en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何应付(1978—),男,安徽蚌埠人,高级工程师,博士,从事注气提高采收率和油藏数值模拟研究。E-mail:heyf.syky@sinopec.com。

中图分类号:TE357.45

文献标识码:A

文章编号:1009-9603(2020)01-0140-06

DOI:10.13673/j.cnki.cn37-1359/te.2020.01.021

参考文献 1
李士伦,孙雷,郭平,等.再论我国发展注气提高采收率技术 [J].天然气工业,2006,26(12):30-34.LI Shilun,SUN Lei,GUO Ping,et al.Re-discussion of EOR with gas injection in China[J].Natural Gas Industry,2006,26(12):30-34.
参考文献 2
高慧梅,何应付,周锡生.注二氧化碳提高原油采收率技术研究进展[J].特种油气藏,2009,16(1):6-12.GAO Huimei,HE Yingfu,ZHOU Xisheng.Research progress on CO2 EOR technology[J].Special Oil & Gas Reservoirs,2009,16(1):6-12
参考文献 3
姜瑞忠,张海涛,张伟,等.CO2驱三区复合油藏水平井压力动态分析[J].油气地质与采收率,2018,25(6):63-70.JIANG Ruizhong,ZHANG Haitao,ZHANG Wei,et al.Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2018,25(6):63-70.
参考文献 4
毕卫宇,张攀锋,章杨,等.低渗透油田用 CO2气溶性泡沫体系研发及性能评价[J].油气地质与采收率,2018,25(6):71-77.BI Weiyu,ZHANG Panfeng,ZHANG Yang,et al.Development and performance evaluation on CO2-soluble surfactant foam sys⁃ tem for low permeability reservoir[J].Petroleum Geology and Re⁃ covery Efficiency,2018,25(6):71-77.
参考文献 5
王业飞,高苗,谭龙,等.裂缝-基质模型 CO2混相注入提高原油采收率[J].油气地质与采收率,2018,25(5):87-92.WANG Yefei,GAO Miao,TAN Long,et al.Experimental investi⁃ gation of miscible CO2 injection for enhanced oil recovery in frac⁃ture-matrix model[J].Petroleum Geology and Recovery Efficien⁃ cy,2018,25(5):87-92.
参考文献 6
李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.
参考文献 7
章星,王珍珍,王帅,等.可视装置中 CO2与正戊烷或原油接触特征和表征方法[J].石油实验地质,2017,39(3):402-408.ZHANG Xing,WANG Zhenzhen,WANG Shuai,et al.Visual con⁃ tact characteristics and characterization of the CO2 and n-pen⁃ tane/crude oil interface[J].Petroleum Geology & Experiment,2017,39(3):402-408.
参考文献 8
高敬善,但顺华,杨涛,等.CO2在准噶尔盆地昌吉油田吉7井区稠油中的溶解性研究[J].中国石油勘探,2018,23(5):65-72.GAO Jingshan,DAN Shunhua,YANG Tao,et al.Study on CO2 sol⁃ ubility in heavy oil in Well Ji7,Changji oilfield,Junggar Basin [J].China Petroleum Exploration,2018,23(5):65-72.
参考文献 9
赵永攀,赵习森,李剑,等.特低渗透油藏 CO2驱油室内实验与矿场应用[J].大庆石油地质与开发,2018,37(1):128-133.ZHAO Yongpan,ZHAO Xisen,LI Jian,et al.Indoor experiment and field application of CO2 flooding in ultra-low permeability oil reservoirs[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):128-133.
参考文献 10
GEFFEN T M.Improved oil recovery could ease energy shortage [J].World Oil,1977,177(5):84-88.
参考文献 11
National Petroleum Council.Enhanced oil recovery:An analysis of the potential for enhanced oil recovery from know fields in the United States[M].Washington:Richardson,1976.
参考文献 12
CARCOANA A N.Enhanced oil recovery in Romania[R].SPE 10699,1982.
参考文献 13
TABER J J,MARTIN F D,SERIGHT R S.EOR screening revisit⁃ ed:Part2:Applications and impact of oil prices[R].SPE 39234,1997.
参考文献 14
李士伦.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001:253-263. LI Shilun.EOR with gas injection[M].Chengdu:Sichuan Science and Technology Press,2001:253-263.
参考文献 15
WOOD D J,LAKE L W,JOHNS R T.A screening model for CO2 flooding and storage in gulf coast reservoirs based on dimension⁃ less groups[C].Tulsa:SPE/DOE Symposium on Improved Oil Re⁃ covery,2006:22-26.
参考文献 16
DANIEL D,BZAKI K.Screening criteria for application of carbon dioxide miscible displacement in waterflooded reservoirs contain⁃ ing light oil[C].Tulsa:SPE 35431 presented at the 1996 SPE Im⁃ proved Oil Recovery Symposium,1996:21-24.
参考文献 17
GROGAN A T,PINCZEWSKI W V.The role of molecular diffu⁃ sion processes in tertiary CO2 flooding[J].Journal of Petroleum Technology,1987,39(5):591-602.
参考文献 18
计秉玉,王凤兰,何应付.对CO2驱油过程中油气混相特征的再认识[J].大庆石油地质与开发,2009,28(3):103-109.JI Bingyu,WANG Fenglan,HE Yingfu.RE-understanding of oil and gas miscible phase characteristics during CO2 flooding[J].Pe⁃ troleum Geology & Oilfield Development in Daqing,2009,28(3):103-109.
参考文献 19
LEENA KOOTTUNGAL.2014 worldwide EOR survey[J].Oil and Gas Journal,2014,106(15):47-59.
参考文献 20
熊钰,孙良田,孙雷,等.基于模糊层次分析法的注 CO2混相驱油藏综合评价方法[J].石油学报,2002,23(6):60-62. XIONG Yu,SUN Liangtian,SUN Lei,et al.A new intigrative eval⁃ uation way for candidate of carbon dioxide miscible flooding reser⁃ voirs based on fuzzy analytical hierarchy process[J].Acta Petrolei Sinica,2002,23(6):60-62.
参考文献 21
熊德明.油藏注 CO2适宜度及开发效果评价体系研究[D].成都:西南石油大学,2011.XIONG Deming.Study on feasibility and evaluation system of de⁃ velopment effect of CO2 flooding[D].Chengdu:Southwest Petro⁃ leum University,2011.
参考文献 22
俞凯,刘伟,陈祖华.陆相低渗透油藏 CO2混相驱技术[M].北京:中国石化出版社,2016.YU Kai,LIU Wei,CHEN Zhuhua.CO2 miscible flooding technolo⁃ gy in continental low permeability reservoir[M].Beijing:China Petrochemical Press,2016.
参考文献 23
李承龙,韩昊.用灰色模糊综合评估法识别注气初期 CO2气窜通道[J].大庆石油地质与开发,2018,37(6):116-120.LI Chenglong,HAN Hao.Identification of the gas channeling by grey-fuzzy complex judging method at the early stage of CO2 flooding[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):116-120.
目录contents

    摘要

    由于能够满足环境保护和提高采收率的双重需求,CO2驱越来越受重视。CO2驱油藏筛选与潜力评价方法是进行中长期发展规划和规模化矿场应用的基础,但以混相-非混相驱理论为指导的筛选标准难以适应中国陆相砂岩油藏的需求。为此,首先利用数值模拟方法研究CO2驱混相特征,揭示初期注入端出现暂时混相,之后混相区向采出端移动并呈现相分离、前缘界面张力降低、采出井界面张力升高的规律;分析混相程度的变化特征,并提出近混相驱划分界限;在现有标准的基础上,提出新的 CO2驱油藏筛选标准。将该标准与模糊评判和层次分析法相结合,建立了砂岩油藏 CO2驱筛选方法,并应用于中国石化 CO2驱油藏筛选。结果表明,剔出化学驱油藏和稠油油藏后,中国石化适合 CO2驱的石油地质探明储量达 22.62×108 t,其中混相驱、近混相驱和非混相驱的石油地质探明储量分别为4.89×108 ,6.59×108 和11.14×108 t,预计增加可采储量2.03×108 t。

    Abstract

    Because CO2 flooding can meet the demand of both environmental protection and enhanced oil recovery,it has at- tracted increasing attention. The reservoir screening and potential evaluation methods of CO2 flooding are the basis of medi- um and long-term development planning and large-scale field application,but the screening criteria guided by miscibleimmiscible flooding theory are difficult to adapt to China’s continental sandstone reservoirs. Therefore,the miscibility char- acteristics of CO2 flooding are firstly studied by numerical simulation. The transient miscibility at the initial injection end appears. Afterwards,the miscibility zone moves to the production end,and phenomena including phase separation,interfa- cial tension reduction at leading edge and interfacial tension rise in the production well appears. The variation characteris- tics of miscibility degree are analyzed and the boundaries of near-miscibility flooding are proposed. On the basis of existing standards,a new standard for screening CO2 flooding reservoirs is proposed. It is combined with fuzzy evaluation and analyt- ic hierarchy process,and a screening method for CO2 flooding in sandstone reservoirs is proposed and applied to the screen- ing of CO2 flooding reservoirs of SINOPEC. The results show that SINOPEC has 2.262 billion tons of proven reserves suit- able for CO2 flooding except for chemical flooding reservoirs and heavy oil reservoirs,of which,489 million tons are misci- ble flooding,659 million tons are near miscible flooding and 1114 million tones are immiscible flooding,and the recover- able reserves are expected to increase by 203 million tons.

  • 随着人们对温室效应的关注及对难采储量(致密油、页岩油等)进一步提高采收率的需求,注 CO2驱备受重视[1-9]。自2000年以来,中国共开展CO2驱先导(井组)试验 51 项,覆盖地质储量超过 6 500× 104 t,但还未进入规模化应用阶段。

  • CO2驱油藏筛选与潜力评价方法是进行中长期发展规划和规模化矿场应用的基础,很多学者对此进行了大量的研究,主要形成了 3 类方法。第 1 类是二元对比法,如美国的混相驱筛选标准[10-13]、中国的筛选标准[14];该方法主要将 CO2驱分为混相驱和非混相驱,并给出相关参数的取值范围;该方法简单易行,但没有考虑油藏各参数的综合影响。第 2 类方法为代理模型法,即数值模拟与实验设计方法相结合,建立采收率、换油率等计算模型,如 WOOD 等建立的基于无量纲参数的筛选模型[15];该方法建立过程较复杂,适用性受模型建立时取值范围的影响,推广性差。第 3 类为模糊评判方法,如 DANIEL 等提出的利用参数权重向量乘参数适宜度矩阵来对油藏进行综合评价的方法[16],该方法考虑油藏各参数的综合影响,但依赖于油藏二元筛选参数。

  • 目前,中国油藏筛选大多采用第 1 类和第 3 类方法,主要借用外国提出的二元筛选参数,并将驱替类型分为混相驱和非混相驱。但是中国油藏以陆相沉积、陆相生油为主,CO2驱混相压力较高,且油藏非均质性强,使得以混相-非混相驱理论为指导的筛选标准难以适应。为此,在对 CO2驱混相特征分析的基础上,利用模糊综合评价和层次分析方法,建立了一套新的CO2驱油藏筛选和评价标准,并将其应用于中国石化CO2驱油藏潜力评价。

  • 1 CO2驱混相特征分析

  • CO2与原油间主要的物理化学作用可以概括为 3 个方面:①溶解/凝析作用。CO2从气相转移到油相中,降低了油相密度与黏度,增加弹性能量,降低油气界面张力。②蒸发/萃取作用。油相中的轻烃组分转移到CO2相中,使油相密度与黏度增大,对高含蜡油藏或高含沥青质油藏,甚至会出现固相沉积。③CO2在油相中的扩散作用。可以分为分子扩散和水力弥散[17],扩散作用使 CO2组分的波及系数远大于CO2相的波及系数。

  • 这3种物理化学作用受油藏所处的动力学条件影响,尤其是注入端高压反漏斗、采出端低压漏斗和整个压力剖面均对注采井间相变化特征和物理化学特征影响重大[18],在大量组分模拟计算基础上,分析CO2驱相与相界面的变化规律,并进一步研究了CO2驱混相程度的变化特征。

  • 1.1 相与相界面变化规律

  • 使用组分模型可以计算CO2的驱替过程。为不失一般性,采用东北某油田的流体物性和储层参数,左侧为注入井,右侧为采出井,注入 0.4 PV 时,模拟获得注入井与采出井连井剖面上的油藏压力 (p)及饱和度分布(图1)。

  • 图1 油藏压力及油、气相饱和度分布

  • Fig.1 Distribution of pressure,oil and gas saturation

  • 注入初期,在注入井附近储层压力一般高于 CO2与原油间一次接触的混相压力。此时 CO2与原油达到一次接触混相状态,相界面消失。在此过程中,压力场对混相起主导作用,出现暂时混相,该现象具有普遍性。

  • 注入中期,随着CO2的持续注入,储层流体向低压采出井推进,CO2及部分轻烃组分逐渐分离出来,形成单独相,即富CO2气相,油气相界面产生。在油气两相区内,存在 CO2相前缘和油相后缘。由于蒸发混相效应,无因次时间(tD)为0.1~0.2时,前缘界面张力升高速度较慢,后缘界面张力升高速度较快 (图2)。当界面张力低于临界界面张力时,低界面张力区内的相渗曲线、毛管力曲线同样会发生变化,其驱替过程不同于典型的非混相驱,属于近混相驱范畴。同时,前缘运动速度大于后缘运动速度,因此两相区范围不断增大。在该阶段,CO2对原油的萃取作用逐渐成为关键因素。

  • 图2 两相区范围及两相区中油气界面张力分布

  • Fig.2 Range of two-phase region and interfacial tension distribution in two-phase region

  • 注入后期,随着 CO2相前缘进一步向采出端推进,储层压力下降较大,压力作用又成为主导。油相中溶解的 CO2重新蒸发到气相中建立新的平衡,油相中CO2浓度进一步降低,密度增大;气相密度随着压力降低持续减小,t D为 0.5 时,油气界面张力增大(图2),并在整个两相区内均大于近混相临界表面张力,驱替过程转变为普通的非混相驱替。

  • 在整个 CO2驱过程中,呈现暂时混相、相分离、前缘界面张力降低、采出井界面张力升高的规律。在驱替过程中某一时刻,储层不同位置同时存在混相、近混相、非混相等多种状态。储层内某一点,可能依次经历混相、近混相、非混相。

  • 1.2 混相程度变化特征

  • 采用数值模拟方法,建立概念模型,计算多个油样在不同油藏压力下混相程度和混相体积系数。根据目前中国 CO2驱油典型区块的物性参数,取五点法井网的1/4建立如下概念模型:网格划分为25× 25×1,网格步长为 5 m,平面渗透率为 2 mD,孔隙度为 15%,有效厚度为 5 m,油水和油气相对渗透率曲线采用东北某油田的数据,油样的地层原油黏度为 0.7 mPa·s,密度为 0.75 g/cm3,原油组分及相关 PVT 热力学参数见表1所示。

  • 表1 原油组分及PVT热力学参数

  • Table1 Oil components and PVT thermodynamics parameters

  • 从模拟计算结果可以看出,混相程度与油藏压力呈“S”形曲线(图3),当油藏压力较低时(非混相驱替),混相程度增加速度降低;当油藏压力增加到一定程度时(近混相驱替),混相程度增加较快;当油藏压力超过最小混相压力(MMP)时(混相驱替),混相程度增加速度再次降低。与之相对应,当油藏压力较低时,绝对混相体积系数[18] 接近0;当油藏压力增加到 18 MPa 后,绝对混相体积系数增加较快 (图4)。

  • 由油藏压力与波及系数关系曲线(图5)可以看出,存在 16 和 18 MPa 这 2 个拐点,当油藏压力较低 (12~16 MPa)和较高(18~24 MPa)时,波及系数随油藏压力增加,下降速度均较快;而在近混相驱阶段 (油藏压力为 16~18 MPa),波及系数随油藏压力增加变化较小。

  • 图3 油藏压力与混相程度关系曲线

  • Fig.3 Relationship curve between reservoir pressure and miscibility degree

  • 图4 油藏压力与绝对混相体积系数关系曲线

  • Fig.4 Relationship curve between reservoir pressure and fully miscible volume factor

  • 图5 油藏压力与波及系数关系曲线

  • Fig.5 Relationship between reservoir pressure and sweep coefficient

  • 油藏压力与混相程度曲线(图3)和波及系数曲线(图5)均存在2个拐点,第1拐点位于非混相向近混相的转变处;第 2 个拐点位于近混相向混相的转变处。该油样 MMP 值为 18 MPa,发现从非混相驱转变为近混相驱,其拐点处 p/MMP 值约为 0.8。因此,在进行油藏筛选时,通过增加油藏压力与 MMP 比值,将 CO2驱分为非混相驱、近混相驱和混相驱:当 p /MMP< 0.8 时,为非混相驱;当 0.8≤p /MMP< 1.0 时,为近混相驱;当p/MMP≥1.0时,为混相驱。

  • 2 CO2驱油藏筛选标准

  • 统计现行注 CO2项目[19],发现 CO2驱油藏的适应范围较为广泛。满足渗透率为1~50 mD、深度小于2 000 m、原油API度为30.0~45.0、原油黏度小于 2 mPa•s、油藏温度为 30~90℃、剩余油饱和度大于 30%、储量规模多大于 100×104 t的油藏也被认为是注 CO2驱的最佳标准。据此,并结合前人提出的油藏筛选标准(表2)[10-13],提出考虑混相、近混相和非混相3种类型的注CO2驱油藏筛选新标准(表3),表3包括原油黏度、原油密度、含油饱和度、油藏深度、油藏温度、渗透率、变异系数、油藏压力和储量规模 9个标准及其区间。同时,在筛选开发单元时,还应满足以下一般性标准:①注气驱目的层油藏密封性好,盖层吸附气体能力要差,断层和岩墙遮挡性较好。②层内非均质性强,层间渗透率差异小,无高渗透。③油藏连通性较好,注采井网较完善,有一定的油层厚度,但不能过大,提高波及体积。④原油重质组分少,尤其是胶质和沥青质含量少,C2— C12含量高。⑤地层水中 Ca2+,Mg2+,Al3+ 等离子浓度偏高,不宜进行气驱。⑥井况较好,不存在如套损等故障问题。

  • 表2 美国注CO2混相驱油藏筛选标准

  • Table2 Reservoir screening criteria of CO2 miscible flooding in the US

  • 表3 注CO2驱油藏潜力筛选标准

  • Table3 Reservoir screening criteria of CO2 flooding

  • 3 CO2驱油藏筛选方法

  • 在对 CO2驱油藏评价过程中,不能仅凭一个或几个标准进行评价。因为即使具有较大潜力的油藏,也不是所有参数均能达到筛选标准,所以需要采用一种综合评价的方法。模糊综合评价法是基于模糊数学和层次分析理论的一种综合评价方法,已有诸多学者采用该方法对CO2驱油藏筛选进行过研究[20-23]。分析注气成功实例的数据库,结合中国石化的具体情况,利用模糊综合评价和层次分析法确定上述9个标准的权重,其值分别为0.255,0.132, 0.068,0.034,0.062,0.132,0.052,0.242 和 0.024,据此建立了达标、基本达标、基本不达标和不达标4个 CO2驱油藏评价等级(表4)。

  • 除权重和评价等级外,模糊综合评价方法的关键为隶属度函数的计算。大量的研究和实例计算表明,单因素评价向量必须遵守:大隶属度原则、区别性原则、一致性原则和极限原则。为了使确定的隶属度函数满足上述四个基本原则,本文将传统的岭形函数加以引申;同时将非等距的区间线性变化成等距区间,将隶属度分布密度函数用对称形式的岭形分布表示;另外,根据极限准则,确定分布密度函数的左右零点;从而获得模糊综合评价矩阵[22]。模糊综合评价矩阵和权重的乘积反映同一油藏各评价参数之间对注 CO2适宜性的加权表现,结合最大隶属度原则,即可确定候选油藏注CO2的适宜性。油藏筛选过程中涉及到最小混相压力,该参数确定方法很多,目前应用最广泛的是长细管实验方法。但对大量的油田进行筛选,全部进行长细管实验显然是不现实的。为此,笔者建议根据各油藏资料齐全程度,选择合适的经验公式计算最小混相压力。

  • 表4 CO2驱油藏评价等级及9个标准权重

  • Table4 Evaluation order and nine standard weights of reservoir parameter for CO2 flooding

  • 4 应用实例

  • 本次 CO2驱潜力评价以 2017 年底中国石化已开发单元为基础,评价对象为中国石化上游油气生产企业的胜利、西北、中原、河南、江苏、江汉、西南、华北、华东、东北、上海等 11 个油田分公司,共涉及 2 580个已开发单元。以现有的开发数据资料(动态和静态数据)为条件,采用上述筛选标准和模糊评判方法进行低渗透油藏CO2驱潜力筛选评价。

  • 评价结果显示,中国石化共有 597 个单元、 22.62×108 t 的石油地质探明储量适宜 CO2驱,其中混相驱、近混相驱和非混相驱的单元个数和石油地质探明储量分别为 162 个、4.89×108 t,191 个、6.59× 108 t,244个、11.14×108 t。从预测结果看,中国石化适宜CO2混相驱、近混相驱的油藏较少,以非混相驱替为主。

  • 从 CO2驱油实践结果看,CO2混相驱效果最好,近混相驱次之,非混相驱效果明显差。从中国已实施CO2驱开发先导试验结果看,混相驱、近混相驱和非混相驱提高采收率幅度分别为> 12%,8%~12% 和6%~8%,混相驱、近混相驱和非混相驱提高采收率幅度分别按 12%,10% 和 7% 计算,预计增加可采储量分别为5 868×104,6 589×104 和7 798×104 t。

  • 5 结论

  • 分析注 CO2驱混相特征,认为在整个 CO2驱过程中,注采井间依次经历混相、近混相和非混相,并依据p/MMP值大小,将CO2驱分为混相驱、近混相驱和非混相驱。在中外CO2驱矿场实例数据分析的基础上,利用模糊综合评价法筛选原油黏度、原油密度、含油饱和度、渗透率、变异系数、油藏深度、油藏温度、油藏压力和储量规模9个指标,采用层次分析法分别确定其权重,最终建立了一套新的 CO2驱油藏筛选标准,中国石化CO2驱油藏筛选结果表明,剔出化学驱油藏和稠油油藏后,适合 CO2驱的石油地质探明储量达22.62×108 t,其中混相驱、近混相驱和非混相驱分别为 4.89×108,6.59×108 和 11.14×108 t,预计增加可采储量2.03×108 t。

  • 参考文献

    • [1] 李士伦,孙雷,郭平,等.再论我国发展注气提高采收率技术 [J].天然气工业,2006,26(12):30-34.LI Shilun,SUN Lei,GUO Ping,et al.Re-discussion of EOR with gas injection in China[J].Natural Gas Industry,2006,26(12):30-34.

    • [2] 高慧梅,何应付,周锡生.注二氧化碳提高原油采收率技术研究进展[J].特种油气藏,2009,16(1):6-12.GAO Huimei,HE Yingfu,ZHOU Xisheng.Research progress on CO2 EOR technology[J].Special Oil & Gas Reservoirs,2009,16(1):6-12

    • [3] 姜瑞忠,张海涛,张伟,等.CO2驱三区复合油藏水平井压力动态分析[J].油气地质与采收率,2018,25(6):63-70.JIANG Ruizhong,ZHANG Haitao,ZHANG Wei,et al.Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2018,25(6):63-70.

    • [4] 毕卫宇,张攀锋,章杨,等.低渗透油田用 CO2气溶性泡沫体系研发及性能评价[J].油气地质与采收率,2018,25(6):71-77.BI Weiyu,ZHANG Panfeng,ZHANG Yang,et al.Development and performance evaluation on CO2-soluble surfactant foam sys⁃ tem for low permeability reservoir[J].Petroleum Geology and Re⁃ covery Efficiency,2018,25(6):71-77.

    • [5] 王业飞,高苗,谭龙,等.裂缝-基质模型 CO2混相注入提高原油采收率[J].油气地质与采收率,2018,25(5):87-92.WANG Yefei,GAO Miao,TAN Long,et al.Experimental investi⁃ gation of miscible CO2 injection for enhanced oil recovery in frac⁃ture-matrix model[J].Petroleum Geology and Recovery Efficien⁃ cy,2018,25(5):87-92.

    • [6] 李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.

    • [7] 章星,王珍珍,王帅,等.可视装置中 CO2与正戊烷或原油接触特征和表征方法[J].石油实验地质,2017,39(3):402-408.ZHANG Xing,WANG Zhenzhen,WANG Shuai,et al.Visual con⁃ tact characteristics and characterization of the CO2 and n-pen⁃ tane/crude oil interface[J].Petroleum Geology & Experiment,2017,39(3):402-408.

    • [8] 高敬善,但顺华,杨涛,等.CO2在准噶尔盆地昌吉油田吉7井区稠油中的溶解性研究[J].中国石油勘探,2018,23(5):65-72.GAO Jingshan,DAN Shunhua,YANG Tao,et al.Study on CO2 sol⁃ ubility in heavy oil in Well Ji7,Changji oilfield,Junggar Basin [J].China Petroleum Exploration,2018,23(5):65-72.

    • [9] 赵永攀,赵习森,李剑,等.特低渗透油藏 CO2驱油室内实验与矿场应用[J].大庆石油地质与开发,2018,37(1):128-133.ZHAO Yongpan,ZHAO Xisen,LI Jian,et al.Indoor experiment and field application of CO2 flooding in ultra-low permeability oil reservoirs[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):128-133.

    • [10] GEFFEN T M.Improved oil recovery could ease energy shortage [J].World Oil,1977,177(5):84-88.

    • [11] National Petroleum Council.Enhanced oil recovery:An analysis of the potential for enhanced oil recovery from know fields in the United States[M].Washington:Richardson,1976.

    • [12] CARCOANA A N.Enhanced oil recovery in Romania[R].SPE 10699,1982.

    • [13] TABER J J,MARTIN F D,SERIGHT R S.EOR screening revisit⁃ ed:Part2:Applications and impact of oil prices[R].SPE 39234,1997.

    • [14] 李士伦.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001:253-263. LI Shilun.EOR with gas injection[M].Chengdu:Sichuan Science and Technology Press,2001:253-263.

    • [15] WOOD D J,LAKE L W,JOHNS R T.A screening model for CO2 flooding and storage in gulf coast reservoirs based on dimension⁃ less groups[C].Tulsa:SPE/DOE Symposium on Improved Oil Re⁃ covery,2006:22-26.

    • [16] DANIEL D,BZAKI K.Screening criteria for application of carbon dioxide miscible displacement in waterflooded reservoirs contain⁃ ing light oil[C].Tulsa:SPE 35431 presented at the 1996 SPE Im⁃ proved Oil Recovery Symposium,1996:21-24.

    • [17] GROGAN A T,PINCZEWSKI W V.The role of molecular diffu⁃ sion processes in tertiary CO2 flooding[J].Journal of Petroleum Technology,1987,39(5):591-602.

    • [18] 计秉玉,王凤兰,何应付.对CO2驱油过程中油气混相特征的再认识[J].大庆石油地质与开发,2009,28(3):103-109.JI Bingyu,WANG Fenglan,HE Yingfu.RE-understanding of oil and gas miscible phase characteristics during CO2 flooding[J].Pe⁃ troleum Geology & Oilfield Development in Daqing,2009,28(3):103-109.

    • [19] LEENA KOOTTUNGAL.2014 worldwide EOR survey[J].Oil and Gas Journal,2014,106(15):47-59.

    • [20] 熊钰,孙良田,孙雷,等.基于模糊层次分析法的注 CO2混相驱油藏综合评价方法[J].石油学报,2002,23(6):60-62. XIONG Yu,SUN Liangtian,SUN Lei,et al.A new intigrative eval⁃ uation way for candidate of carbon dioxide miscible flooding reser⁃ voirs based on fuzzy analytical hierarchy process[J].Acta Petrolei Sinica,2002,23(6):60-62.

    • [21] 熊德明.油藏注 CO2适宜度及开发效果评价体系研究[D].成都:西南石油大学,2011.XIONG Deming.Study on feasibility and evaluation system of de⁃ velopment effect of CO2 flooding[D].Chengdu:Southwest Petro⁃ leum University,2011.

    • [22] 俞凯,刘伟,陈祖华.陆相低渗透油藏 CO2混相驱技术[M].北京:中国石化出版社,2016.YU Kai,LIU Wei,CHEN Zhuhua.CO2 miscible flooding technolo⁃ gy in continental low permeability reservoir[M].Beijing:China Petrochemical Press,2016.

    • [23] 李承龙,韩昊.用灰色模糊综合评估法识别注气初期 CO2气窜通道[J].大庆石油地质与开发,2018,37(6):116-120.LI Chenglong,HAN Hao.Identification of the gas channeling by grey-fuzzy complex judging method at the early stage of CO2 flooding[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):116-120.

  • 参考文献

    • [1] 李士伦,孙雷,郭平,等.再论我国发展注气提高采收率技术 [J].天然气工业,2006,26(12):30-34.LI Shilun,SUN Lei,GUO Ping,et al.Re-discussion of EOR with gas injection in China[J].Natural Gas Industry,2006,26(12):30-34.

    • [2] 高慧梅,何应付,周锡生.注二氧化碳提高原油采收率技术研究进展[J].特种油气藏,2009,16(1):6-12.GAO Huimei,HE Yingfu,ZHOU Xisheng.Research progress on CO2 EOR technology[J].Special Oil & Gas Reservoirs,2009,16(1):6-12

    • [3] 姜瑞忠,张海涛,张伟,等.CO2驱三区复合油藏水平井压力动态分析[J].油气地质与采收率,2018,25(6):63-70.JIANG Ruizhong,ZHANG Haitao,ZHANG Wei,et al.Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding[J].Petroleum Geology and Recovery Efficiency,2018,25(6):63-70.

    • [4] 毕卫宇,张攀锋,章杨,等.低渗透油田用 CO2气溶性泡沫体系研发及性能评价[J].油气地质与采收率,2018,25(6):71-77.BI Weiyu,ZHANG Panfeng,ZHANG Yang,et al.Development and performance evaluation on CO2-soluble surfactant foam sys⁃ tem for low permeability reservoir[J].Petroleum Geology and Re⁃ covery Efficiency,2018,25(6):71-77.

    • [5] 王业飞,高苗,谭龙,等.裂缝-基质模型 CO2混相注入提高原油采收率[J].油气地质与采收率,2018,25(5):87-92.WANG Yefei,GAO Miao,TAN Long,et al.Experimental investi⁃ gation of miscible CO2 injection for enhanced oil recovery in frac⁃ture-matrix model[J].Petroleum Geology and Recovery Efficien⁃ cy,2018,25(5):87-92.

    • [6] 李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.

    • [7] 章星,王珍珍,王帅,等.可视装置中 CO2与正戊烷或原油接触特征和表征方法[J].石油实验地质,2017,39(3):402-408.ZHANG Xing,WANG Zhenzhen,WANG Shuai,et al.Visual con⁃ tact characteristics and characterization of the CO2 and n-pen⁃ tane/crude oil interface[J].Petroleum Geology & Experiment,2017,39(3):402-408.

    • [8] 高敬善,但顺华,杨涛,等.CO2在准噶尔盆地昌吉油田吉7井区稠油中的溶解性研究[J].中国石油勘探,2018,23(5):65-72.GAO Jingshan,DAN Shunhua,YANG Tao,et al.Study on CO2 sol⁃ ubility in heavy oil in Well Ji7,Changji oilfield,Junggar Basin [J].China Petroleum Exploration,2018,23(5):65-72.

    • [9] 赵永攀,赵习森,李剑,等.特低渗透油藏 CO2驱油室内实验与矿场应用[J].大庆石油地质与开发,2018,37(1):128-133.ZHAO Yongpan,ZHAO Xisen,LI Jian,et al.Indoor experiment and field application of CO2 flooding in ultra-low permeability oil reservoirs[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(1):128-133.

    • [10] GEFFEN T M.Improved oil recovery could ease energy shortage [J].World Oil,1977,177(5):84-88.

    • [11] National Petroleum Council.Enhanced oil recovery:An analysis of the potential for enhanced oil recovery from know fields in the United States[M].Washington:Richardson,1976.

    • [12] CARCOANA A N.Enhanced oil recovery in Romania[R].SPE 10699,1982.

    • [13] TABER J J,MARTIN F D,SERIGHT R S.EOR screening revisit⁃ ed:Part2:Applications and impact of oil prices[R].SPE 39234,1997.

    • [14] 李士伦.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001:253-263. LI Shilun.EOR with gas injection[M].Chengdu:Sichuan Science and Technology Press,2001:253-263.

    • [15] WOOD D J,LAKE L W,JOHNS R T.A screening model for CO2 flooding and storage in gulf coast reservoirs based on dimension⁃ less groups[C].Tulsa:SPE/DOE Symposium on Improved Oil Re⁃ covery,2006:22-26.

    • [16] DANIEL D,BZAKI K.Screening criteria for application of carbon dioxide miscible displacement in waterflooded reservoirs contain⁃ ing light oil[C].Tulsa:SPE 35431 presented at the 1996 SPE Im⁃ proved Oil Recovery Symposium,1996:21-24.

    • [17] GROGAN A T,PINCZEWSKI W V.The role of molecular diffu⁃ sion processes in tertiary CO2 flooding[J].Journal of Petroleum Technology,1987,39(5):591-602.

    • [18] 计秉玉,王凤兰,何应付.对CO2驱油过程中油气混相特征的再认识[J].大庆石油地质与开发,2009,28(3):103-109.JI Bingyu,WANG Fenglan,HE Yingfu.RE-understanding of oil and gas miscible phase characteristics during CO2 flooding[J].Pe⁃ troleum Geology & Oilfield Development in Daqing,2009,28(3):103-109.

    • [19] LEENA KOOTTUNGAL.2014 worldwide EOR survey[J].Oil and Gas Journal,2014,106(15):47-59.

    • [20] 熊钰,孙良田,孙雷,等.基于模糊层次分析法的注 CO2混相驱油藏综合评价方法[J].石油学报,2002,23(6):60-62. XIONG Yu,SUN Liangtian,SUN Lei,et al.A new intigrative eval⁃ uation way for candidate of carbon dioxide miscible flooding reser⁃ voirs based on fuzzy analytical hierarchy process[J].Acta Petrolei Sinica,2002,23(6):60-62.

    • [21] 熊德明.油藏注 CO2适宜度及开发效果评价体系研究[D].成都:西南石油大学,2011.XIONG Deming.Study on feasibility and evaluation system of de⁃ velopment effect of CO2 flooding[D].Chengdu:Southwest Petro⁃ leum University,2011.

    • [22] 俞凯,刘伟,陈祖华.陆相低渗透油藏 CO2混相驱技术[M].北京:中国石化出版社,2016.YU Kai,LIU Wei,CHEN Zhuhua.CO2 miscible flooding technolo⁃ gy in continental low permeability reservoir[M].Beijing:China Petrochemical Press,2016.

    • [23] 李承龙,韩昊.用灰色模糊综合评估法识别注气初期 CO2气窜通道[J].大庆石油地质与开发,2018,37(6):116-120.LI Chenglong,HAN Hao.Identification of the gas channeling by grey-fuzzy complex judging method at the early stage of CO2 flooding[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):116-120.