⁃ ty of Science & Technology:Natural Science Edition,2013,31(2):74-79.
-
[9] CAMERON J T.Sacroc carbon dioxide injection:A progress report [C].Los Angeles:American Petroleum Institute,1976:B1-B29.
-
[10] WANG Xiaoqi,LUO Peng,ER Vahapcan,et al.Assessment of CO2 flooding potential for Bakken formation,Saskatchewan[C].Calgary:Canadian Unconventional Resources and International Petroleum Conference,2010:1-14.
-
[11] ZHAO Dongfeng,LIAO Xinwei,YIN Dandan,et al.Assessment of oil reservoirs suitable for CO2 flooding in mature oil reservoirs,Changqing Oilfield,China[C].Kuwait:SPE International Heavy Oil Conference and Exhibition,2014:1-11.
-
[12] PYO K,DAMIAN-DIAZ N,POWELL M,et al.CO2 flooding in Jof⁃ fre Viking pool[C].Calgary:Canadian International Petroleum Conference,2003:1-30.
-
[13] SHOAIB S,HOFFMAN B T.CO2 flooding the Elm Coulee field [C].Denver:SPE Rocky Mountain Petroleum Technology Confer⁃ ence,2009:1-11.
-
[14] 沈平平,袁士义,韩冬,等.中国陆上油田提高采收率潜力评价及发展战略研究[J].石油学报,2001,22(1):45-48.SHEN Pingping,YUAN Shiyi,HAN Dong,et al.Strategy study and potentiality evaluation of EOR for onshore oil fields in China [J].Acta Petrolei Sinica,2001,22(1):45-48.
-
[15] 李士伦,周守信,杜建芬,等.国内外注气提高石油采收率技术回顾与展望[J].油气地质与采收率,2002,9(2):1-5.LI Shilun,ZHOU Shouxin,DU Jianfen,et al.Review and pros⁃ pects for the development of EOR by gas injection at home and abroad[J].Petroleum Geology and Recovery Efficiency,2002,9(2):1-5.
-
[16] 沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术 [M].北京:石油工业出版社,2009:6-44.SHEN Pingping,LIAO Xinwei.The technology of carbon dioxide stored in geological media and enhanced oil recovery[M].Beijing:Petroleum Industry Press,2009:6-44.
-
[17] 李士伦,侯大力,孙雷.因地制宜发展中国注气提高石油采收率技术[J].天然气与石油,2013,31(1):44-47.LI Shilun,HOU Dali,SUN Lei.Developing gas injection accord⁃ ing to local conditions in China to improve oil recovery technology [J].Natural Gas and Oil,2013,31(1):44-47.
-
[18] 叶安平.确定 CO2最小混相压力的经验公式法[J].断块油气田,2009,16(5):75-76.YE Anping.Experience formula of determining minimum miscible pressure in CO2 flooding[J].Fault-Block Oil & Gas Field,2009,16(5):75-76.
-
[19] 朱桂良,刘中春,宋传真,等.缝洞型油藏不同注入气体最小混相压力计算方法[J].特种油气藏,2019,26(2):132-135.ZHU Guiliang,LIU Zhongchun,SONG Chuanzhen,et al.Mini⁃ mum miscible pressure calculation method of gases injected in fracture-vug type reservoir[J].Special Oil & Gas Reservoirs,2019,26(2):132-135.
-
[20] DINDORUK B,ORR JR F M,JOHNS R T.Theory of multicontact miscible displacement with nitrogen[J].SPE Journal,1997,2(3):268-279.
-
[21] 毛振强,陈凤莲.CO2混相驱最小混相压力确定方法研究[J].成都理工大学学报:自然科学版,2005,32(1):61-64.MAO Zhenqiang,CHEN Fenglian.Determination of minimum mis⁃ cible phase pressure for CO2 miscible drive[J].Journal of Cheng⁃ du University of Technology:Science & Technology Edition,2005,32(1):61-64.
-
[22] 郝永卯,陈月明,于会利.CO2驱最小混相压力的测定与预测 [J].油气地质与采收率,2005,12(6):64-66.HAO Yongmao,CHEN Yueming,YU Huili.Determination and prediction of minimum miscibility pressure in CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2005,12(6):64-66.
-
[23] 尤启东,吕广忠,栾志安.求解最小混相压力方法的改进[J].西安石油学院学报:自然科学版,2003,18(2):32-35.YOU Qidong,LÜ Guangzhong,LUAN Zhian.Improvement of the method for predicting minimum miscible pressure[J].Journal of Xi’an Petroleum Institute:Natural Science Edition,2003,18(2):32-35.
-
[24] AHMED T H.Prediction of CO2 minimum miscibility pressures [C].Buenos Aires:SPE Latin America/Caribbean Petroleum Engi⁃ neering Conference,1994:1-16.
-
[25] JOHNS R T,ORR JR F M.Miscible gas displacement of multicom⁃ ponent oils[J].SPE Journal,1996,1(1):39-50.
-
[26] JOHNS R T,DINDORUK B,ORR JR F M.Analytical theory of combined condensing/vaporizing gas drives[J].SPE Advanced Technology Series,1993,1(2):7-16.
-
[27] JESSEN K,MICHELSEN M L,STENBY E H.Global approach for calculation of minimum miscibility pressure[J].Fluid Phase Equi⁃ libria,1998,153(2):251-263.
-
[28] AHMADI K,JOHNS R T.Multiple-mixing-cell method for MMP calculations[J].SPE Journal,2011,16(4):733-742.
-
[29] 孙雷,罗强,潘毅,等.基于 GA-SVR 的 CO2驱原油最小混相压力预测模型[J].大庆石油地质与开发,2017,36(3):123-129.SUN Lei,LUO Qiang,PAN Yi,et al.Predicting model of the oil minimal miscible pressure for the CO2 flooding based on GA-SVR [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(3):123-129.
-
[30] YUAN H,JOHNS R T,EGWUENU A M,et al.Improved MMP correlations for CO2 floods using analytical gas flooding theory[C].Tulsa:SPE/DOE Symposium on Improved Oil Recovery,2004:1-16.
-
[31] TEKLU T W,GHEDAN S G,GRAVES R M,et al.Minimum misci⁃ bility pressure determination:modified multiple mixing cell meth⁃ od[C].Muscat:SPE EOR Conference at Oil and Gas West Asia,2012:1-13.
-
[32] WANG Yun,ORR JR Franklin M.Calculation of minimum misci⁃ bility pressure[J].Journal of Petroleum Science and Engineering,2000,27(3/4):151-164.
-
[33] HOLM L W.Miscibility and miscible displacement[J].Journal of Petroleum Technology,1986,38(8):817-818.
-
[34] 赵杨.注二氧化碳气驱最小混相压力确定方法研究[D].北京:中国石油大学(北京),2011.ZHAO Yang.Research of determining minimum miscibility pres⁃ sure in carbon dioxide gas drive[D].Beijing:China University of Petroleum(Beijing),2011.
-
[35] 张国荣.低渗透油藏 CO2驱相对渗透率实验研究[D].青岛:中国石油大学(华东),2009.ZHANG Guorong.The experimental studies on the relative perme⁃ ability of CO2 flooding in low-permeability reservoir[D].Qingd⁃ ao:China University of Petroleum(East China),2009.
-
[36] DIAZ D,BASSIOUNI Z,KIMBRELL W,et al.Screening criteria for application of carbon dioxide miscible displacement in water⁃ flooded reservoirs containing light oil[C].Tulsa:SPE/DOE Im⁃ proved Oil Recovery Symposium,1996:1-7.
-
[37] SHAW J,BACHU S.Screening,evaluation,and ranking of oil res⁃ ervoirs suitable for CO2-flood EOR and carbon dioxide sequestra⁃ tion[J].Journal of Canadian Petroleum Technology,2002,41(9):51-61.
-
[38] 张恩磊,顾岱鸿,何顺利,等.杂质气体对二氧化碳驱影响模拟研究[J].油气地质与采收率,2012,19(5):75-77.ZHANG Enlei,GU Daihong,HE Shunli,et al.Experiment study on effect of impurities on CO2 drive[J].Petroleum Geology and Recovery Efficiency,2012,19(5):75-77.
-
[39] 尚宝兵,廖新维,赵晓亮,等.杂质气体对二氧化碳驱最小混相压力和原油物性的影响[J].油气地质与采收率,2014,21(6):92-94,98.SHANG Baobing,LIAO Xinwei,ZHAO Xiaoliang,et al.Research about the influence of impurities on MMP and crude oil properties for CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2014,21(6):92-94,98.
-
[40] 李孟涛,单文文,刘先贵,等.超临界二氧化碳混相驱油机理实验研究[J].石油学报,2006,27(3):80-83.LI Mengtao,SHAN Wenwen,LIU Xiangui,et al.Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J].Acta Petrolei Sinica,2006,27(3):80-83.
-
[41] 赵跃军,宋考平,范广娟.储层条件下超临界二氧化碳与原油体系最小混相压力研究[J].大连理工大学学报,2017,57(2):119-125.ZHAO Yuejun,SONG Kaoping,FAN Guangjuan.Research on minimum miscible pressure of supercritical carbon dioxide and crude oil system under reservoir condition[J].Journal of Dalian University of Technology,2017,57(2):119-125.
-
[42] YELLIG W F,METCALFE R S.Determination and prediction of CO2 minimum miscibility pressures(includes associated pa⁃ per8876)[J].Journal of Petroleum Technology,1980,32(1):160-168.
-
[43] SAYEGH S,HUANG S,ZHANG Y P,et al.Effect of H2S and pres⁃ sure depletion on the CO2 MMP of Zama Oils[C].Calgary:Canadi⁃ an International Petroleum Conference,2006:34-41.
-
[44] DONG M,HUANG S,SRIVASTAVA R.Effect of solution gas in oil on CO2 minimum miscibility pressure[J].Journal of Canadian Petroleum Technology,2000,39(11):54-61.
-
[45] COATS K H.An equation of state compositional model[J].Society of Petroleum Engineers Journal,1980,20(5):363-376.
-
摘要
CO2-原油体系的最小混相压力是影响CO2驱开发效果的关键因素。随油藏开发阶段的不断深入,当油藏压力低于原始饱和压力后,溶解在原油中的溶解气会部分脱出。油藏流体组分及其高压物性也会发生变化,影响CO2- 原油体系的最小混相压力,利用原始地层流体样品测试得到的最小混相压力不再适用。为此,以中国西部某油田8 个典型区块为例,进行细管实验测试和多组分数值模拟,对不同油藏压力下的最小混相压力进行系统研究。与其他油田相比,研究区各油藏油样的 C1摩尔含量较高,为 31.12%~51.69%,平均为 43.25%;C2—C6摩尔含量较低,为 8.0%~18.48%,平均仅为11.3%。细管实验和数值模拟结果表明,在原始地层压力下,CO2均与8个典型区块地层原油样品发生混相驱替,但不同区块 CO2驱最小混相压力差异很大,其值为 17.60~41.18 MPa。当油藏压力低于原始饱和压力后,CO2驱最小混相压力主要呈微小幅度下降的趋势。随脱气压力进一步降低,油相组分构成中,C1N2摩尔含量呈递减趋势、C7 + 和C24 + 组分呈递增趋势,而中间组分(C2和C3 + )摩尔含量变化较小。在各级脱气压力下,脱出气体以C1为主,中间组分摩尔含量仅在最后一级脱气压力下急剧升高。CO2-原油混相带出现在注入CO2波及前缘靠近注入端的位置,混相带随着驱替的进行而逐渐变宽。
Abstract
The minimum miscibility pressure(MMP)of the CO2-crude oil system is a key factor affecting the development effect of CO2 flooding. When the reservoir pressure is lower than the original saturation pressure,the part solution gas dis- solved in the oil will be separated from the oil with the development of oil reservoir. Thus,the composition of oil phase and its high-pressure physical properties will also change,which will affect the MMP of CO2-crude oil system. The MMP ob- tained from the original formation oil sample is no longer applicable. Based on the slim tube experiment and multi-compo- nent numerical simulation,the MMPs of crude oil samples at different reservoir pressures in eight typical blocks of an oil- field in western China are systematically studied. Compared with other oilfields in China,the C1 molar content of oil sam- ples from various reservoirs in the study area is higher,ranging from 31.12% to 51.69%,with an average of 43.25%;while the molar content of C2-C6 is lower,ranging from 8.0% to 18.48%,with an average of only 11.3%. The experimental and simulation results show that CO2 can be miscible with the oil samples from eight typical blocks under at original reservoir pressures,but the MMPs of CO2 flooding in various blocks have significant differences,ranging from 17.60 MPa to 41.18 MPa. After the reservoir pressure is lower than the original saturation pressure,the MMPs in CO2 flooding of typical reser- voir oil samples tend to decrease slightly. With further decrease of degassed pressure,the molar content of C1N2 in the oil phase decreases,the molar contents of C7 + and C24 + increase,and the changes of C2 and C3 + are minor. C1 is the main compo- nent of the separated gas at different pressures. The intermediate component increases sharply only at the last degassing pressure. CO2-crude oil miscible zone occurs at the swept front of the injected CO2 close to the injection side. The miscible zone becomes wider with the displacement.