-
注气实践表明,同类型油藏混相驱增油效果好于非混相驱[1-5],提高驱油效率是注气大幅度提高低渗透油藏采收率的主要机理[6]。对于埋藏深且驱替难度大的低渗透油藏,尽管实施混相驱对工程的要求更高,混相驱项目数仍然远多于非混相驱项目数[2]。细管实验表明,地层压力水平决定混相程度和气驱油效率,为在给定时间内将地层压力提高到目标水平,合理气驱注采比确定成为气驱开发方案编制的一个重要问题。
-
在中国低渗透油藏注气开发中,气驱注采比设计具有特殊的重要性:①中国陆相沉积低渗透油藏油品较差、埋藏较深、地层温度较高,混相条件更为苛刻[7];中国注水开发低渗透油藏地层压力保持水平通常不高,为保障注气效果,避免“应混未混”项目出现[8],在见气前的早期注气阶段将地层压力提高到最小混相压力以上或尽量提高混相程度势在必行。②中国目前驱油用廉价二氧化碳气源严重不足;天然气对外依存度持续升高,烃类气驱同样存在气源不充足问题;向二氧化碳或烃类气中加入杂质气体可在一定程度上缓解气源问题,但这种做法却会增加混相难度,非纯气体混相驱的注采比显然不同于纯组分气驱。③“混合水气交替联合周期生产”(HWAG-PP)气驱生产模式在中国低渗透油藏注气项目中得到广泛应用,严格测算气段塞注入期间的注采比对于调节地层压力有重要作用。④ 中国全生命周期气驱项目较少,气驱油藏管理经验不够成熟,气驱开发理论不完备,特别是注气中后期(气窜后)也面临着确定合理气驱注采比以优化油藏管理的问题。上述问题与气驱注采比设计密不可分,即通过合理设计注采比,才能在给定时间内将地层压力提高到或者保持在目标水平。
-
气驱注采比的研究可以借鉴水驱注采比研究方法和思路。前人关于水驱注采比的研究方法主要有:物质平衡原理与水驱生产关键指标经验变化规律相结合的方法[9-10],水驱特征曲线与注采比定义相结合的方法[11-12],融合注采井数和诸生产指标经验变化规律联合优化注采比的方法[13],全参数优化的数值模拟方法[14];国际上至今也没有关于气驱注采比确定理论方法的公开报道[1,4-5,15]。笔者认为,这是因为气驱过程更为复杂,在编制注气方案时倾向于采用数值模拟技术,加上国外混相驱较易实现,对注采比设计需求不太高。由于低渗透油藏多组分气驱数值模拟可靠性低、实用性差的问题在中国仍较突出,建立一种实用油藏工程方法计算气驱注采比有其必要性。为此,笔者根据物质平衡原理,较为全面地考虑多种影响因素,建立低渗透油藏气驱注采比和注气量确定油藏工程方法,进一步丰富气驱开发方案设计油藏工程理论方法体系[15-17]。
-
1 理论推导
-
1.1 气驱注采比计算
-
考虑注入气溶解、油藏流体膨胀、储层压敏效应[18]、注入气成矿固化[19]、天然裂缝输导和干层吸气、注气井组和外部液量交换、气油比构成等因素,忽略出砂因素,根据物质平衡原理,在某一注气阶段,油藏内注入与采出各相流体体积之间存在关系,其表达式为:
-
其中:
-
随着注气量增加,受地层流体溶气能力限制,油藏会出现游离气。游离气油比可定义为采出游离气的地面体积与阶段采油量之比[20-21],其表达式为:
-
产出气包括原始伴生溶解气和注入气,注入气组分贡献的生产气油比为:
-
若无溶解作用,注入气所波及区域的孔隙体积等于扣除采出部分后的注入气体积与含气饱和度之比,其表达式为:
-
在注入气波及区域,高压注气形成的剩余油饱和度近似为残余油饱和度,则该区域含气饱和度为:
-
将(13)式代入(12)式,得:
-
注入气驱离原地的水近似等于阶段产出水,注入气波及区含水饱和度可写为:
-
注入气波及区域内的剩余油、水体积分别为:
-
实际上,注入气接触油藏流体,在压力和扩散作用下引起的溶解量为:
-
注入气溶解引发的油藏流体膨胀为:
-
对于具有一定裂缝发育程度的油藏,可能存在注入气沿着裂缝窜进,并被疏导至注气井组以外区域的现象。需要对这部分裂缝疏导气量进行描述,其仍可按地层系数法表述为:
-
基质吸气包括有效厚度段吸气和干层吸气2部分。单位时间内进入基质的体积,即基质吸气速度为:
-
实践中发现存在干层吸气现象,干层吸气量可以按照地层系数法进行描述:
-
根据地层系数法,干层和有效厚度层段的吸气速度比值近似等于二者的平均渗透率比值,即:
-
若实施水气交替注入,地下水气段塞比定义为:
-
中国低渗透油藏地层压力往往低于原始压力。将注气井组区域视为一口“大井”,则“大井”井底流压等于注气井区的地层压力。如果注气井区的地层压力低于注气井区外部地层压力,则“大井”为汇;反之,“大井”为源。根据达西定律可以得到外部与“大井”换液量估算式:
-
联立(1)式—(25)式,整理得到基于采出油水两相地下体积和采出油、水和气三相地下体积的气驱注采比分别为:
-
其中:
-
1.2 注气量设计方法
-
利用基于采出油水两相的气驱注采比计算公式,可以得到相应的单井注气量:
-
将(38)式代入(39)式,可得到:
-
2 应用实例
-
在获取背景资料后,吉林油田黑 59区块 CO2混相驱提高采收率试验项目于 2008 年 5 月开始撬装注气,注气层位为青一段砂岩油藏,有效厚度为 10 m,储层渗透率为 3.0 mD,净毛比为 0.7,干层段渗透率为 0.1 mD,裂缝发育密度为 0.25 条/m,裂缝渗透率为500 mD,缝宽为3 mm,平均缝高为0.3 m。地层原油黏度为1.8 mPa·s,注气时油藏综合含水率约为 45%,注气前采出程度约为 3.5%,CO2地下密度为 550 kg/m3,CO2驱最小混相压力为 23.0 MPa,开始注气时地层压力为 16.0 MPa,气驱增压见效阶段地层压力升高约8 MPa,气驱增产倍数约为1.5 [6],束缚气饱和度为 4%,气驱残余油饱和度为 11%,初始含油饱和度为 55%,原始溶解气油比为 35 m3 /m3,游离气相黏度为 0.06 mPa·s,CO2驱稳产期采油速度约为 2.5%。
-
应用(26)和(27)式计算了该区块气驱注采比。结果(图1)表明,从开始注气到2014年间,早期高速注气恢复地层压力阶段的注采比高达2.5,正常生产后开始下降,降低到 1.7左右,计算的注采比与实际值比较吻合,显示文中提出注采比设计方法的可靠性。该区块在连续注气下,基于采出油水两相地下体积的气驱注采比变化曲线在气窜后呈现上翘态势(图2),远大于基于采出油气水三相流体地下体积的气驱注采比。水气交替注入方式下,该区块基于采出油气水三相地下体积的注采比与基于采出流体中油水两相地下体积的注采比变化曲线比较接近(图3),这表明水气交替注入方式下,由于生产气油比得以有效控制,不论是在注气早期(见气前)、中期(见气到气窜),还是后期(气窜后)按照基于采出油水两相地下体积的气驱注采比进行配注是可行的。
-
图1 H59 CO2驱试验区注采比变化情况
-
Fig.1 Variation of injection-production ratio of CO2 flooding in Block H59
-
图2 连续注气下基于两相和三相采出流体体积的气驱注采比
-
Fig.2 Injection-production ratio of CGI based on 2P and 3P produced fluid volume
-
图3 水气交替下基于两相和三相采出流体体积的气驱注采比
-
Fig.3 Injection-production ratio of WAG based on 2P and 3P produced fluid volume
-
根据(40)式可以计算出注气早期单井日注量为 37.2 t/d,与实际单井日注量为 40 t/d 接近;根据 (40)式计算见气后正常生产阶段单井日注量为 23.4 t/d,与实际单井日注量(25 t/d)接近。
-
3 结论
-
推导建立了基于采出油水两相地下体积的和基于采出油气水三相地下体积的气驱注采比计算公式,进一步丰富了注气驱油开发方案设计油藏工程方法理论体系。
-
连续注气时,基于采出油水两相地下体积的气驱注采比曲线在气窜后上翘趋势明显,在气窜后按照基于采出油水两相地下体积的气驱注采比进行配注将引起较大偏差,须按照基于采出油气水三相地下体积的气驱注采比进行配注。
-
水气交替注入时,生产气油比升高得以有效控制,研究周期内按照基于采出油水两相地下体积的气驱注采比进行配注具有可行性。
-
符号解释
-
L pr——采出液的地下体积,m3;G pf——采出游离气的地面体积,m3;B g——气相体积系数;G innet——进入目标油层注入气的地面体积,m3;G disv——油藏流体溶解注入气体积,m3; G solid——成矿固化注入气的地面体积,m3;W effin——有效注水量(即扣除泥岩吸收和裂缝疏导至油藏之外部分的注入水量),m3;B w——水相体积系数;ΔL expand——注入气溶解引发的油藏流体膨胀,m3;W inv——外部环境向注气区域的换液量或液侵量,m3;ΔVP——注气引起的孔隙体积变化,m3;N p—— 阶段采出油的地面体积,m3;B o——油相体积系数;W p——地面采水量,m3;f wr——地下含水率;f w——地面含水率;G in—— 注入气的地面总体积,m3;G indry—— 干层吸气量,m3; G fraclead——裂缝输导气量,m3;ΔV Pp——地层压力升高引起的压敏介质孔隙体积膨胀,m3;V Pchem——注入气成矿反应引起的孔隙体积变化,m3;V p——孔隙体积,m3;C t ——综合压缩系数,MPa-1;Δp ——想要达到的地层压力增量,MPa;ϕ ——孔隙度;S o—— 含油饱和度;C o—— 油相压缩系数,MPa-1; S w——波及区含水饱和度;C w——水相压缩系数,MPa-1; S g——含气饱和度;C g——气相压缩系数,MPa-1;C ϕ——岩石压缩系数,MPa-1;V PchemG——注入气可能造成的酸岩反应所引起的孔隙体积变化速率,m3 /m3;GOR pf——游离气油比,m3 / m3;GOR ing—— 注入气组分贡献的生产气油比,m3 / m3; G ping——注入气中被采出部分,m3;GOR ——生产气油比,m3 / m3;R si——原始溶解气油比,m3 /m3;V Gsweep——注入气所波及区域的孔隙体积,m3;S or——残余油饱和度;S wi——原始含水饱和度;ΔR e——研究时域的阶段采出程度;S oi——原始含油饱和度;V o-insweep—— 注入气波及区剩余油体积,m3; V Gsweep——注入气波及体积,m3;V w-insweep——注入气波及区水相体积,m3;G disv——注入气在油藏流体中的溶解量,m3; R Do——注入气在地层油中的溶解度,m3 /m3;R Dw——注入气在地层水中的溶解度,m3 /m3;ΔB oD——溶解注入气后地层油体积系数增量;ΔB wD——溶解注入气后地层水体积系数增量;H ——注气井段长度,m;d frac——裂缝密度,条/m;h frac—— 平均裂缝高度,m;w frac——平均裂缝宽度,m;v frac——裂缝内气体流速,m/s;r w——井筒半径,m;v matrix——基质内气体流速,m/s;h e——有效厚度,m;v effg——有效厚度内气体流速,m/ s;v dryg——干层段气体流速,m/s;K eff——有效厚度层段渗透率,mD;K dry——干层渗透率,mD;r wgs——地下水气段塞比; r e——试验区“大井”等效半径,m;K w——水相渗透率,mD; μw——地层水黏度,mPa·s;p rg——研究时间段内注气井区地层压力的平均值,MPa;p rex——注气井区外部地层压力, MPa;L —— 平均注采井距,m;Δt —— 研究时间段,a; R IPm2——基于采出油水两相地下体积的气驱注采比;F CPGF, R IPn,F dry & frac,F SRB,F 3P,F BGRF,F fracflow,F dryflow —— 中间变量; R IPm3——基于采出油、水、气三相地下体积的气驱注采比; R vgc——折算到研究时域的气驱采油速度;F dwk,F rNTGK——中间变量,m;NTG ——净毛比(有效厚度与地层厚度之比); L rwell——单井日产液的地下体积,m3;q og——气驱单井日产油量,m3 /d;q ow——“同期的”水驱单井日产油量,m3 /d;q inj——单井日注气量,t/d;n o——生产井数,口;n inj——注气井数,口; ρg——注入气地下密度,t/m3;λ——生产井与注气井数之比。
-
参考文献
-
[1] STALKUP FRED I,STEIN MICHAEL H,LAKE Larry W.CO2 flooding[M].Texas:SPE,1998.
-
[2] 秦积舜,韩海水,刘晓蕾.美国CO2驱油技术应用及启示[J].石油勘探与开发,2015,42(2):209-216.QIN Jishun,HAN Haishui,LIU Xiaolei.Application and enlight⁃ enment of carbon dioxide flooding in the United States of America [J].Petroleum Exploration and Development,2015,42(2):209-216.
-
[3] 李士伦,孙雷,郭平.再论我国发展注气提高采收率技术[J].天然气工业,2006,26(12):30-34.LI Shilun,SUN Lei,GUO Ping.Re-discussion of EOR with gas in⁃ jection in China[J].Natural Gas Industry,2006,26(12):30-34.
-
[4] 袁士义.注气提高油田采收率技术文集[M].北京:石油工业出版社,2016.YUAN Shiyi.Proceedings of enhanced oil recovery with gas injec⁃ tion[M].Beijing:Petroleum Industry Press,2016.
-
[5] 沈平平,廖新维.二氧化碳地质埋存与提高石油采收率技术 [M].北京:石油工业出版社,2009.SHEN Pingping,LIAO Xinwei.The technology of carbon dioxide storedin geological media and enhanced oil recovery[M].Beijing:Petroleum Industry Press,2009.
-
[6] 王高峰,胡永乐,宋新民,等.低渗透油藏气驱产量预测新方法 [J].科学技术与工程,2013,13(30):8 905-8 911.WANG Gaofeng,HU Yongle,Song Xinmin,et al.New theory of oil production prediction in gas flooding tight reservoirs[J].Science Technology and Engineering,2013,13(30):8 905-8 911.
-
[7] 王高峰,郑雄杰,张玉,等.适合二氧化碳驱的低渗透油藏筛选方法[J].石油勘探与开发,2015,42(3):358-363.WANG Gaofeng,ZHENG Xiongjie,ZHANG Yu,et al.A new screening method of low permeability reservoirs suitable for CO2 flooding[J].Petroleum Exploration and Development,2015,42(3):358-363.
-
[8] 袁士义,李海平,王高峰,等.关于加快 CO2驱油技术工业化的思考[R].北京:中国石油集团咨询中心,2016.YUAN Shiyi,LI Haiping,WANG Gaofeng,et al.Thoughts on speeding up industrialization of CO2 flooding technology[R].Bei⁃ jing:CNPC Advisory Center,2016.
-
[9] 杨坤.高含水期单元合理注采比确定[J].河南石油,1996,10(1):8-11.YANG Kun.The determination of injection-production ratio in high water cut stage[J].Henan Petroluem,1996,10(1):8-11.
-
[10] 刘学峰,赵玉欣,唐磊.油田开发中后期合理注采比确定方法 [J].河南石油,2000,14(2):19-21.LIU Xuefeng,ZHAO Yuxin,TANG Lei.Determination of rational production factor in medium and late development stages[J].Henan Petroleum,2000,14(2):19-21.
-
[11] 钟德康.注采比变化规律及矿场应用[J].石油勘探与开发,1997,24(6):65-69.ZHONG Dekang.Change pattern of injection-production ratio and its application in oil fields[J].Petroleum Exploration and Devel⁃opment,1997,24(6):65-69.
-
[12] 袁庆峰,庞彦明,杜庆龙,等.砂岩油田特高含水期开发规律 [J].大庆石油地质与开发,2017,36(3):49-55.YUAN Qingfeng,PANG Yanming,DU Qinglong,et al.Develop⁃ ment laws of the sandstone oilfields at extra-high watercut stage [J].Petroleum Geology & Oilfield Development in Daqing,2017,36(3):49-55.
-
[13] 钱德富,殷代印.确定区块合理注采井数比、合理注采比的数学模型及应用[J].大庆石油地质与开发,1994,13(4):37-41.QIAN Defu,YIN Daiyin.Mathematical model of determining rea⁃ sonable injection-production welm ratio and injection-production ratio of blocks[J].Petroleum Geology & Oilfield Development in Daqing,1994,13(4):37-41.
-
[14] 洪承燮,季华生,王晓虹.注采动态分析及定量配注方法研究 [J].石油勘探与开发,1992,19(2):56-62.HONG Chengxie,JI Huasheng,WANG Xiaohong.A study of the analysis of the injection-production performance and its applica⁃ tion on the proration of injection rate[J].Petroleum Exploration and Development,1992,19(2):56-62.
-
[15] 胡永乐,郝明强,陈国利,等.注二氧化碳提高石油采收率技术 [M].北京:石油工业出版社,2018.HU Yongle,HAO Mingqiang,CHEN Guoli,et al.Technology of enhanced oil recovery by carbon dioxide[M].Beijing:Petroleum Industry Press,2018.
-
[16] 李阳,杨勇.老油田绿色低成本开发探索与实践[J].油气地质与采收率,2019,26(2):1-6.LI Yang,YANG Yong.Exploration and practice of green low-cost development in old oilfields[J].Petroleum Geology and Recovery Efficiency,2019,26(2):1-6.
-
[17] 王一平,孙业恒,吴光焕,等.超深层稠油二氧化碳吞吐渗流规律[J].特种油气藏,2017,24(4):142-146.WANG Yiping,SUN Yeheng,WU Guanghuan,et al.Permeability rule of CO2 huff and puff for ultra-deep heavy oil reservoirs[J].Special Oil & Gas Reservoirs,2017,24(4):142-146.
-
[18] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity of coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.
-
[19] 张文博,操应长,远光辉.不同升温速率下方解石与二氧化碳水溶液作用实验[J].油气地质与采收率,2017,24(3):57-65.ZHANG Wenbo,CAO Yingchang,YUAN Guanghui.Experiment of interaction between calcite and fluid saturated with CO2 under different heating rates[J].Petroleum Geology and Recovery Effi⁃ ciency,2017,24(3):57-65.
-
[20] 丁景辰,杨胜来,史云清,等.致密气藏动态启动压力梯度实验研究[J].油气地质与采收率,2017,24(5):64-69.DING Jingchen,YANG Shenglai,SHI Yunqing,et al.Experimen⁃ tal study on dynamic threshold pressure gradient of tight gas reser⁃ voir[J].Petroleum Geology and Recovery Efficiency,2017,24(5):64-69.
-
[21] 王高峰,姚杰,王浩,等.低渗透油藏混相气驱生产气油比预测 [J].油气藏评价与开发,2019,9(3):80-84.WANG Gaofeng,YAO Jie,WANG Hao,et al.Prediction of pro⁃ duced gas oil ratio of miscible gas flooding in low permeable reser⁃ voirs[J].Reservoir Evaluation and Development,2019,9(3):80-84.
-
摘要
注采比合理性对气驱生产效果影响较大。基于物质平衡原理、达西定律和油气分流理论、气驱增产倍数和气驱油墙描述等概念与成果,考虑并量化了注入气溶解、油藏流体膨胀、注入气成矿固化、储层压敏效应、天然裂缝疏导和干层吸气、注气井组和外部液量交换、气油比构成等因素,分别建立了基于采出油水两相地下体积的气驱注采比计算公式(2P公式)和基于采出油气水三相地下体积的气驱注采比计算公式(3P公式),给出了单井日注气量计算方法。应用新方法,研究代表性特低渗透油藏二氧化碳驱项目注采比变化情况,连续注气气窜后应按照3P公式计算的气驱注采比进行配注;水气交替注入按照2P公式计算的气驱注采比进行配注基本可行。
Abstract
The rationality of injection-production ratio is important to the production performance of gas flooding. Accord- ing to concepts and research results of the material balance principle,Darcy’s law,fractional flow theory,oil production rate multiplier due to gas flooding;and“oil wall”description of gas flooding,and by considering the quantified factors in- cluding gas injection dissolution,reservoir fluid expansion,mineralization and solidification of injected gas,reservoir pres- sure-sensitive effect,natural fracture drainage and dry layer suction,liquid exchange between gas injection areas and exter- nal environment,and the composition of produced gas oil ratio,the formula of injection-production ratio based on under- ground two-phase volume of the produced oil-water(2P formula)and underground three-phase volume of produced oil-wa- ter-gas(3P formula)are proposed,respectively,and the calculation method of daily gas injection rate is proposed as well. The new method is applied to study the injection-production ratio change of representative CO2 flooding projects in extralow permeability oil reservoirs. It is found that it is feasible to allocate injection rate according to the injection-production ratio estimated by the 3P formula after continuous gas injection(CGI),and to allocate injection rate of water-alternatinggas(WAG)injection according to the injection-production rate estimated by 2P formula.