-
挥发性油藏是指地层温度低于临界温度,靠近临界点的油藏,其烃类流体性质接近临界状态,中间烃(C2—C6)含量高,组分和热力学参数介于黑油和凝析气之间,原油性质与常规黑油存在较大差异。挥发性油藏埋藏深,地层压力高,气油比较高,原油收缩率大,这些性质决定了挥发性油藏的开发与常规黑油油藏的开发有很大的区别[1-4]。挥发性油藏在衰竭开发过程中,原油急剧收缩脱气,地层能量迅速消耗,并且气液组成不断发生变化,低于饱和压力开采时,油气体积比急剧上升,原油体积迅速收缩,导致衰竭开发采收率低。因此,该类油藏必须保持压力开采,即压力必须保持在饱和压力以上[5-6]。除此之外,一般挥发性油藏采取注水和注气能取得较好的开发效果。对于埋藏深、渗透率低的挥发性油藏,注水压力高,水驱难以实施,注气成为该类油藏提高采收率的主要手段[7-8]。常用的注气介质主要包括烃类气体、N2和 CO2等。相比于烃类气体和N2来说,CO2在原油中的溶解能力更强,泡点压力上升更慢,降黏和膨胀能力更强,因此具有更好的注入性和驱油效果[9-12]。然而,挥发性油藏 CO2注入能力差,混相驱压力高,难以实施混相驱。笔者以目标区挥发性油藏为研究对象,通过室内实验和数值模拟研究其注 CO2过程中的动态混相特征,并剖析衰竭开发转CO2驱界限。
-
1 原油物性分析
-
对目标区挥发性原油样品进行高温高压物性测试分析,结果表明,目标区挥发性油藏埋深大于 3 300 m,地层压力大于 38 MPa,油藏温度大于 120℃,溶解气油比大于130 m3 /m3(表1)。通过三元组分相图(图1)分析可知,区块 A 为典型的高挥发性油藏,区块B和C为弱挥发性油藏。
-
2 CO2驱动态混相压力研究
-
2.1 高挥发性油藏最小混相压力测试
-
原油组分分析 选取区块A的原油样品进行不同衰竭阶段的脱出气及剩余油全烃组分分析,结果 (图2,图3)表明,随着衰竭压力水平的降低,脱出气中 CH4含量逐步降低,中间烃(C2—C5)含量缓慢升高。不同衰竭阶段剩余油中CH4+N2含量逐步降低,中间烃(C2—C5)含量缓慢升高,原油组分从典型挥发性原油逐步向弱挥发性原油和黑油过渡区转变。
-
图1 挥发性油藏类型分析
-
Fig.1 Analysis of volatile oil reservoir types
-
图2 区块A不同衰竭阶段脱出气组分变化
-
Fig.2 Variation of released gas components at different depletion stages for Block A
-
图3 区块A不同衰竭阶段剩余油全烃组分变化路径
-
Fig.3 Residual oil components change path at different depletion stages for Block A
-
剩余油CO2驱最小混相压力测试 利用不同衰竭阶段剩余油开展 CO2 驱长细管最小混相压力 (MMP)测试。结果(图4)表明,随着衰竭压力的降低,MMP 逐步降低,衰竭压力降低至 5.13 MPa 时, MMP 从 38.03 MPa 降低至 12.57 MPa,表明挥发性油藏衰竭过程会导致CO2驱混相压力的降低。其主要原因是衰竭过程使得溶解气中 CH4含量显著降低,中间烃相对含量上升,从而使得该类油藏具有适度衰竭“脱气降混”特征。
-
图4 不同衰竭阶段剩余油CO2驱最小混相压力降低幅度测试
-
Fig.4 CO2 MMP decreasing degree test for the residual oil at different depletion stages
-
2.2 弱挥发性油藏最小混相压力预测数值模拟计算
-
为了进一步明确挥发性油藏CO2驱“脱气降混” 特征,选取另外 2 种弱挥发性油藏原油样品进行衰竭过程中最小混相压力数值模拟计算研究。首先用PVTsim软件进行2种原始原油流体相态、注气膨胀实验、最小混相压力实验拟合;然后,利用相态软件进行不同衰竭压力下剩余油的最小混相压力数值模拟计算。结果(图5)表明,不同挥发性油藏衰竭后 CO2 驱最小混相压力均表现出降低的趋势。其中,溶解气油比较大的油样,CO2驱“脱气降混”程度较大,反之则越小。显然,挥发性油藏中溶解气 CH4含量对CO2驱混相压力影响较大,通过适度的压力衰竭后,脱出部分 CH4后再注入 CO2,可以有效降低CO2混相压力。
-
图5 不同挥发性油藏CO2驱“脱气降混”特征比较
-
Fig.5 Comparison of characteristics of releasing methane and decreasing CO2 MMP for different volatile oil reservoirs
-
3 衰竭开发转CO2驱界限
-
挥发性油藏衰竭开发转CO2驱具有“脱气降混” 特征,为了明确“脱气降混”特征对衰竭开发转 CO2 驱界限的影响规律,对 3 个区块挥发性油藏衰竭开发转 CO2驱界限进行分析。利用地层压力/原始泡点压力表示衰竭压力水平;当地层压力低于 MMP 时,CO2驱混相驱无法实现,其对应的界限即为衰竭开发转 CO2驱界限。结果(图6—图8)表明,区块 A 衰竭开发转 CO2驱压力水平界限为 100.2%,区块 B 为126.1%,区块C为127.8%。即原油溶解气油比越高的油藏,其衰竭开发转 CO2驱的压力水平界限越低,反之则越高。当衰竭压力水平在该界限以下时,要实施 CO2混相驱则需要提前补充地层能量。另外,随着压力衰竭至原油泡点压力以下后,其CO2 驱最小混相压力有降低的趋势,原始溶解气油比越高,其“脱气降混”的程度越大,后续需要注CO2补充地层能量的幅度就越小,反之则越高。
-
图6 区块A衰竭开发转CO2驱界限
-
Fig.6 CO2 injection timing after depletion for Block A
-
图7 区块B衰竭开发转CO2驱界限
-
Fig.7 CO2 injection timing after depletion for Block B
-
图8 区块C衰竭开发转CO2驱界限
-
Fig.8 CO2 injection timing after depletion for Block C
-
4 结论
-
挥发性油藏衰竭开发转CO2驱存在“脱气降混” 特征,即随着地层压力的降低,原油中CH4组分部分脱出,有助于 CO2驱最小混相压力的降低,其“脱气降混”程度随着溶解气油比的升高而增加。提出了挥发性油藏衰竭开发转 CO2驱界限,即原油溶解气油比越高,其衰竭开发转 CO2驱界限越低,脱气后 CO2混相驱补充地层能量幅度越小;反之,转驱界限越高,补充地层能量幅度越大。
-
参考文献
-
[1] 孙志道.油气藏流体类型判别方法[J].石油勘探与开发,1996,23(1):69-75.SUN Zhidao.Methods for determining the type of different oil and gas reservoirs fluid[J].Petroleum Exploration and Development,1996,23(1):69-75.
-
[2] 中国石油天然气总公司开发生产部.挥发油油田开发译文集 [C].北京:石油工业出版社,1990.Development and Production Department of PetroChina.Transla⁃ tion proceeding of development for volatile oil reservoirs[C].Bei⁃ jing:Petroleum Industry Press,1990.
-
[3] 彭永灿,刘建,张大勇,等.油藏流体类型的研究——以石西油田石炭系油藏为例[J].石油天然气学报,2011,33(4):43-46.PENG Yongchan,LIU Jian,ZHANG Dayong,et al.Research on reservoir fluid type-by taking Carboniferous reservoirs in Shixi oilfield for example[J].Journal of Oil and Gas Technology,2011,33(4):43-46.
-
[4] 妥宏,甄亚丽,李遇江,等.卡因迪克油田挥发性油藏流体特征分析[J].特种油气藏,2006,13(5):71-74.TUO Hong,ZHEN Yali,LI Yujiang,et al.Fluid property of the volatile reservoirs in Kayindike oilfield[J].Special Oil & Gas Res⁃ ervoirs,2006,13(5):71-74.
-
[5] 贺刚,张丽华,郎兆新,等.挥发油油藏生产特征及影响采收率的因素[J].断块油气田,1996,3(2):23-26.HE Gang,ZHANG Lihua,LANG Zhaoxin,et al.The volatile type oil reservoir’s production characteristics and the factors of affect⁃ ing recovery[J].Fault-Block Oil & Gas Field,1996,3(2):23-26.
-
[6] 夏惠芬,王慎铭,张雁,等.大庆F区块挥发性油藏流体特征及影响因素分析[J].石油化工高等学校学报,2015,28(1):51-55,84.XIA Huifen,WANG Shenming,ZHANG Yan,et al.Volatile oil reservoir fluid characteristics in F block,Daqing Oilfield and af⁃ fecting factors analysis[J].Journal of Petrochemical Universities,2015,28(1):51-55,84.
-
[7] 何右安,凌建军.挥发性油藏的注水开发[J].西部探矿工程,2004,16(4):80-81.HE You’an,LING Jianjun.Water flooding for volatile reservoir [J].West-China Exploration Engineering,2004,16(4):80-81.
-
[8] 钟显彪,王岚岚,陈栗,等.长春弱挥发油油藏的开发经验[J].石油学报,2001,22(1):67-71.ZHONG Xianbiao,WANG Lanlan,CHEN Li,et al.Experience of Changchun volatile oil reservoir development[J].Acta Petrolei Si⁃ nica,2001,22(1):67-71.
-
[9] 郭平,刘建仪,李士伦,等.西五二挥发性油藏注氮和富气驱室内评价研究[J].西南石油学院学报,2001,23(6):41-45.GUO Ping,LIU Jianyi,LI Shilun,et al.Lab research of nitrogen and rich gas injection in Xi-52 volatile reservoir[J].Journal of Sourthwest Petroleum University,2001,23(6):41-45.
-
[10] 王进安,曾贤辉,陈德斌,等.低渗透挥发性油藏注烃类气驱室内实验研究[J].断块油气田,2002,9(6):58-60.WANG Jin’an,ZENG Xianhui,CHEN Debin,et al.The experi⁃ ment study of hydrocarbon gas injection in low permeability vola⁃ tile reservoir[J].Fault-Block Oil & Gas Field,2002,9(6):58-60.
-
[11] 王新裕,牟伟军,丁国发,等.柯克亚凝析气田挥发性油藏开发实践[J].石油勘探与开发,2004,31(5):93-95.WANG Xinyu,MU Weijun,DING Guofa,et al.Development of volatile gas pool in the Kekeya condensate gas field[J].Petroleum Exploration and Development,2004,31(5):93-95.
-
[12] 陈林,孙雷,刘新辉,等.KKY-X5 2挥发性油藏注气驱机理及实验效果研究[J].油气藏评价与开发,2014,4(3):43-49.CHEN Lin,SUN Lei,LIU Xinhui,et al.Study on mechanism and experimental results of gas injection flooding of KKY-X5 2 volatile oil field[J].Reservoir Evaluation and Development,2014,4(3):43-49.
-
摘要
挥发性油藏地层能量充足,原始地层压力高,常规水驱开发难以实施。CO2驱以其良好的驱油特性在该类油藏中得到了应用,但由于挥发性原油气油比高,溶解气中甲烷含量高,导致CO2驱混相压力高,使得其驱油效果受到一定的影响。通过室内实验和数值模拟,研究挥发性油藏注CO2过程中的动态混相特征,并剖析衰竭开发转CO2驱界限。结果表明:挥发性油藏存在着适度衰竭转CO2驱“脱气降混”机理,即随着地层压力的降低,原油中甲烷成分部分脱出,有助于CO2驱最小混相压力的降低。另外,其脱气降混程度与其原油类型和溶解气油比有关,原油越接近于凝析油,气油比越高,混相压力降低程度越大;反之,原油越接近于黑油,气油比越低,混相压力降低程度越小。结合动态混相机理,提出了挥发性油藏衰竭开发转CO2驱界限,即气油比越高,其转驱界限越低,脱气后CO2混相驱补充地层能量幅度越小;反之,转驱界限越高,补充地层能量幅度越大。
Abstract
It is difficult to carry out water flooding in volatile oil reservoirs due to the sufficient formation energy and the high initial pressure. CO2 flooding has been implemented in this type of reservoir for its excellent oil displacement charac- teristics. However,the higher dissolved gas oil ratio and the higher methane content contribute to a higher minimum misci- ble pressure(MMP)of CO2 flooding,which decreases the displacement performance. Dynamic miscibility characteristics and the injection timing of CO2 injection for volatile oil reservoirs are studied through laboratory experiment and numerical simulation. The results show that the characteristics of releasing methane and decreasing CO2 MMP is evident in the CO2 flooding after a depletion production of volatile oil reservoirs. That is to say,methane partially releases from the crude oil as the formation pressure decreases,which is favorable to the decreasing of CO2 MMP. The extent of decreasing CO2 MMP is closely related to the crude oil type and initial dissolved gas-oil ratio. When the crude oil is closer to the condensate oil,a higher dissolved gas-oil ratio results in a lager decreasing degree of MMP. On the contrary,when the crude oil is closer to black oil,a lower dissolved gas-oil ratio results in a smaller degreasing degree of MMP. The CO2 injection timing after the depletion of volatile oil reservoirs is proposed according to the dynamic miscibility mechanism. It is found that as the dis- solved gas-oil ratio increases,the injection timing and the formation energy supplement decrease. Otherwise,the injection timing and the formation energy supplement increase.